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Abstract: Protein crystallization is the bottleneck in macromolecular crystallography, and crystal
recognition is a very important step in the experiment. To improve the recognition accuracy by
image classification algorithms further, the Mask R-CNN model is introduced for the detection of
protein crystals in this paper. Because the protein crystal image is greatly affected by backlight and
precipitate, the contrast limit adaptive histogram equalization (CLAHE) is applied with Mask R-
CNN. Meanwhile, the Transfer Learning method is used to optimize the parameters in Mask R-CNN.
Through the comparison experiments between this combined algorithm and the original algorithm,
it shows that the improved algorithm can effectively improve the accuracy of segmentation.

Keywords: protein crystal; Mask R-CNN; instance segmentation; transfer learning

1. Introduction

Protein crystallography is an important subject for studying structure biology. The
three-dimensional structural characterization of biological macromolecules is very important
in order to understand their mechanism of action. The crystallography method is widely
used in the drug discovery also, especially in the fragment-based drug screening [1–3].

At present, 169,436 protein structures have been deposited in the Protein Data Bank
(PDB), and more than 88% of them are resolved by the X-ray crystal diffraction method
(http://www1.rcsb.org (accessed on 8 January 2021)). To crystallize the protein, in most
situations, it is still necessary for researchers to observe the samples through a microscope
and to determine whether the crystallization process is completed. The observation would
cost time and labor. Therefore, to design an automated system for protein crystallography,
from protein purification to crystal growth, becomes an urgent requirement in the field of
life sciences [4–7].

Some work has been done to classify the images of protein crystals [8,9]. Because
they relied on a special imaging system, which was relatively rare at that time, it could not
achieve good classification results. The image of protein crystal is seriously affected by
the performance of backlight and the focusing of the microscope. Therefore, the quality of
the classification algorithm based on a traditional machine learning method was totally
dependent on the design of a feature vector, and the classification task could not be
well realized. Bruno et al. [10] proposed a classification algorithm based on the deep
convolutional neural network to classify protein crystallization results in 2018, which can
achieve about 94% of the classification effect. However, it is only able to show whether
there are crystals in the droplet. If we wanted to know where crystals are in the droplets
from image, the classification task would not be able to solve this problem. Meanwhile,
some commercial devices have been developed to satisfy the requirement from academic
centers and pharmaceutical companies. The fully automatic crystallization imaging system,
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Rockimager1500, was designed by the Formulatrix [11] company. However, it was only
able to analyze the experimental drop and not crystals in the drop.

Other optical methods also have been adopted for more trials. To reduce the influence
of optical scattering, the second-order nonlinear optical imaging method was used to
identify protein crystals [7]. The second harmonic signal that was generated by light and
materials was used to search crystals. Meanwhile, it was able to help observe smaller
crystals because a second harmonic generation (SHG) signal can frequently be observed
from structures that are approximately the same size as or even smaller than the lateral
resolution of the microscope. However, the method is more suitable for drug crystals with
chiral. Therefore, the scope of application is limited. Compared with the above mentioned
studies, none of them could well meet the requirements of researchers. Image segmentation
can determine pixels which belong to the object or background in the image. Therefore,
this paper attempts to use the instance segmentation algorithm to better identify protein
crystals in the drop.

Mask R-CNN was proposed by the Facebook Researcher KM He [12], which integrates
target detection and instance segmentation. In this paper, based on the Mask R-CNN
method, the collected protein crystal image is marked as a suitable format that is in
accordance with the format of the Microsoft Common Objects in Context (MS COCO)
dataset for network training. The self-built protein crystal dataset was trained using the
pre-trained network weight in the way of data transfer, and the Mask R-CNN network was
fine-tuned.

2. Algorithm Design
2.1. Network Introduction

As protein crystal images are highly affected by the light and lens focus during
collection process, a pre-processing module was added before the frame of Mask R-CNN
to process the input images, which could better highlight the features of protein crystals in
the image. The improved Mask R-CNN structure is shown in Figure 1.
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Figure 1. The network structure of improved Mask R-CNN.

