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Abstract: Recently, it was shown that materials with certain crystal structures can exhibit mul-
tifold band crossings with large topological charges. CoSi is one such material that belongs to
non-centrosymmetric space group P213 (#198) and posseses multifold band crossing points with a
topological charge of 4. The change of crystal symmetry, e.g., by means of external stress, can lift
the degeneracy and change its topological properties. In the present work, the influence of uniaxial
deformation on the band structure and topological properties of CoSi is investigated on the base of
ab initio calculations. The k · p Hamiltonian taking into account deformation is constructed on the
base of symmetry consideration near the Γ and R points both with and without spin-orbit coupling.
The transformation of multifold band crossings into nodes of other types with different topological
charges, their shift both in energy and in reciprocal space and the tilt of dispersion around nodes are
studied in detail depending on the direction of uniaxial deformation.

Keywords: topological semimetal; cobalt monosilicide; mechanical deformation

1. Introduction

Cobalt monosilicide crystallizes in the cubic noncentrosymmetric space group #198
(P213). The unit cell and the Brillouin zone of CoSi are shown in Figure 1a,b. The band
structure, magnetic, optical, transport and, in particular, thermoelectric properties of
CoSi have been extensively studied [1–15]. Initially, the interpretation of experimental
results was based on a simple semimetallic band structure model with small energy
overlap of parabolic valence and conduction bands [1,2]. With the development of first-
principle density functional theory (DFT) methods, a more realistic CoSi band structure
has emerged [3–8]. Band structures calculated with and without the account of spin-orbit
coupling (SOC) are plotted in Figure 1c,d, respectively. Earlier calculations [3,4] without the
account of SOC revealed the presence of multiple band crossings at the Γ and R points of the
Brillouin zone, but they did not consider the topology of the band structure. The symmetry
analysis allowed to predict the existence of chiral fermions and multifold band crossings
with high topological charges in crystals belonging to several space groups (including space
group #198) in the presence of time-reversal symmetry [16,17]. In CoSi, multifold linear
band crossing and spin texture was initially investigated around the Γ point, based on first-
principle fully-relativistic calculations [5]. Later, detailed studies of band structure topology
were made for CoSi [6,8] and for isostructural RhSi [7]. Effective k · p Hamiltonians around
the time-reversal invariant momentum (TRIM) points were written down in Ref. [17] for R
point and in Ref. [8] for Γ point. It was shown [6,8] that the topological charges at the Γ
and R points are equal to ±4 and there are four surface Fermi arcs, connecting projections
of these points on the surface Brillouin zone. Because spin-orbit coupling in CoSi is not
strong, the Chern numbers were also calculated without SOC [6,18]. It was shown that
multifold nodes have large topological charges of ±2 even without SOC (see Figure 1d
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for illustration). The existence of multifold fermions and surface Fermi arcs in CoSi was
recently confirmed by angle resolved photoemission spectroscopy (ARPES) [18–20].

(a) (b)

(c)

(d)

Figure 1. The unit cell (a), the Brillouin zone (b) and the band structure of CoSi, calculated with
(c) and without (d) the account of spin-orbit coupling. Insets in (c,d) show band structure around
multi-fold band crossings at the Γ and R points (numbers are topological charges).

The theoretical study of the band structure beyond DFT, taking into account dynamic
on-site correlations of d-electrons, revealed that, in contrast to FeSi, the electronic states
in CoSi are only moderately influenced by electronic correlations [21]. Band broadening
in CoSi is small in the range of ±0.3 eV near the Fermi level and decreases with the
temperature. Thus, DFT description of CoSi band structure should give quite accurate
results, that is confirmed by ARPES experiments [18–20] and by the better agreement
of calculated lattice constants and elastic modules with experimental results for CoSi,
compared to other monosilicides of the elements of the 4th period [22].

New information on the band structure of CoSi prompted to study the manifestation
of its non-trivial topology and provided a base for correct interpretation of experimental
results on conventional transport properties of the compound. For example, the account
of real band structure and energy dependent relaxation time allowed to adequately ex-
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plain the concentration dependencies of thermoelectric and galvanomagnetic properties
of Co1−xFexSi and Co1−xNixSi alloys [10–12]. Recently, the effects of nonstoichiometry
of CoSi-based materials on thermoelectric [9] and magnetic [14] properties were studied.
In particular, in samples with the excess of Co, magnetically ordered states with helical
and skyrmionic spin structures were observed near room temperature [14]. Quantum os-
cillations of thermopower with a beating pattern were observed in high-quality CoSi
crystals [13]. They were successfully interpreted by the coexistence of two close Fermi
surfaces in agreement with DFT results for the band structure. The influence of chiral
fermions and charge density waves on magnetic field dependent electrical transport was
studied in [23]. The experimental and theoretical investigation of optical conductivity of
CoSi revealed various exotic multifold quasiparticles [15]. Moreover, low-frequency part
of optical conductivity spectrum confirmed the existence of previously experimentally
unobserved four-fold spin-3/2 node at the Γ point [15].

As the features of the band structure topology are due to particular crystal symmetry
of CoSi, it is interesting to investigate the evolution of these properties when the symmetry
changes. Such changes can appear due to mechanical stress, for example, in thin film
devices or experimental setups, and can be important for device operation or interpretation
of experimental data. In addition to the change of symmetry, mechanical deformation,
in principle, can lead to the opening of a gap in the energy spectrum and the disappearance
of the topological nodes. The possibility of using CMOS-compatible CoSi thin films for
thermoelectric and sensor applications were considered recently in Ref. [24]. The stability
of CoSi under hydrostatic pressure was theoretically investigated in Ref. [25], where it
was predicted that the transition to CsCl structure (Pm3̄m) take place at hight pressure of
270 GPa. In the present work, we theoreticaly investigate another possibility—the change
of band structure under uniaxial strain. In contrast to isotropic strain, uniaxial deformation
changes the crystal symmetry even at low pressure. We considered deformation in [100],
[110] and [111] directions. Based on symmetry analysis, the k · p Hamiltonian, taking into
account deformation, was constructed for both the Γ and R points. Combining ab initio
calculations, analytical model and symmetry considerations, the band splitting at the Γ
and R points, the types of nodes arising from multifold band crossings and their energy
and k-space positions were carefully studied both with and without SOC.

2. Method of Calculation

DFT calculations were performed in an integrated suite of Open-Source computer codes
for electronic-structure calculations—Quantum ESPRESSO (QE) [26], using fully relativistic
optimized normconserving Vanderbilt pseudopotentials (ONCV) [27]. The plane wave cut-off
energy was 80 eV. The calculations were performed on 8× 8× 8 Monkhorst–Pack(MP) grid
with the optimized lattice parameter a0 = 4.438 Å. Four atomic positions of each of atomic
species in the unit cell of undeformed CoSi are (xA, xA, xA), (−xA + 1/2,−xA, xA + 1/2),
(−xA, xA + 1/2,−xA + 1/2), and (xA + 1/2,−xA + 1/2,−xA). Their optimization gives
xCo = 0.144, xSi = 0.843.

