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Abstract: Twinning behaviors in grains during cold rolling have been systematically studied in
preparing ultra-thin grain-oriented silicon steel (UTGO) using a commercial glassless grain-oriented
silicon steel as raw material. It is found that the twinning system with the maximum Schmid factor
and shear mechanical work would be activated. The area fraction of twins increased with the cold
rolling reduction. The orientations of twins mainly appeared to be α-fiber (<110>//RD), most of
which were {001}<110> orientation. Analysis via combining deformation orientation simulation and
twinning orientation calculation suggested that {001}<110> oriented twinning occurred at 40–50%
rolling reduction. The simulation also confirmed more {100} <011> oriented twins would be produced
in the cold rolling process and their orientation also showed less deviation from ideal {001}<110>
orientation when a raw material with a higher content of exact Goss oriented grains was used.

Keywords: ultra-thin grain-oriented silicon steel (UTGO); cold rolling; twinning; Goss; {100}<011>

1. Introduction

Ultra-thin grain-oriented silicon steel (UTGO steel, thickness ≤ 0.10 mm) is an impor-
tant magnetic material mainly used for manufacturing intermediate and high-frequency
transformers [1–4], thanks to its ability to increase core power while reducing core loss and
volume. Although the manufacturing route for grain-oriented silicon steel has been devel-
oped for decades, it is still difficult to produce ultra-thin products using a conventional
process which is based on secondary recrystallization. The difficulty is due to acceleration
of the inhibitor coarsening during recrystallization and poor control over Goss orientation
under large rolling reduction [5–9]. At present, the most prevalent production method to
prepare ultra-thin grain-oriented silicon steel is to use commercial grain-oriented silicon
steel sheets as starting material, then cold-rolling the steel sheets to the desired thickness
followed by annealing processes [4,10,11].

In recent years, many studies have reported the formation of deformation twinning
in silicon steel. Shi et al. [12] and Xie et al. [13] discovered that deformation twinning
occurred in Fe-6.5% Si alloy in a medium temperature tensile and compress test, and that
this twinning promoted the plastic deformation of the alloy. Dunn et al. [14] demonstrated
that both slip and twinning were activated during cold rolling in Fe-3.25 wt.% Si alloy, and
{001}<110> oriented twins could be formed in Goss single crystal at an early deformation
stage. Rusakov et al. [15] studied the features of twinning in cold-deformed Goss single
crystal in an Fe-3% Si-0.5% Cu alloy and found that twins with near {001}<110> orientation
were formed at 5% reduction and the twinning orientation did not change during the subse-
quent deformation. Dorner et al. [16] reported that the area fraction of {001}<110> oriented
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twins increased with an increase of deformation reduction and reached the maximum at
61% deformation reduction when studying the evolutions of crystallographic orientations
of cold-rolled Goss single crystals in Fe-3% Si alloy. Even with extensive studies, there are
still disputes on how the twins in BCC structured grain-oriented silicon steels are formed
and evolved during cold rolling.

It is known that deformation twinning has a pronounced grain orientation dependence
in FCC [17–19] and HCP [20,21] metals or alloys, and similar effects of initial grain orienta-
tion on deformation twinning are also reported in BCC structure [22,23]. Fu et al. [22] found
that twins tend to occur in grains with a tensile orientation near the <001> corner and a
compressive orientation near the <101>-<111> line, and this twinning activation is closely
related to their corresponding Schmid factor, respectively. In the production of ultra-thin
grain-oriented silicon steel, it is preferred that the starting material has a strong Goss
texture, so that grains with exact Goss in a certain extent in the resultant UTGO steel will
occupy the great majority of area. The deviation of grain orientation from the exact Goss
will affect the subsequent orientation transition routes [23]. However, the effect of deviation
degree on the twinning behavior remains unclear. In this study, the twinning behaviors
during cold rolling ultra-thin grain-oriented silicon steel have been systematically analyzed,
and special attention has been focused on the influence of initial Goss orientation deviation
on the twinning behavior. The results will help to comprehensively understand the cold
rolling process and to provide a theoretical basis for preparing ultra-thin grain-oriented
silicon steel.