The output of Mask R-CNN is divided into three parts: the prediction box regression,
the image classification, and the mask branch. Among them, the prediction box regression
and the image classification belong to the target detection part, while the mask branch
belongs to the instance segmentation part.

In Mask R-CNN structure, the protein crystal image is input into the network, and
then different feature maps are output by means of a series of convolution and pooling in
feature pyramid networks (FPN). After that, different feature maps are delivered into the
region proposal networks (RPN) so as to extract the region of interest (ROI). Then the ROI
is input to the ROI Align to perform pixel correction on the feature map for subsequent
target classification and bounding box regression. In the mask branch, the original images
are cropped using the corrected bounding box, and then the images in ROI are performed
by mask prediction. Therefore, the object in the bounding box belongs to the two-class
classification problem (0: background, 1: object). This can avoid inter-class competition and
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the final result belongs to instance segmentation. The total loss function of Mask R-CNN is
defined as

Ltotal = Lcls + Lbox + Lmask, (1)

where Lcls is classification loss; Lbox is regression loss of bounding box; Lmask is semantic
segmentation loss.

2.2. Pre-Processing Module

It is necessary to use image enhancement technology to enhance the contrast of protein
crystal images and to highlight the features of protein crystals in the image. Histogram
equalization (HE) is a common contrast enhancement method in gray space. Firstly, the
frequency of each pixel level is counted by means of histogram equalization. Then, cu-
mulative distribution function (CDF) is used in the acquired frequency as a result that the
pixels of original image are mapped to new pixels through CDF, and this transformation
process is a nonlinear transformation. Because CDF is a monotonic increasing function,
after transformation, the brighter areas in the original image are still brighter. Histogram
equalization is a nonlinear mapping method which is performed over the entire gray image
instead of focusing on the local features of the image. Although the pixels are stretched in
the more concentrated area of the gray image to make the dynamic range expand, noise
information may be enhanced by HE in images, and for those images that contain obviously
brighter or darker areas, it often fails to achieve a significant enhancement effect.

In order to better deal with local features, this paper uses the contrast limited adaptive
histogram equalization (CLAHE) algorithm to preprocess images [13]. The input images
are divided into m× n areas in CLAHE, and these areas are processed separately. Firstly,
the gray histogram of each area is calculated. Next, the parts of the histogram above
the threshold are cropped and then are accumulated. Then, the accumulated result is
averagely distributed to each pixel level. The slope of the cumulative distribution function
could be effectively limited by a cropping operation. Enhancement of neighborhood noise
around the pixel is mainly caused by the slope of transformation function, and the noise
that is around the pixel is proportional to the cumulative distribution function of the
neighborhood. Therefore, once the slope of the cumulative distribution function is limited,
the noise could be effectively limited. Then, the limited gray histogram is equalized to
obtain the pixel mapping relationship. The pixel information of the edge between regions
is discontinuous. As a result, a block effect occurs. Therefore, bilinear interpolation is used
to fix the block effect in images. Meanwhile, the bilinear interpolation can also improve the
computational efficiency. The effect of CLAHE is shown in Figure 2.
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2.3. FPN Module

FPN is a multi-scale feature fusion network structure which was proposed by the team
of KM He in 2017 [14]. FPN is different from the traditional image pyramid structure. It is
divided into three parts: bottom-up, top-down, and horizontal-connection. The structure is
shown in Figure 3.
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ResNet101 was adopted as a feature extraction network for obtaining different feature
maps [C1, C2, C3, C4, C5] in the bottom-up structure. The scale relative to the original image
is

[
1
2 , 1

4 , 1
8 , 1

16 , 1
32

]
. Up-sampling operation is continuously performed from the C5 to C3

layers in the top-down structure. The up-sampling is performed by means of nearest
neighbor up-sampling in the top-down structure, and the purpose of up-sampling is to
double the scale of the upper-layer feature map. Through the horizontal connection, the
up-sampled high-level features can be fused with the low-level features, which can better
integrate the semantic information and location information, and can also use different
scale features more effectively. After fusion, the 3× 3 convolution kernel will be used to
process the fused features in order to eliminate the aliasing effect of up-sampling.