Under uniaxial deformation, we set the unit cell parameters based on corresponding
strain tensor and performed the relaxation of atomic positions, that allowed to determine
the space group of deformed crystal.

For detailed study of the band structure, we performed Wannier interpolation using
Wannier90 [28]. The position of nodes, topological charges and Fermi arcs were calculated
using WannierTools [29] software package.

In order to analyze low-energy excitations around the nodes at Γ and R points, we con-
structed k ·p Hamiltonian Ĥ in the presence of deformation from symmetry considerations.
This allowed to independently verify the position of nodes and topological charges. As the
effects of strain was assumed to be small, we considered only zeroth order in k terms
in Hamiltonian proportional to strain tensor [30,31]: Dijεij, where εij are strain tensor
components and Dij are deformation potential parameters. The independent terms can
be identified, applying symmetry operations of the considered space group (P213, #198),
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as it was made for the construction of Hamiltonian without stain [8,16,17]. We took into
account that εij is transformed under symmetry operations as a product of wave vector
components kik j, and used irreducible representations of space (double space) groups
from Bilbao Crystallographic Server [32] for the case without (with) spin-orbit coupling.
Since the spin-orbit coupling is also small in CoSi, we did not consider terms in Ĥ that
depend on both strain and spin-orbit interaction. As will be seen from what follows,
this approximation is sufficient.

The form of obtained Hamiltonians and their parameters are given in Appendix A.
In the equations we used eV as units of energy. The wave vector components ki, i = 1, 2, 3
(in crystal coordinates) are measured in fractions of the reciprocal lattice vectors. The wave
vector components ki, i = x, y, z (in Cartesian coordinates) are measured in the units of
2π/a0 = 1.416 Å−1. If not stated otherwise, the latter units were used in band structure plots.

The deformation potential parameters were obtained using shifts of energy levels from
ab initio calculations of undeformed and deformed crystal. The deformation potential param-
eters at the diagonal elements of strain tensor εii in k · p Hamiltonian determine the absolute
shift of energy levels upon deformation. For CoSi, as metallic material, the absolute shift of
energy level εn due to deformation can be calculated as ∆εn = (ε

(d)
n − ε

(d)
F )− (ε

(u)
n − ε

(u)
F ),

where ε
(d(u))
n are energy levels in deformed (undeformed) crystal, and ε

(u(d))
F are correspond-

ing Fermi levels (see Appendix B for details).

3. Results without SOC

The band structure of CoSi without SOC features a triply-degenerate energy level
at the Γ point close to the Fermi level. It is plotted in the inset of the Figure 1d and in
the Figure 2 with dotted lines. The wave functions are transformed according to the
three-dimensional single-valued representation Γ4 of the little group of the Γ point of P213
(#198). The low-energy excitations around this point can be considered as effective spin-1
quasiparticles [33]. The topological charges of lower and upper linear branches are −2 and
2 respectively, while nearly flat band has zero charge.

Figure 2. The splitting of energy levels around the Γ point under uniaxial strain along [100] direction.
Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent the spec-
trum in the case of compressive (tensile) strain. The absolute value of strain is |e| = 0.01. The wave
vectors are measured in 2π/a0 units.

Let us consider the simplest deformation of a crystal along the crystallographic direc-
tion [100]. When stretched along this direction, the spatial symmetry of group P213 (#198)
is lowered to P212121 (#19), and essential remaining symmetry elements are: {C2x| 12 0 1

2},
{C2y| 12

1
2 0}, {C2z|0 1

2
1
2}. At the Γ point, this group has only one-dimensional irreducible

representations and, using character theory, we can expect that the three-dimensional repre-
sentation Γ4 of the space group P213 (#198) splits into three one-dimensional representations
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of P212121 (#19) as: Γ4 → Γ2 + Γ3 + Γ4. As Γ2(3,4) are real single-valued representations,
they are not combined due to time-reversal symmetry (TRS) [32].

Thus, without taking into account the spin-orbit interaction, the triply-degenerate
level at the Γ point is split into three with different energies. The low-energy band structure
around the Γ point in CoSi under 1% uniaxial deformation in [100] direction is shown in
the Figure 2 with solid lines for compressive strain and with dashed lines for tensile strain.

As the time-reversal symmetry is preserved in the considered cases, the whole energy
spectrum around the TRIM point is symmetric with respect to the change of the sign of
the wave vector k → −k. In addition, our k · p Hamiltonian is linear both in k and in
components of deformation tensor ε̂. Hence, the low-energy band structure for stretched
crystal can be obtained from the band structure of compressed crystal by changing the sign
of energy ε(k,−ε̂) = −ε(k, ε̂), that can be seen by comparing solid and dashed curves in
the Figure 2. It should be noted that this conclusion applies to all considered cased with
the exception of eight-band Hamiltonian around the R point including SOC, as the latter
contains terms independent of both wave vector and deformation tensor.

In compressed crystal there are nodes shifted in kz and ky directions upwards and
downwards in energy relative to unstrained case, as shown in Figure 2. The topological
charges of both nodes are equal to ±1. In stretched crystal, the sign of the energy changes,
and the nodes swap. In both cases, we have two doubly degenerate (spinless) nodes at
the same energy at the positions ±knz with the total topological charge of ±2 and similar
nodes at positions ±kny. In the case, when only ε11 = e is not zero, the node positions
for small deformation can be obtained from eigenvalues of k · p Hamiltonian, and are
equal to knz =

√
(D1 − D2)(D3 − D2)e/v and kny =

√
(D3 − D1)(D3 − D2)e/v. In these

expressions v is the Fermi velocity at the Γ point in unstrained crystal and Di are the
deformation potential parameters, defined in Appendix A after Equations (A1) and (A2).

It can be seen also, that the dispersion around doubly degenerate nodal points is
tilted. As was shown in the Ref. [34], the general form of the Hamiltonian for Weyl point
is the following: H(k) = ∑i,j ki Aijσj, where Aij is a 3× 4 matrix of coefficients and σj are
the 2× 2 unit matrix and the three Pauli matrices for j = 0 and j = 1, 2, 3 respectively.
The spectrum can be written as ε±(k) = T(k) ± U(k), where T(k) = ∑3

i=1 ki Ai0 and

U(k) =

√
∑3

j=1

(
∑3

i=1 ki Aij

)2
. The nodal point is of the type II if there is a direction,

in which T(k) > U(k). In the present case, it can be shown that in linear approximation
T(k) = U(k) in k010 or k001 directions independently of the magnitude of strain e. Thus,
under strain the nodal points are at the border of transition from type I to type II nodal
points. However, it should be emphasized that, in contrast to ordinary type-II Weyl
fermions, fermion states discussed here are spin degenerate.