2. Experimental Procedure

A 0.35 mm-thick commercial glassless grain-oriented silicon steel plate without a
magnesium silicate layer was used as raw material to prepare the ultra-thin silicon steel.
Its magnetic properties were B8 = 1.89 T, P1.7/50 = 1.12 W/kg, the average grain size was
about 30 mm and the chemical compositions (mass fraction, %) were C: 0.0058, Si: 3, Mn:
0.0088, S: 0.0003, Al: 0.005, N: 0.001, Sn: 0.1. After being pickled with hydrochloric acid
to distinguish the original grain boundaries, the sample plates of 300 mm (along rolling
direction, RD) × 40 mm (along transverse direction, TD) were cut into two parts, as shown
in Figure 1. The parts marked by the red block diagram are 10 mm (RD) × 5 mm (TD)
and were used to confirm the initial orientation of the marked grains. The analysis was
done using a Zeiss GeminiSEM500 field emission scanning electron microscope (SEM)
equipped with an EBSD system and the accelerating voltage was 20 KV when measured.
EBSD data was post-processed by the HKL CHANNEL5 software. The part marked by
the green block is 300 mm (RD, rolling direction) ×30 mm (TD, transverse direction)
and was cold rolled to 0.21–0.075 mm thick to investigate the twinning behavior. The
microstructures and microtextures at different reductions were characterized and evaluated
with a Confocal laser scanning microscope (CLSM) and EBSD technique, respectively. For
the EBSD measurements, the samples were machined and electropolished with a 5%
perchloric acid/alcohol solution to remove the surface strain layer. In the EBSD data, the
tolerance angles for the orientations are set as 15◦.
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3. Results and Discussion
3.1. Deformation Twinning Microstructure

The microstructures of the 0.075 mm rolled sheet were characterized by CLSM and
are shown in Figure 2, and the textures measured by EBSD are presented in Figure 3.
Parallel bands with serrated edge and different angles toward RD direction were found.
The measurement shows the parallel bands are {001}<110> orientation and they are in
<111> /60◦ relationship with the {111}<112> oriented matrix.
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3.2. Twinning Behavior in Goss-Oriented Grains during Cold Rolling

In this paper, the twinning Schmid factor and shear mechanical work of cold rolled
Goss oriented grains at different strains are calculated and the effect of grain orientation on
the selection of the twinning system is discussed [24–26]. The evolution of the twinning
behavior during cold rolling in ultra-thin grain-oriented silicon steel is investigated by
theoretical calculation and is verified via experiments.

The microstructures of the grains with a 3◦ angle deviated from exact Goss orientation
at different reductions are depicted in Figure 4. The microstructure and microtextures at
78% reduction measured with EBSD are shown in Figure 5. With the increase of deformation
reduction, the area fraction of twins increases. When the deformation reduction reaches
78%, the edge serration of the twins becomes more prominent. Twins with three different
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deviation angles from exact {001} <110> orientation are observed in Figure 5a, and it is
suggested that they were formed at different deformation stages during cold-rolling.
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According to Humbert’s observation [24], the deformation twinning in BCC alloy can
be obtained when every two adjoining (112) planes are displaced toward [111] direction by√

3a/6. By these successive displacements, the BCC lattice is sheared by
√

2/4.
In the reference frame YT based on the corresponding twinning system, this plane

strain is expressed by matrix ET.

Ey =

 0 0
√

2
4

0 0 0√
2

4 0 0

 (1)

In the reference frame based on deformed matrix orientation, the twinning strain
matrix, E, is expressed as

E = N ·M · ET ·M−1 · N−1 (2)

Herein, M and N are corresponding transformation matrices of the twinning strain
matrix from the reference frame based on corresponding twinning system to sample
coordinate system and crystal coordinate system based on deformed matrix orientation
successively, and the corresponding mechanical work of the twinning shear is calculated as

W =
1
2
(ε11·E11 − ε33·E33) =

1
2

ε11(E11 − E33) (3)

Herein, the rolling stress is simplified as equivalent force in the direction of ND and
RD, that is, ε11 = ε33.