Finally, the [P2, P3, P4, P5, P6] which are generated in FPN are sent to the RPN for
generating the region proposal, and the region proposal are performed for target detection
in RPN. There are three priori boxes with aspect ratios [2 : 1, 1 : 1, 1 : 2] generated on each
pixel from different feature maps in RPN. The scale of the priori box increases as the scale
of the feature map decreases. At the same time, [P2, P3, P4, P5] are sent to Fast RCNN and
are combined with the region proposal that is output by RPN to perform regression and
classification on the detection frame and the recognized object. The RPN loss function is

L({pi}, {ti}) =
1

Ncls
∑i Lcls(pi, p∗i ) + λ

1
Nreg

∑i p∗i Lreg(ti, t∗i ). (2)

2.4. ROI Align Module

The ROI Align method was proposed in Mask R-CNN. Because it does not perform the
quantization and rounding of coordinates of the ROI area, the problem of mis-alignment
between the feature map and the original image in ROI pooling was solved by ROI Align.
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The structure of ROI Align is shown in Figure 4. The region with dotted line represents the
generated feature maps, and the rectangle region surrounded by a solid line represents the
ROI that has been adjusted. The ROI is divided into 5× 5 cells. If the number of samples
in each cell is 4, each cell will be averaged divided into four bins, and the center of each
bin is the sampling point. Since the coordinates of the ROI are floating-point numbers,
the coordinates of the sampling points are usually also floating-point numbers. Therefore,
bilinear interpolation is adopt for each sampling point pixel, as shown by the arrow in
Figure 3. This operation can be used to obtain the pixel value of the sampling point, and
then four sampling points are performed max pooling on each cell. Finally, the ROI Align
output are obtained.

Crystals 2021, 11, x FOR PEER REVIEW 5 of 9 
 

 

Align. The structure of ROI Align is shown in Figure 4. The region with dotted line repre-
sents the generated feature maps, and the rectangle region surrounded by a solid line 
represents the ROI that has been adjusted. The ROI is divided into 5 × 5 cells. If the num-
ber of samples in each cell is 4, each cell will be averaged divided into four bins, and the 
center of each bin is the sampling point. Since the coordinates of the ROI are floating-point 
numbers, the coordinates of the sampling points are usually also floating-point numbers. 
Therefore, bilinear interpolation is adopt for each sampling point pixel, as shown by the 
arrow in Figure 3. This operation can be used to obtain the pixel value of the sampling 
point, and then four sampling points are performed max pooling on each cell. Finally, the 
ROI Align output are obtained. 

 
Figure 4. ROI Align structure. 

3. Results and Analysis 
3.1. Experiment Platform 

The software environment for the experiment platform is based on Windows 10. The 
experiment framework is keras 2.2.4 and tensorflow 1.13. The CPU is AMD R5 3600. The 
memory is 16G, and the graphics processing unit (GPU) is NVIDIA RTX2060. In order to 
effectively utilize the GPU resources, the scale of the original image is adjusted to 512 × 512 before training. The area with no image is filled with black edges, and then, 
adjusted images are input into the network for training. 

3.2. Experiment Dataset 
The COCO dataset is a dataset which is provided by the Microsoft company. It can 

be used for image segmentation or target detection. In this paper, the weight model is 
obtained by pre-training on this dataset, and the crystal images are downloaded from Ma-
chine Recognition of Crystallization Outcomes (MARCO) (https://marco.ccr.buf-
falo.edu/). Because the MARCO dataset is only used for classification, the ground truth of 
downloaded crystal images is annotated by colleagues with the background of protein 
crystallography. The Labelme software (https://github.com/wken-
taro/labelme/tree/v3.11.2, version is 3.16.2) is used to annotate the crystals as masks in the 
image, and according to the format of the COCO dataset, these annotated images are de-
signed as a crystal dataset. Corresponding json files, yaml files, and mask files are gener-
ated in the crystal dataset. The labeled mask image is shown in Figure 5. 

Figure 4. ROI Align structure.