The shift of nodes in reciprocal space implies the modification of the shape of surface
Fermi arcs, that should emanate from the projections of the nodal points on the (100) surface
Brillouin zone. In CoSi, it appeared that due to large extension of the Fermi arcs between
the projections of the Γ and R point, their general shape changes quite moderately (at the
scale of the full Brillouin zone) compared to undeformed case, presented in Refs. [6,8].
Therefore here we illustrate their variation around the Γ point only for several selected
cases. The Figure 3 shows the Fermi arcs in the (100) surface Brillouin zone for the case
of compressive deformation in the [100] direction for e = −0.01. For better visualisation,
Fermi level was shifted to the energy of nodal points. The position of nodes, obtained by
k · p calculations, are plotted in the figure by black asterisks. It can be seen, that two nodes
are shifted along kz direction, and their positions correlate with the sources of two surface
Fermi arcs.

When deforming in [110] direction, off-diagonal elements of the strain tensor begin to
play a role. The spatial symmetry of deformed cobalt monosilicide is described by the space
group P21 (#4) with the only symmetry element {C2z|00 1

2} (except lattice translations).
Therefore, without taking into account the spin-orbit interaction, the three-dimensional
representation Γ4 of the group P213(#198) splits into three one-dimensional representations
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of P21(#4) as: Γ4 → Γ1 + 2Γ2. In this way, the degeneracy at the Γ point is completely
lifted, as in the case of the deformation along the main unit cell directions. In the most
simple case, compatible with considered symmetry, where the only non-zero components
of stain tensor are ε12 = ε21 = e/2, two effective spin-1/2 nodes symmetrically diverge
from Γ point along [110] ([11̄0]) crystallographic direction and shift to lower energies in
the case of compressive (tensile) strain e < 0 (e > 0). Similar nodes appear at higher
energies but they are shifted along [11̄0] ([110]) directions for e < 0 (e > 0). In more general
case, when ε11 = ε22 = ε12 = e/2, that corresponds to the absence of deformation in
directions normal to [110], the nodes split along the line, that is rotated by a small angle
(about φ = 5◦ at e = 0.01) from [110] ([11̄0]) axis. Let’s denote these directions by kφ

110 (kφ

11̄0).
The low-energy band structure for these directions and topological charges are given in
the Figure 4. The situation is somewhat similar to [100] case (see, Figure 2), but the shift of
nodes in both energy and k-space are larger. In this case we obtain again effective spin-1/2
nodes with the tilt intermediate between tilts of the type-I and type-II nodes. The total
topological charge of each pair of the nodes is ±2.

Figure 3. The details of surface Fermi arcs around the Γ point under uniaxial strain along [100]
direction (e = −0.01) without the account of spin-orbit coupling (SOC). Asterisks depict the positions
of nodal points.

Figure 4. The splitting of energy levels around the Γ point under uniaxial stain along [110] direc-
tion. Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent the
spectrum in the case of compressive (tensile) strain. The absolute value of strain is |e| = 0.01.

The deformation along the [111] crystallographic direction needs special consideration
for CoSi. When deformed in [111] direction, the symmetry of cobalt monosilicide is reduced
to R3(#146) space group with the single 3-fold rotation axis. Character theory suggests that
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without SOC, the three-dimensional representation Γ4 of P213(#198) space group splits
into three one-dimensional representations of R3(#146) as: Γ4 → Γ1 + (Γ2 + Γ3). Since the
representations Γ2 and Γ3 are mutually conjugate, they should be combined due to time
reversal symmetry. The triply degenerate level is split into two (nondegenerate and doubly
degenerate) levels, in contrast to other types of deformation in which the degeneracy is
completely lifted at the Γ point. In this case, strain tensor was taken in the form εij = e/3 for
all i, j. In deformed crystal, one unusual node is located at the Γ point and two other nodes
are displaced along the [111] direction at the positions ±kn,111 with kn,111 = D4e/v(1 + e)
(see the Figure 5). In this case we obtained one node with topological charge ±2 at the Γ
point and two nodes with charges ±1 at ±kn,111 points. The spectrum for compressive and
tensile strains are again can be obtained by the energy sign change. Thus the number of
nodes between the two upper bands depends on the sign of deformation e. Another way to
see this result is to plot Fermi arcs in the (001) surface Brillouin zone for compressive and
tensile strain (see Figure 6). Consider a compressed crystal. Below the Fermi level, there are
two nodes shifted in [111] direction. Their projections on (001) plane are sources of two
Fermi arcs (left panel). The starting points of the arcs are shifted towards the projections of
the nodes (black asterisks) but do not coincide with them exactly, since the Fermi level is
located above these nodes. In the case of expansion, the node with topological charge of 2
is below the Fermi level, and both Fermi arcs start from the Γ point (right panel).

Figure 5. The splitting of energy levels around the Γ point under uniaxial stain along [111] direc-
tion. Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent the
spectrum in the case of compressive (tensile) strain. The absolute value of strain is |e| = 0.01.

Figure 6. The details of surface Fermi arcs around the Γ point under uniaxial compression (left panel)
and extension (right panel) along [111] direction (|e| = 0.01) without the account of SOC. Aster-
isks depict the position of nodal points.

The fermions around the node with topological charge of 2 at the Γ point are similar
to that of quadratic double-Weyl fermions in SrSi2, described in Ref. [35], but they arise for
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another reason. In SrSi2 without SOC, on the four-fold rotation axes of the crystal, there are
two-fold band crossings with linear dispersion. The bands are spin degenerate. The account
of spin-orbit coupling adds terms independent of wave vector to the Hamiltonian that
leads to a partial lifting of the degeneracy and to a change of linear dispersion to quadratic
in certain directions. In CoSi, the k-independent terms in Ĥ appear due to strain even
without SOC. Counting energy relative to the charge-2 node in the Figure 5, the dispersion
in [111] direction remains linear: ∆ε = ±k111v(1 + e). While, in perpendicular direction,

it becomes quadratic, ∆ε = D4e/2− sign(e)
√
(D4e/2)2 + (k⊥,111v)2 or flat. Thus, in CoSi

under [111] deformation, there is a strain induced transition from spin-1 quasiparticles to
quadratic effective-spin-1/2 fermions.

Let us now consider low-energy band structure around the R point without spin-orbit
coupling. In this case in unstrained CoSi, the energy level at the R point is four-fold
degenerate not considering spin (see Figure 1d). Low energy excitations around the R
point are double spin-1/2 fermions [33] with the Chern number−2 [6]. The wave functions
are transformed according to the direct sum of single-valued mutually conjugated complex
two-dimensional representations R1 and R3, combined due to TRS. The switching to
P212121 (#19) space group under [100] uniaxial deformation does not lead to the energy
level splitting, because the representation R1 + R3 is transformed into the direct sum of the
pseudoreal representations R1 + R1 of P212121. Thus the node at the R point remains intact.