The twinning forming stages can be deduced based on the orientation relationship
between twinning and deformed matrix. On the other hand, the selection of the twinning
system can be analyzed based on the orientation of the deformed matrix when twinning
occurs. The VPSC (visco-plasitic self-consistent) model has been applied to predict the
orientation rotation path of Goss oriented grain during cold rolling and the result is shown
in Figure 6.
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The calculation results suggest that during cold rolling, Goss orientation rotates
to {111}<112> orientation along the route indicated by red arrows in Figure 6a, which
is consistent with the literature [27]. In the calculated deformed matrix, the twinning
orientations can be predicted based on the maximum Schmid factor and shear mechanical
work of the twinning systems, as shown in Figure 6b. The orientation of the twinning
forming during the cold rolling of Goss oriented grains is always α-fiber, close to {001}<110>
orientation but with different degree of deviation. This is in good agreement with the
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experimental results, suggesting that twinning can occur in Goss oriented grains across a
cold rolling process. The twinning orientation of exactly {001}<110> is achieved when the
strain is about –0.6 and the deformed matrix orientation is (18◦ 48◦ 153◦). Since most twins
have orientations of exact or close to {001}<110>, we predict that twins mainly formed at
this strain.

In a matrix of (18◦, 48◦, 153◦) orientation at strain equal to –0.6, the Schmid factor
and shear mechanical work of the twinning systems and their corresponding twinning
orientations were estimated and are listed in Table 1. It is obvious that the Schmid factor
and shear mechanical work of the twelve twinning systems increase at the same time; in
other words, the maximum Schmid factor and shear mechanical work will correspond
to the same twinning system, which leads to the twinning orientation of (136◦ 90◦ 90◦).
Similarly, the same phenomenon applies to the deformed orientations at different stains,
and the calculated twinning orientations are always close to or near {001}<100>. The results
confirm the assumption that the activated twinning system during cold rolling of Goss
orientation grain always has the maximum value of Schmid factor and shear mechanical
work. The greater the Schmid factor and shear mechanical work, the easier a twinning
system would occur.

Table 1. The Schmid factor, shear mechanical work of twins in the deformed matrix with orientation
of (18◦ 48◦ 153◦).

Twinning System Schmidt Factor Mechanical Work Twinning Orientation

(112)[111] 0.48 0.167ε33 (46◦ 90◦ 0◦)
(121)[111] 0.26 0.093ε33 (90◦ 141◦ 45◦)
(211)[111] 0.36 0.130ε33 (106◦ 116◦ 8◦)
(121)[111] 0.26 0.093ε33 (37◦ 116◦ 30◦)
(112)[111] 0.14 0.046ε33 (122◦ 27◦ 105◦)
(112)[111] 0.52 0.176ε33 (105◦ 64◦ 83◦)
(121)[111] 0.46 0.167ε33 (42◦ 180◦ 86◦)
(121)[111] 0.14 0.046ε33 (162◦ 84◦ 154◦)
(121)[111] 0.50 0.176ε33 (161◦ 97◦ 116◦)
(211)[111] 0.38 0.130ε33 (120◦ 153◦ 14◦)
(211)[111] 0.94 0.333ε33 (136◦ 90◦ 90◦)
(211)[111] 0.52 0.185ε33 (141◦ 117◦ 60◦)

3.3. Effect of Goss Orientation Accuracy of Initial Grain on Twinning Behavior

The majority of grains in the raw material have orientations close to Goss with 3◦–10◦

deviation. The microstructures of 3◦ and 10◦ deviated Goss grains at 78% reduction were
characterized by metalloscopy in the ND plane and by EBSD in the TD plane. The typical
images are shown in Figures 7 and 8, respectively. Compared to 10◦ deviated Goss oriented
grains, there is much higher density of twins in 3◦ deviated Goss oriented grains and the
twinning orientations are more closely aligned to the exact {001}<110> orientation.