3. Results and Analysis
3.1. Experiment Platform

The software environment for the experiment platform is based on Windows 10. The
experiment framework is keras 2.2.4 and tensorflow 1.13. The CPU is AMD R5 3600. The
memory is 16G, and the graphics processing unit (GPU) is NVIDIA RTX2060. In order to
effectively utilize the GPU resources, the scale of the original image is adjusted to 512× 512
before training. The area with no image is filled with black edges, and then, adjusted
images are input into the network for training.

3.2. Experiment Dataset

The COCO dataset is a dataset which is provided by the Microsoft company. It can
be used for image segmentation or target detection. In this paper, the weight model is
obtained by pre-training on this dataset, and the crystal images are downloaded from Ma-
chine Recognition of Crystallization Outcomes (MARCO) (https://marco.ccr.buffalo.edu/
(accessed on 8 January 2021)). Because the MARCO dataset is only used for classification,
the ground truth of downloaded crystal images is annotated by colleagues with the back-
ground of protein crystallography. The Labelme software (https://github.com/wkentaro/
labelme/tree/v3.11.2 (accessed on 8 January 2021), version is 3.16.2) is used to annotate
the crystals as masks in the image, and according to the format of the COCO dataset, these
annotated images are designed as a crystal dataset. Corresponding json files, yaml files,
and mask files are generated in the crystal dataset. The labeled mask image is shown in
Figure 5.

https://marco.ccr.buffalo.edu/
https://github.com/wkentaro/labelme/tree/v3.11.2
https://github.com/wkentaro/labelme/tree/v3.11.2
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3.3. Experiment Results and Analysis

There are two important evaluation indicators for the performance of the classification
problem. One is precision, which is used to evaluate how many objects are correctly
identified in the result of classification. The other is Recall, which is used to evaluate
how many positive examples are predicted correctly in the total positive samples. The
calculation formulas for Precision and Recall are (3) and (4), respectively.

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

where TP means that the positive class is predicted to be positive; FP means that the
negative class is predicted to be positive; FN means that the positive class is predicted to
be negative.

For the target detection network, there is a very important concept, intersection over
union (IOU). The degree of overlap of two regions is expressed by IOU. When it is adopted
to test the accuracy of the network prediction, IOU expresses the overlap between the
prediction box and the labeled box. The calculation formula is as follows:

IOU =
A ∩ B
A ∪ B

. (5)

Firstly, the result of experiment is evaluated by mAP (IOU = 0.50) in this paper, and
10 images are selected randomly from the validation set to calculate mAP values. Secondly,
100 images are randomly selected from the validation set to calculate mAP (IOU = 0.65).
According to mAP values, precision of network prediction can be verified after adding
the CLAHE algorithm. The results are shown in Table 1. We can see that the precision of
network prediction is improved by means of adding a preprocessing module.

Table 1. The mAP values of network prediction before and after adding CLAHE.

ResNet101 CLAHE-ResNet101 IOU

10 images 0.668 0.703 0.50
100 images 0.302 0.430 0.65

The instance segmentation results of the dataset are shown in Figure 6. Even with
many precipitations, most protein crystals are identified by the network after adding the
CLAHE. The results of instance segmentation are more conforming with the shape of
protein crystals.
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4. Conclusions

Mask R-CNN is introduced in this paper and the CLAHE algorithm is tried as an image
pre-processing module. The two parts are combined to realize the instance segmentation
task of protein crystal. From the perspective of mAP quantitative and qualitative analysis,
the test accuracy of the network improved by 42%, from 30.2% to 43.0% after addition of
CLAHE in IOU = 0.65. Even with just 10 images and an IOU of 0.5, the test accuracy of the
network also improved by 5% (from 66.8% to 70.3%). It is proved that the performance of
the network can be improved by image preprocessing, even when the model structure has
not been changed too much.

However, according to the results of instance segmentation, the spots outside the
droplet that are not crystals may be misidentified as crystals by the network. Therefore,
the accuracy of network prediction will be improved in subsequent experiments from two
aspects: increasing the segmentation accuracy or preprocessing the droplet. At the same
time, the following work will also reduce the amount of computation and parameters in
order to improve the network computing speed.
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