Under uniaxial [110] stress, the space group P213 is reduced to P21 group and the
R point goes into the E point, which is also located at the vertex of the deformed Bril-
louin zone. The representation R1 + R3 is transformed into 2(E1 + E2). The E1 and E2
representations of P21 are one-dimensional and mutually conjugated, therefore they are
combined due to TRS. Thus, four-fold degenerate energy level splits into two doubly
degenerated levels (see Figure 7). The nodes are split along kz direction and are situated at

knz = ±
√

D2
2 + D2

3e/2v, where deformation potential constants are given in Appendix A
after Equation (A3). The topological charges of these two nodes are ∓1. Two crossing
points at the R point (E point of P212121 space group) in the Figure 7 are not nodes as the
states are degenerate on the (001) surface of the deformed Brillouin zone.

Figure 7. The splitting of energy levels around the R point under uniaxial stain along [110] direction
(E point, P21 space group). Dotted lines represent the spectrum of undeformed crystal, solid lines
represent the spectrum in the case of compressive strain. The value of strain is e = −0.01.

In the case of [111] deformation, the four-fold degenerate level at the R point splits
into three levels (two nondegenerate, and one doubly degenerate) at the corner (T point) of
deformed Brillouin zone (see Figure 8). Representations transform according to the expres-
sion R1 + R3 → 2T1 + (T2 + T3). All representations at the T point are one-dimensional,
but T2 and T3 are mutually conjugated and should be combined due to TRS. Similarly to
the case of Γ point, doubly degenerate node at the T point has topological charge of ∓2
and has quadratic dispersion in the direction perpendicular to [111]. There are also nodes
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with tilted dispersion, shifted in the [111] direction by kn,111 = ±(2D2
2 − D2

3)e/2
√

3D2v.
Their topological charge is ∓1.

Figure 8. The splitting of energy levels around the R point under uniaxial stain along [111] direction
(T point of R3 space group). Dotted lines represent the spectrum of undeformed crystal, solid (dashed)
lines represent the spectrum in the case of compressive (tensile) strain. The absolute value of strain is
|e| = 0.01.

4. Results with SOC

Taking into account the spin-orbital coupling in the crystal without deformation,
the 6-fold degenerate level at the Γ point splits into a doublet and 4-fold degenerate
levels. Their wave functions are transformed according to the Γ5 irreducible representation
and mutually conjugated Γ6 and Γ7 irreducible representations, combined due to time-
reversal symmetry [8]. The low-energy excitations around the 4-fold degenerate node
at the Γ point are spin-3/2 fermions [6,33] with topological charge of 4. Its dispersion is
shown in the Figure 1c, and is also plotted with dotted lines in the Figure 9. The doublet
does not move from the Γ point due to deformation, so we consider in more details the
evolution of fourfold node at the Γ point under the influence of deformation along the
main crystallographic directions.

Figure 9. The splitting of energy levels around the Γ point under uniaxial stain along [100] direction.
Dotted lines represent the spectrum of undeformed crystal, solid lines represent the spectrum in the
case of compressive strain with e = −0.01.

Under the deformation along [100] the fourfold degenerate level splits into two
twofold degenerate levels, both corresponding to Γ5 representation of the P212121 (#19)
group, as this two-dimensional representation is time-reversal invariant. The low-energy
Hamiltonian for these levels is given by Equations (A4) and (A5) of Appendix A. When the
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only non-zero component of deformation is ε11 = e, the gap between two levels at the Γ
point is equal to 2|D3|e. In general case, it is equal to 2|D3|e(1+ νP), where νP is the Poisson
ratio. The low-energy spectrum is shown in the Figure 9. The doublets at the Γ point form
Weyl nodes with unit topological charge. Four nodes are shifted from the Γ point along the
diagonals of the ky − kz plane and each of them has a unit topological charge. In addition,
two Weyl nodes shifted from the Γ point in the ±ky directions appear between two lower
branches of the spectrum, and two similar Weyl nodes shifted in the ±kz directions (not
shown in Figure 9) appear between two upper branches of the spectrum. The tensile and
compressive strain spectra differ from each other by a change in the sign of the energy.

Without deformation, there are four surface Fermi arcs, emanating from the projection
of the nodal point at Γ, as the topological charge is 4. The shift of the node positions
for [100] deformation (e = −0.01) is accompanied by a change in the surface Fermi arcs,
shown in the Figure 10, for the case when the Fermi level coincides with the nodes located
along the diagonals of the ky − kz plane. The projections of the nodes are marked with
asterisks. Their positions, calculated by the k · p method, quite well coincide with the
sources of four Fermi arcs.

Figure 10. The details of surface Fermi arcs around the Γ point under uniaxial strain along [100]
direction (e = −0.01) with the account of SOC. Asterisks depict the positions of nodal points.

Considering the deformation along [110] axis, we found similar splitting of four-fold
degenerate level at the Γ point into 2 doublets: Γ6 + Γ7 → 2(Γ3 + Γ4), where irreducible
representations Γ3(4) of the space group P21(#4) are one-dimensional and combined to-

gether due to TRS. The energy gap at the Γ point is equal to e
√

D2
2 + D2

3. When the only
non-zero components of stain tensor are ε12 = ε21 = e/2, the four-fold degenerate node
splits into 4 nodes, moving along crystallographic directions [100], [100], [010], [010] by
the distance D2e/2

√
b2 − a2. Due to distortion, small deviation from corresponding Carte-

sian axis appears by an angle of φ = arctan(e/2), which is equal, for example, to 0.3◦ at
e = 0.01. In the case of the absence of deformations in the directions, normal to [110],
when ε11 = ε22 = ε12 = e/2, the shift of energy levels due to volume change leads to
additional deviation of nodes from Cartesian axes, which is about φ = 6◦ at e = 0.01.
Similar to the case of [100] deformations, there are also two Weyl nodes below and two
Weyl nodes above the node in unstrained crystal, but here they are shifted close to the diag-
onals of kx − ky plane. To within a change of the directions of node shifts, the low-energy
spectrum around the Γ point for this case is qualitatively very similar to the case of [100]
deformations (see the Figure 9).