The crystal rotation routes of 10◦ deviated Goss orientation (0◦ 35◦ 0◦) during cold
rolling were simulated using VPSC model. Meanwhile, the Schmid factor and shear
mechanical work as well as twinning orientation of the twinning systems were calculated
in matrices with various orientations at different strain values. The results are shown in
Figure 9 and Table 2. During cold rolling, the crystal rotation routes of grains with deviated
Goss orientation are similar to that of exact Goss grains, showing deviated {111}<112>
orientation at 78% rolling reduction. Moreover, under the same strain, the twining Schmid
factor and shear mechanical work in deviated grains are both lower than that of exact
Goss oriented grains. In a deviated Goss grain, the twins generally have a deviation
angle with the exact {001}<110> orientation. The relationship of this deviation angle with
{001}<110> orientation and strain is analyzed and the simulated results are presented in
Figure 10. At the same strain, the twins in the initial deviated Goss grains have twinning
orientation further away from the exact {001} <110> orientation. Since twinning systems
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are critical for achieving the final microstructures in ultra-thin grain-oriented silicon steel,
the deviation degree of initial Goss oriented grain, therefore, would influence the evolution
of the microstructure and microtextures of recrystallized steel. This influence is subject to
future study.

Crystals 2021, 11, x FOR PEER REVIEW 7 of 10 
 

 

grains and the twinning orientations are more closely aligned to the exact {001}<110> ori-
entation. 

 
Figure 7. The effect of the deviation degree of the initial Goss orientation on twinning distribution 
in rolling plane: (a) 3° deviated Goss oriented grain; (b) 10° deviated Goss oriented grain. 

 
Figure 8. The effect of deviation angle of Goss oriented grain on twinning orientation in the lateral 
plane: (a) 3° deviated Goss oriented grain; (b) 10°deviated Goss oriented grain; EBSD measure-
ment step size=0.5 μm. 

The crystal rotation routes of 10° deviated Goss orientation (0° 35° 0°) during cold 
rolling were simulated using VPSC model. Meanwhile, the Schmid factor and shear me-
chanical work as well as twinning orientation of the twinning systems were calculated in 
matrices with various orientations at different strain values. The results are shown in Fig-
ure 9 and Table 2. During cold rolling, the crystal rotation routes of grains with deviated 
Goss orientation are similar to that of exact Goss grains, showing deviated {111}<112> ori-
entation at 78% rolling reduction. Moreover, under the same strain, the twining Schmid 

Figure 7. The effect of the deviation degree of the initial Goss orientation on twinning distribution in
rolling plane: (a) 3◦ deviated Goss oriented grain; (b) 10◦ deviated Goss oriented grain.

Crystals 2021, 11, x FOR PEER REVIEW 7 of 10 
 

 

grains and the twinning orientations are more closely aligned to the exact {001}<110> ori-
entation. 

 
Figure 7. The effect of the deviation degree of the initial Goss orientation on twinning distribution 
in rolling plane: (a) 3° deviated Goss oriented grain; (b) 10° deviated Goss oriented grain. 

 
Figure 8. The effect of deviation angle of Goss oriented grain on twinning orientation in the lateral 
plane: (a) 3° deviated Goss oriented grain; (b) 10°deviated Goss oriented grain; EBSD measure-
ment step size=0.5 μm. 

The crystal rotation routes of 10° deviated Goss orientation (0° 35° 0°) during cold 
rolling were simulated using VPSC model. Meanwhile, the Schmid factor and shear me-
chanical work as well as twinning orientation of the twinning systems were calculated in 
matrices with various orientations at different strain values. The results are shown in Fig-
ure 9 and Table 2. During cold rolling, the crystal rotation routes of grains with deviated 
Goss orientation are similar to that of exact Goss grains, showing deviated {111}<112> ori-
entation at 78% rolling reduction. Moreover, under the same strain, the twining Schmid 

Figure 8. The effect of deviation angle of Goss oriented grain on twinning orientation in the lateral plane: (a) 3◦ deviated
Goss oriented grain; (b) 10◦ deviated Goss oriented grain; EBSD measurement step size = 0.5 µm.