When the stress is applied along [111] axis, we obtain similar 4-fold level slitting into
two doublets at the Γ point with Γ6 + Γ7 → (Γ4 + Γ4) + (Γ5 + Γ6), where all irreducible
representations Γ4(5,6) of the space group R3 (#146) are one-dimensional. Γ4 is real and it is
doubled due to TRS, while Γ5(6) are complex conjugated and they are combined together
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due to TRS. These two band crossings at the Γ point are shown in the Figure 11. The lower
one is a Weyl node. The node at higher energy has linear dispersion in the [111] direction
and nonlinear dispersion in the perpendicular plane (this branch is not shown in the figure).
It looks like the triple-Weyl node [36–38] with topological charge ± 3, but it is located at the
TRIM point. In addition, near the Γ point, there are two groups of nodes connected by time-
reversal symmetry. Each of these groups consist of 4 nodes. One of them kn1 is shifted from
the Γ point along the [111] axis by a distance k = D2e(a+

√
a2 + 2b2)/

√
3b2, which is about

0.007 at |e| = 0.01 (see Figure 11). In the case of compressive (tensile) strain the energy
of the node shifts downwards (upwards) relative to the node at the Γ point in unstrained
crystal. More detailed calculations showed that there are another 3 nodes in each group:
one of them kn2 is shifted from kn1 into [112] direction and positions of two other nodes
kn3(4) can be obtained using 2π/3 rotation around [111] axis. The distance between nodes
is rather small, about 0.0003 at e = −0.01. The calculation of topological charge showed
that three equivalent nodes kn2(3,4) have topological charge of 1 each, and the node kn1 has
a charge of −1. Thus total topological charge of each group is 2, giving 4 for both groups
together. The dispersion around the nodes is rather complex and is given in the Figure 12.
It can be seen that the electronic velocities are very different in different directions, and the
nodes are tilted. In addition to these groups of nodes, there are also two tilted Weyl nodes
in the directions [111] and [1̄1̄1̄]. The lowest band crossing in Figure 11 is one of these node.

Figure 11. The splitting of energy levels around the Γ point under uniaxial stain along [111] direction.
Dotted lines represent the spectrum of undeformed crystal, solid lines represent the spectrum in the
case of compressive strain for e = −0.01.

Figure 12. The dispersion around the nodes shifted from the Γ point under uniaxial compressive
strain along [111] direction. The dispersions along [111] (solid lines), [110] (dot-dashed lines) and
[112] (towards the node kn2, dashed lines) directions are plotted for e = −0.01.
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Let us now consider the effect of deformation on the low-energy spectrum around the
R point in the presence of spin-orbit coupling. In unstrained crystal, the 8-fold degenerate
level at the R point splits into 6-fold degenerate level R7 + R7 (double spin-1 quasiparticles)
and doublet R5 + R6 due to SOC. The doublet is not split by the strain, so we will consider
only 6-fold degenerate level (see the Figure 1c). In the case of [100] deformation, it is split
into 3 doublets with the wave functions, transforming according to the representations
R2 + R2, R3 + R3 and R4 + R4 of the P212121 (#19) group. The change of the dispersion
around the R point is shown in the Figure 13. Two nodes at lower energy are shifted
along positive and negative kx (kz) directions under compressive (tensile) strain. There is a
crossing of four energy branches at each of these nodal points. They are a tilted double
spin-1/2 nodes [33] with Chern numbers of ∓2. In the case of eight-band Hamiltonian, the
equality ε(k,−ε̂) = −ε(k, ε̂) does not hold exactly. But in the case of [100] deformation
the spectrum for six considered bands approximately follows this rule. This implies that
there are the two additional double spin-1/2 nodes in kz (kx) directions for compressive
(tensile) strain (see Figure 13).

Figure 13. The splitting of energy levels around the R point under uniaxial stain along [100]
direction. Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent
the spectrum in the case of compressive (tensile) strain of |e| = 0.01.

The deformation in [110] direction again leads to the splitting of 6-fold degenerate
level into 3 doublets at the vertex of deformed Brillouin zone (E point). Wave functions
of two doublets are transformed according to the E3 + E3 representation and one dou-
blet according to the E4 + E4 representation, where both E3(4) are real one-dimensional.
These doublets do not form Weyl nodes, as the energy branches, starting from them are
degenerate at the edges of the Brillouin zone parallel to (001) plane. Four simple Weyl
nodes are formed near the E point. They shifted mainly into kz direction to the points with
coordinates ±kn, where kn = (±0.001,∓0.001, 0.014) at e = −0.01 (see Figure 14). In the
case of tensile strain the shift appeared to be almost the same. As the degeneracy of the
bands is completely lifted under this deformation, the topological charge of each of the 4
nodes is ∓1.

The case of [111] deformation is similar to the two previously considered cases in
the sense that one obtains 3 doublets instead of 6-fold degenerate level at the vertex of
the Brillouin zone (2R7 → (T4 + T4) + 2(T5 + T6), where T4 is real one-dimensional
representations, T5 and T6, are complex conjugated one dimensional representations of the
little group of the T point of the R3(#146) space group). Each of these doublets corresponds
to a Weyl node. The two band crossings at the T point are the conventional Weyl nodes
with Chern number of ∓1. The third band crossing looks like the triple-Weyl node with
the topological charge of ∓3. It is similar to triple-Weyl node at the Γ point. In addition,
near the T point, there are two groups of nodes connected by time-reversal symmetry,
as in the case of the Γ point. Two of them are simple Weyl nodes shifted into [111] and
[1̄1̄1̄] directions, but they have topological charge 1. Around each of them, there are three
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conventional Weyl nodes with topological charges−1. The total charge of these eight nodes
is −4. For example, in the case of compressive strain with e = −0.01, one of the nodes at
the [111] direction have coordinates kn1 = (0.00197, 0.00197, 0.00197) relative to the T point.
One of its satellites have coordinates kn2 = (0.00169, 0.00196, 0.00227), and the coordinates
of another two satellites kn3(4) can be obtained by cyclic permutations. The dispersion
around the T point towards nodes kn1 and kn2 is plotted in the Figure 15. It is almost linear.
At the same time, the dispersion along the line connecting the central node with one of its
satellites (Figure 16) looks like a result of the crossing of two nonlinear bands.

Figure 14. The splitting of energy levels around the R point (E point, P21 space group) under uniaxial
stain along [110] direction. Dotted lines represent the spectrum of undeformed crystal, solid lines
represent the spectrum in the case of compressive strain of e = −0.01.

Figure 15. The splitting of energy levels around the R point under uniaxial stain along [111] direction
(T point, R3 space group). Dotted lines represent the spectrum of undeformed crystal, solid lines
represent the spectrum in the case of compressive strain of e = −0.01.

Figure 16. The electronic dispersion along the direction from central node kn1 towards to one of its
satellites under uniaxial stain along [111] direction at e = −0.01.
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5. Conclusions

In the present work the influence of deformation on the band structure and topo-
logical properties of CoSi was studied using both ab initio calculations, and symmetry
considerations. The symmetry prescribed k · p Hamiltonians at the Γ and R TRIM points
taking into account deformation were written down for the cases with and without SOC.
It was shown that in almost all considered cases, the degeneracy is partially lifted at the
TRIM points. The only exception is the fourfold degenerate level at the R point (without
SOC) under [100] strain. A lowering in symmetry leads to the appearance of a significant
number of different band crossings with topological charges from ±1 to ±3 around the
TRIM points. The nodes often have a tilted dispersion.

The unusual results were obtained upon deformation of CoSi along the [111] direction.
Without spin-orbit coupling, the doubly degenerate nodes with quadratic dispersion in
the plane orthogonal to the [111] direction appear at the Γ and T points of the deformed
Brillouin zone. These band crossings have Chern numbers of ±2 and resemble the well-
known double-Weyl nodes, but they are spin degenerate. Calculation with account of
SOC revealed doubly degenerate nodes with the topological charges of ±3 at the TRIM
points. These band crossings are located on the threefold rotation axis and are analogous
to triple-Weyl nodes.

The band structure with SOC around the R point under [100] strain exhibits another
example of the change of node type. The double spin-1 node with topological charge of
4 splits into pairs of double spin-1/2 nodes with topological charges of 2 per node. Thus,
using mechanical deformation, the transition between different types of topological nodes
can be realized in the same material.

A lowering of the crystal symmetry under strain also leads to a modification of the
surface Fermi arcs shape. A change in the sign of the deformation and the Fermi level
position switches the ends of the Fermi arcs from one group of nodes to another. However,
the number of Fermi arcs always remains equal to two without taking into account SOC
and four with SOC.

As a byproduct of low-energy Hamiltonian fitting, the absolute deformation potential
parameters were obtained for considered energy states, and the work function of CoSi was
calculated (4.55 eV), which correlates with available experimental data.
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Appendix A. k · p Hamiltonians and Their Parameters

In this section, the form of k · p Hamiltonians and their parameters will be given.
We used eV units for energy, and the dimensionless wave vector components ki, i = 1, 2, 3
are measured in fractions of the reciprocal lattice vectors.

Without spin-orbital coupling linear in wave vector part of Hamiltonian at the Γ point
is given by the following equation:

HΓ1 =

 0 ivk3 −ivk2
−ivk3 0 ivk1
ivk2 −ivk1 0

, (A1)

where v = 1.73 eV. The node at the Γ point lies 3.6 meV above the Fermi level.
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The perturbation Hamiltonian in the linear approximation in the deformation tensor
εik and in the zero approximation in the wave vector has the following form:

HΓ2 =

 S1(ε̂) D4ε12 D4ε13
D4ε12 S2(ε̂) D4ε23
D4ε13 D4ε23 S3(ε̂)

, (A2)

where S1(ε̂) = D1ε11 + D2ε22 + D3ε33, S2(ε̂) = D3ε11 + D1ε22 + D2ε33, S3(ε̂) = D2ε11 +
D3ε22 + D1ε33, D1 = −0.319 eV, D2 = −0.400 eV, D3 = 0.470 eV and D4 = 2.479 eV.

At the R point the Hamiltonian, linear in k-vector, was given in Ref. [16]. It can be
represented as HR1 = v1̂⊗ (σ · k) with v = 1.28 eV. The node at the R point lies 0.211 eV
below the Fermi level. The perturbation due to elastic strain reads:

HR2 =

 D1Trε̂− D2ε12 −D2(ε23 − iε13) iD3ε12 D3(ν
∗
6 ε23 + iν6ε13)

−D2(ε23 + iε13) D1Trε̂ + D2ε12 D3(ν
∗
6 ε23 − iν6ε13) −iD3ε12

−iD∗3 ε12 D∗3 (ν6ε23 + iν∗6 ε13) D1Trε̂ + D2ε12 D2(ε23 − iε13)
D∗3 (ν6ε23 − iν∗6 ε13) iD∗3 ε12 D2(ε23 + iε13) D1Trε̂− D2ε12

, (A3)

where Trε̂ is a trace of strain tensor, ν6 = eiπ/6, D1 = 0.264 eV, D2 = −1.29 eV and
D3 = 3.27 eV.

Taking into account spin-orbit coupling, linear Hamiltonian at the Γ point was written
down in Ref. [8] and has the following form:

H(SOC)
Γ1 =


ak3 a(k1 − ik2) b(ν3k1 − ν6k2) bk3

a(k1 + ik2) −ak3 bk3 −b(ν3k1 + ν6k2)

b∗(ν∗3 k1 − ν∗6 k2) b∗k3 −ak3 −a(k1 + ik2)

b∗k3 −b∗(ν∗3 k1 + ν∗6 k2) −a(k1 − ik2) ak3

, (A4)

where ν3 = eiπ/3, a = 0.56 eV and b = 1.19 eV [8]. The 4-fold degenerate node position is
21 meV above the Fermi level, and the Weyl cone at the Γ point is shifted down due to SOC
by 54 meV relative to this node.

The perturbation due to deformation reads:

H(SOC)
Γ2 =


D1Trε̂ + D2ε12 D2(ε23 − iε13) 0 D3Σ(ε̂)
D2(ε23 + iε13) D1Trε̂− D2ε12 −D3Σ(ε̂) 0

0 −D∗3 Σ∗(ε̂) D1Trε̂ + D2ε12 D2(ε23 + iε13)

D∗3 Σ∗(ε̂) 0 D2(ε23 − iε13) D1Trε̂− D2ε12

, (A5)

where Σ(ε̂) = ε11 − ν3ε22 + ν2
3 ε33, D1 = −0.085 eV, D2 = 1.40 eV. Parameter D3 is complex.

Eigenvalues at k = 0 does not depend on its phase, but it affects the spectrum for nonzero
k values. The fitting gives D3 ≈ 0.233e−iπ/6eV.

At the R point the Hamiltonian for 6-fold degenerate node including SOC was given
in Ref. [17]. After uniaxial deformation this node splits into three doubly-degenerate nodes.
Under deformation in [100] direction, the shift of energy levels at the R point is linear in
deformation. If the deformation is applied in [111] direction, only for small e < 0.004,
the shift of energy levels can be considered as linear, and the deformation along [110] axis
leads to nonlinear shift of the two pairs of energy levels (see Figure A1). It was shown in
Ref. [16] in the framework of a simple model that a linear Hamiltonian that includes SOC
in the zeroth order with respect to the wave vector and takes into account all eight bands
leads to the correct nonlinear band dispersion near the R point (see, e.g., Figure 3b–c in
Ref. [8]). So, we consider both nodes together and obtain 8 × 8 Hamiltonian at the R point.
The zero-order Hamiltonian has only nonzero matrix elements (H(SOC)

R0 )ii = −∆, i = 7, 8,
which describe energy shift of doublet downwards in energy due to SOC. Including SOC,
the position of the 6-fold degenerate node is 0.202 eV below εF, while the band splitting
∆ = 32 meV. The zero- and linear-order in k parts together reads:
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H(SOC)
R01 =



0 a1k3 −a∗1k2 0 a2k3 −a2k2 a3k1 a4k1
a∗1k3 0 a1k1 a2k3 0 a2k1 ν3a3k2 ν∗3 a4k2
−a1k2 a∗1k1 0 −a2k2 a2k1 0 −ν∗3 a3k3 −ν3a4k3

0 a∗2k3 −a∗2k2 0 −a∗1k3 a1k2 a∗4k1 −a∗3k1
a∗2k3 0 a∗2k1 −a1k3 0 −a∗1k1 ν3a∗4k2 −ν∗3 a∗3k2
−a∗2k2 a∗2k1 0 a∗1k2 −a1k1 0 −ν∗3 a∗4k3 ν3a∗3k3
a∗3k1 ν∗3 a∗3k2 −ν3a∗3k3 a4k1 ν∗3 a4k2 −ν3a4k3 −∆ 0
a∗4k1 ν3a∗4k2 −ν∗3 a∗4k3 −a3k1 −ν3a3ky ν∗3 a3k3 0 −∆


, (A6)

where parameters ai are complex. Their values were obtained by fitting to electron spectrum
around R point. They are not unique, but they were checked to give correct values of
topological charges. These values are a1 = (0.342− 0.686i) eV, a2 = (1.043 + 0.060i) eV,
a3 = (−0.459− 0.657i) eV and a4 = (0.181− 0.100i) eV.