Crystals 2021, 11, 187 8 of 10

Crystals 2021, 11, x FOR PEER REVIEW 8 of 10 
 

 

factor and shear mechanical work in deviated grains are both lower than that of exact Goss 
oriented grains. In a deviated Goss grain, the twins generally have a deviation angle with 
the exact {001}<110> orientation. The relationship of this deviation angle with {001}<110> 
orientation and strain is analyzed and the simulated results are presented in Figure 10. At 
the same strain, the twins in the initial deviated Goss grains have twinning orientation 
further away from the exact {001} <110> orientation. Since twinning systems are critical 
for achieving the final microstructures in ultra-thin grain-oriented silicon steel, the devia-
tion degree of initial Goss oriented grain, therefore, would influence the evolution of the 
microstructure and microtextures of recrystallized steel. This influence is subject to future 
study. 

Table 2. Schmid factor and shear mechanical work of (0° 45° 0°) orientation and (0° 35° 0°) orienta-
tion at different strain in cold rolling (MSF and MMW represent maximum Schmid factor and 
shear mechanical work, respectively). 

Strain MSF of (0° 45° 0°) MMW of (0° 45° 0°) MSF of (0° 35° 0°) MMW of (0° 35° 0°) 
0 0.951 0.336ε33 0.935 0.329ε33 
−0.2 0.962 0.340ε33 0.938 0.331ε33 
−0.4 0.989 0.350ε33 0.948 0.336ε33 
−0.6 0.988 0.350ε33 0.965 0.341ε33 
−0.8 0.929 0.329ε33 0.952 0.337ε33 
−1.0 0.845 0.298ε33 0.887 0.313ε33 
−1.2 0.756 0.269ε33 0.823 0.288ε33 
−1.4 0.714 0.254ε33 0.776 0.263ε33 
−1.6 0.710 0.251ε33 0.739 0.242ε33 

 
Figure 9. The orientation rotation path of (0° 35° 0°) orientation; (a) and corresponding twinning 
orientation (b) during cold rolling, strain=−0.6. 
Figure 9. The orientation rotation path of (0◦ 35◦ 0◦) orientation; (a) and corresponding twinning
orientation (b) during cold rolling, strain = −0.6.

Table 2. Schmid factor and shear mechanical work of (0◦ 45◦ 0◦) orientation and (0◦ 35◦ 0◦) orientation
at different strain in cold rolling (MSF and MMW represent maximum Schmid factor and shear
mechanical work, respectively).

Strain MSF of (0◦ 45◦ 0◦) MMW of (0◦ 45◦ 0◦) MSF of (0◦ 35◦ 0◦) MMW of (0◦ 35◦ 0◦)

0 0.951 0.336ε33 0.935 0.329ε33
−0.2 0.962 0.340ε33 0.938 0.331ε33
−0.4 0.989 0.350ε33 0.948 0.336ε33
−0.6 0.988 0.350ε33 0.965 0.341ε33
−0.8 0.929 0.329ε33 0.952 0.337ε33
−1.0 0.845 0.298ε33 0.887 0.313ε33
−1.2 0.756 0.269ε33 0.823 0.288ε33
−1.4 0.714 0.254ε33 0.776 0.263ε33
−1.6 0.710 0.251ε33 0.739 0.242ε33
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The actual activated {112}<111> twinning systems are shown to have the maximum
Schmid factor and shear mechanical work. The greater Schmid factor and shear mechanical
work a twinning system has achieved, the easier it is to be activated.
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Twinning can occur at different stages of rolling deformation in Goss oriented grain
during cold rolling. The twinning area fraction increases with the increase of rolling reduc-
tion, and the twinning orientations are mainly located at α-fiber and are mostly around
{001}<110> component. Based on VPSC simulation results, exact {001}<110> oriented
twinning is achieved when the rolling reduction is 40–50%.

In the preparation of ultra-thin grain-oriented silicon steel, when an initial material
has more grains with exact Goss orientation, more twins are observed in the deformed
grains after cold-rolling and the twinning orientation is closer to exact {001}<110>.
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