Figure A1. The splitting of energy levels at the R point with uniaxial stress of magnitude e in [110]
(left panel) and in [111] (right panel) directions.

The perturbation due to deformation is:

H(SOC)
R2 =


S1(ε̂) D5ε12 −D∗5 ε13 0 D6ε12 D6ε13 D7ε23 D8ε23
D∗5 ε12 S2(ε̂) D5ε23 −D6ε12 0 D6ε23 D7ε13ν3 D8ε13ν∗3
−D5ε13 D∗5 ε23 S3(ε̂) −D6ε13 −D6ε23 0 −D7ε12ν∗3 −D8ε12ν3

0 −D∗6 ε12 −D∗6 ε13 S1(ε̂) D∗5 ε12 −D5ε13 −D∗8 ε23 D∗7 ε23
D∗6 ε12 0 −D∗6 ε23 D5ε12 S2(ε̂) D∗5 ε23 −D∗8 ε13ν3 D∗7 ε13ν∗3
D∗6 ε13 D∗6 ε23 0 −D∗5 ε13 D5ε23 S3(ε̂) D∗8 ε12ν∗3 −D∗7 ε12ν3
D∗7 ε23 D∗7 ε13ν∗3 −D∗7 ε12ν3 −D8ε23 −D8ε13ν∗3 D8ε12ν3 D4Trε̂ 0
D∗8 ε23 D∗8 ε13ν3 −D∗8 ε12ν∗3 D7ε23 D7ε13ν3 −D7ε12ν∗3 0 D4Trε̂

, (A7)

where D1 = 0.318 eV, D2 = 0.211 eV, D3 = 0.261 eV, D4 = 0.270 eV are real and determine
the shift of each pair of energy levels under [100] deformation. The splitting of levels
under the compressive or tensile strain e in [110] direction also can be obtained analytically.
Two doublets linearly shift with deformation e

εR =

(
2D1 + D2 + D3 ±

√
(D2 − D3)2 + 4(|D5|2 + |D6|2)

)
e/4, (A8)

from which
√
|D5|2 + |D6|2 = 3.5 eV can be obtained. But another four levels shift nonlinearly

εR =

(
(D2 + D3 + 2D4)e− 2∆±

√
((D2 + D3 − 2D4)e + 2∆)2 + 4e2(|D7|2 + |D8|2)

)
/4. (A9)

√
|D7|2 + |D8|2 = 3.36 eV. Other parameters were obtained from fitting to band structures of de-

formed crystal. They are non-unique, one of possible parameter sets is D5 = (−1.107− 2.916i) eV,
D6 = (0.713+ 1.420i) eV, D7 = (1.147+ 1.048i) eV, D8 = (−1.667+ 2.469i) eV.

Appendix B. Absolute Deformation Potentials and Work Function of CoSi

In order to obtain absolute shift of energy level εn after deformation, it is necessary
to have common reference energy in deformed and undeformed crystals or to determine
the shift of the reference due to deformation. For example, energy can be measured
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from macroscopic average of effective self-consistent potential Ve. Then absolute shift of
energy level εn due to deformation is equal to ∆εn = (ε

(d)
n −V(d)

e )− (ε
(u)
n −V(u)

e ) + ∆Ve,
where ∆Ve is the reference energy offset due to strain and superscript d(u) corresponds to
bulk calculation for deformed (undeformed) crystal.

The vacuum level can be used as a common reference energy, but it is not accessible
in bulk DFT calculation. Hence we apply approach similar to that used for work function
calculations. The superlattice configuration was considered with alternating layers of ma-
terial and vacuum gaps. Average effective potential inside material layer Ve was calculated
relative to its value inside vacuum gap (vacuum energy level). Then, the change of average
effective potential ∆Ve due to deformation can be calculated as a deference between the
values obtained from separate calculations for strained and unstrained layers.

Alternative approach was used in Ref. [39], where another superlattice method was
proposed in order to obtain reference energy offset. The superlattice was formed from
layers, extended or compressed along the direction of superlattice axis, and the layers were
undeformed in the plane. In all-electron calculations, performed in Ref. [39], localized core
levels, used as an energy reference, can be associated with each of the layers. The difference
in their energy positions in the limit of thick layers allowed to obtain the reference energy
offset due to deformation. Similar approach was used in Ref. [40], where pseudopotential
calculations were used and, instead of core levels, macroscopic average effective potential
in deformed V(DL)

e and undeformed V(UL)
e layers was used to determine the change of

the energy reference due to deformation ∆Ve = V(DL)
e − V(UL)

e . We also used the latter
approach and made similar calculations for superlattice of strained/unstrained layers of
CoSi for [100], [110] and [111] directions. We checked the convergence of ∆Ve with respect
to the layer thickness. The accuracy of 1–2 meV was reached for the layer thickness of 10a0.

Inside thick metallic layers, thicker then screening length, the difference (Ve − εF) is
determined only by its bulk properties, and the superlattice made of strained/unstrained
layers should have common Fermi level εF. Hence, the same ∆Ve can be obtained from bulk
calculations for deformed and undeformed crystal ∆Ve = (V(d)

e − ε
(d)
F )− (V(u)

e − ε
(u)
F ).

Then, the absolute shift of energy level εn due to deformation can be calculated as
∆εn = (ε

(d)
n − ε

(d)
F )− (ε

(u)
n − ε

(u)
F ).

All three considered approaches should give the same results for metallic material.
Although CoSi is considered as semimetallic, the comparison gave the same results for ∆Ve
to within 1–2 meV. In addition, we obtained work function for CoSi, equal to 4.55 eV which
compares favourably with experimental values of 4.47–4.54 eV [41].

References
1. Asanabe, S.; Shinoda, D.; Sasaki, Y. Semimetallic Properties of Co1−xFexSi Solid Solutions. Phys. Rev. 1964, 134, A774. [CrossRef]
2. Fedorov, M.I.; Zaitsev, V.K. Semimetals as materials for thermoelectric generators. In CRC Handbook of Thermoelectrics;

Rowe, D.M., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Chapter 27.
3. Pan, Z.; Zhang, L.; Wu, J. Electronic structure and transport properties of doped CoSi single crystal. J. Appl. Phys. 2007,

101, 033715. [CrossRef]
4. Sakai, A.; Ishii, F.; Onose, Y.; Tomioka, Y.; Yotsuhashi, S.; Adachi, H.; Nagaosa, N.; Tokura, Y. Thermoelectric power in

transition-metal monosilicides. J. Phys. Soc. Jpn. 2007, 76, 093601. [CrossRef]
5. Ishii, F.; Kotaka, H.; Onishi, T. Spin–Orbit Interaction Effects in the Electronic Structure of B20-Type CoSi: First-Principles Density

Functional Study. JPS Conf. Proc. 2014, 3, 016019. [CrossRef]
6. Tang, P.; Zhou, Q.; Zhang, S.C. Multiple Types of Topological Fermions in Transition Metal Silicides. Phys. Rev. Lett. 2017,

119, 206402. [CrossRef]
7. Chang, G.; Xu, S.Y.; Wieder, B.J.; Sanchez, D.S.; Huang, S.M.; Belopolski, I.; Chang, T.R.; Zhang, S.; Bansil, A.; Lin, H.; et al.

Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. Phys. Rev. Lett. 2017, 119, 206401. [CrossRef]
8. Pshenay-Severin, D.A.; Ivanov, Y.V.; Burkov, A.A.; Burkov, A.T. Band structure and unconventional electronic topology of CoSi.

J. Phys. Condens. Matter 2018, 30, 135501. [CrossRef]
9. Yu, J.; Kuang, J.; Long, J.; Ke, X.; Duan, X.; Liu, Z. Effects of nonstoichiometry on thermoelectric properties of CoSi-based

materials. J. Mater. Sci. Mater. Electron. 2020, 31, 2139–2144. [CrossRef]
10. Pshenay-Severin, D.A.; Ivanov, Y.V.; Burkov, A.T.; Novikov, S.V.; Zaitsev, V.K.; Reith, H. Electronic Structure and Thermoelectric

Properties of Transition Metal Monosilicides. J. Electron. Mater. 2018, 47, 3277–3281. [CrossRef]

http://doi.org/10.1103/PhysRev.134.A774
http://dx.doi.org/10.1063/1.2464186
http://dx.doi.org/10.1143/JPSJ.76.093601
http://dx.doi.org/10.7566/JPSCP.3.016019
http://dx.doi.org/10.1103/PhysRevLett.119.206402
http://dx.doi.org/10.1103/PhysRevLett.119.206401
http://dx.doi.org/10.1088/1361-648X/aab0ba
http://dx.doi.org/10.1007/s10854-019-02735-6
http://dx.doi.org/10.1007/s11664-017-6005-8


Crystals 2021, 11, 143 18 of 19

11. Pshenay-Severin, D.A.; Ivanov, Y.V.; Burkov, A.T. The effect of energy-dependent electron scattering on thermoelectric transport
in novel topological semimetal CoSi. J. Phys. Condens. Matter 2018, 30, 475501. [CrossRef]

12. Antonov, A.; Ivanov, Y.; Konstantinov, P.; Kuznetsova, V.; Novikov, S.; Ovchinnikov, A.; Pshenay-Severin, D.; Burkov, A. Ther-
moelectric and galvanomagnetic properties of topologically non-trivial (Co-M)Si semimetals (M = Fe, Ni) at high temperatures.
J. Appl. Phys. 2019, 126, 245103. [CrossRef]

13. Xu, X.; Wang, X.; Cochran, T.A.; Sanchez, D.S.; Chang, G.; Belopolski, I.; Wang, G.; Liu, Y.; Tien, H.J.; Gui, X.; et al. Crystal growth
and quantum oscillations in the topological chiral semimetal CoSi. Phys. Rev. B 2019, 100, 045104. [CrossRef]

14. Balasubramanian, B.; Manchanda, P.; Pahari, R.; Chen, Z.; Zhang, W.; Valloppilly, S.R.; Li, X.; Sarella, A.; Yue, L.; Ullah, A.; et al.
Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si. Phys. Rev. Lett. 2020, 124, 057201. [CrossRef]
[PubMed]

15. Xu, B.; Fang, Z.; Sanchez-Martinez, M.A.; Venderbos, J.W.F.; Ni, Z.; Qiu, T.; Manna, K.; Wang, K.; Paglione, J.; Bernhard, C.; et al.
Optical signatures of multifold fermions in the chiral topological semimetal CoSi. Proc. Natl. Acad. Sci. USA 2020, 117, 27104–
27110. [CrossRef]

16. Manes, J.L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 2012, 85, 155118. [CrossRef]
17. Bradlyn, B.; Cano, J.; Wang, Z.; Vergniory, M.G.; Felser, C.; Cava, R.J.; Bernevig, B.A. Beyond Dirac and Weyl fermions:

Unconventional quasiparticles in conventional crystals. Science 2016, 353, aaf5037. [CrossRef]
18. Sanchez, D.S.; Belopolski, I.; Cochran, T.A.; Xu, X.; Yin, J.X.; Chang, G.; Xie, W.; Manna, K.; Süß, V.; Huang, C.Y.; et al. Topological

chiral crystals with helicoid-arc quantum states. Nature 2019, 567, 500–505. [CrossRef]
19. Takane, D.; Wang, Z.; Souma, S.; Nakayama, K.; Nakamura, T.; Oinuma, H.; Nakata, Y.; Iwasawa, H.; Cacho, C.; Kim, T.; et al.

Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi. Phys. Rev. Lett.
2019, 122, 076402. [CrossRef]

20. Rao, Z.; Li, H.; Zhang, T.; Tian, S.; Li, C.; Fu, B.; Tang, C.; Wang, L.; Li, Z.; Fan, W.; et al. Observation of unconventional chiral
fermions with long Fermi arcs in CoSi. Nature 2019, 567, 496–499. [CrossRef]

21. Dutta, P.; Pandey, S.K. Effects of correlations and temperature on the electronic structures and related physical properties of FeSi
and CoSi: A comprehensive study. J. Phys. Condens. Matter 2019, 31, 145602. [CrossRef]

22. Pshenay-Severin, D.A.; Burkov, A.T. Electronic Structure of B20 (FeSi-Type) Transition-Metal Monosilicides. Materials 2019, 12,
2710. [CrossRef] [PubMed]

23. Schnatmann, L.; Geishendorf, K.; Lammel, M.; Damm, C.; Novikov, S.; Thomas, A.; Burkov, A.; Reith, H.; Nielsch, K.; Schierning, G.
Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi.
Adv. Electron. Mater. 2020, 6, 1900857. [CrossRef]

24. Krishna Nichenametla, C.; Calvo, J.; Riedel, S.; Gerlich, L.; Hindenberg, M.; Novikov, S.; Burkov, A.; Kozelj, P.; Cardoso-Gil, R.;
Wagner-Reetz, M. Doping Effects in CMOS-compatible CoSi Thin Films for Thermoelectric and Sensor Applications. Z. Anorg.
Allg. Chem. 2020, 646, 1231–1237. [CrossRef]
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