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Abstract: Metallic grating structures have been shown to provide an effective platform for generating
hot electrons and driving electrochemical reactions. Here, we present a systematic theoretical
study of the surface plasmon resonance in different corrugated metallic grating structures using
computational electromagnetic tools (i.e., the finite difference time domain (FDTD) method). We
identify the corrugation parameters that produce maximum resonant field enhancement at commonly
used wavelengths for photocatalytic applications (633 nm and 785 nm) in different material systems,
including Ag, Au, Cu, Al, and Pt. The absorption spectra of each grating structure have been fitted
with the analytical equation obtained from Coupled Mode Theory. We then extracted the absorptive
and radiative loss rates. The field enhancement can be maximized by matching the absorption
and radiation losses via tuning the geometric parameters. We could improve the average field
enhancement of 633 nm and 785 nm modes by a factor of 1.8× and 3.8× for Ag, 1.4× and 3.6× for
Au, and 1.2× and 2.6× for Cu. The optimum structures are found to be shallower for Ag, Au, and
Cu; deeper for Pt; and to almost remain the same for Al. The gratings become flat for all the metals
for increasing the average field enhancement. Overall, Ag and Au were found to be the best in terms
of overall field enhancement while Pt had the worst performance.

Keywords: hot electrons; plasmon-enhanced hot electrons; gratings; surface plasmon resonance;
photocatalysis; FDTD

1. Introduction

Hot electrons photoexcited in plasmon-resonant metal nanostructures have been stud-
ied extensively over the past decade in the context of novel chemistry, as well as solid state
devices [1–5]. The electromagnetic decay of surface plasmons generates hot carriers with
energies much larger than that of carriers in thermal equilibrium with the lattice [2]. They
offer an efficient pathway for driving high-barrier chemical reactions, which are not possible
with thermalized carriers [1]. For example, enhanced photocatalytic water splitting has
been reported on TiO2 films by plasmonic near-field coupling from Au nanoparticles [6,7].
Hot electrons generated by the surface plasmon decay from Au nanoparticles were used to
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drive H2 and D2 dissociation at room temperature [8,9]. Theoretical studies have revealed
that hot carriers are generated via direct transitions above the interband transition thresh-
old in commonly used plasmonic materials gold, silver, copper, and aluminum [10,11]. The
lifetime of these carriers was measured as a few picoseconds by ultra-fast, pump-probe
spectroscopy measurements [12].

More recently, corrugated metallic grating nanostructures have emerged as an effec-
tive platform for generating plasmon-enhanced hot carriers in the visible range [13–15].
These gratings are fabricated by depositing a plasmonic metal on a corrugated silicon
substrate. This templated fabrication offers a simple and convenient method to create
grating structures with a preferred material system for a given application. The gratings
have been used for enhancing the efficiency of photodetectors based on metal/oxide/metal
(Au/Al2O3/graphene) heterostructures [15]. Corrugated Au gratings have also been used
to inject photoexcited hot electrons into an aqueous solution and to drive water splitting
reactions [7,15]. Photocurrent enhancement has been demonstrated with hot electrons
generated in corrugated Ag grating structures [13]. These measurements use a fixed wave-
length and scan the incident angle, which enables tuning through the plasmon resonance.
In these grating structures, the plasmon-resonant excitation can be distinguished from bulk
interband transition simply by rotating the polarization of the incident light.

Previous studies have shown strong geometry and wavelength dependences for hot
electron generation in plasmonic structures. However, no systematic studies have been
carried out as a function of geometric parameters for these gratings. In the work presented
here, we systematically study the geometric effects in these corrugated structures on the
generation of surface plasmon polaritons and resulting hot carrier generation in commonly
used plasmonic metals Ag, Au, Al, Cu, and Pt. Based on the material choice, the optimum
geometry can be chosen to maximize the field enhancement and thereby the hot carrier
generation rate.

2. Methods

We investigated the surface plasmon resonance in corrugated grating structures using
the finite difference time domain (FDTD) method in the Lumerical FDTD solutions package.
The geometry of the corrugated grating surface can be specified by the following equation:

y(x) = A
[

e−2( x−x0
σ )

2

+ e2( x−x0
σ )

2
]

(1)

where A is the height difference between the peaks and valleys of the corrugation, herein
referred to as the corrugation amplitude, and σ specifies the length over which the corruga-
tion amplitude goes down by 1/e2, referred to as the steepness factor.

From the SEM image shown in Figure 1a, we obtained the geometric factors of A = 58.9 nm
and σ = 125 nm. The gratings had a corrugation pitch (a) of 500 nm and metal thickness
(t) of 50 nm. Figure 1b shows the index profile of the geometry used in the numerical
simulation. Water was considered the surrounding medium for the calculations with an
index of refraction of n = 1.33.
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to p-polarization with respect to the gratings. A power monitor was placed behind the 
source to record the reflected power (Pref). Absorbed power (Pabs) was calculated as Pabs = 1 
− Pref. The electric field intensity was monitored with a 2D field monitor. The broadband 
absorption spectra were calculated for different incident angles for each metal, as shown 
in Figure 2 (top row).  

In order to excite the surface plasmon polaritons (SPPs) in the grating structure, the 
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rounding medium, respectively. By solving Equation (2) for different metals, the spectral 
position of the plasmon-resonant modes for each incident angle could be calculated. Fig-
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(top) and resonant wavelength for different incident angles for each mode using Equation (1) (bot-
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It is evident from Figure 2 that the absorption is at a maximum at the resonance con-
ditions obtained from Equation (2), reaffirming that the absorption enhancement is due to 
the surface plasmon polaritons. The resonant absorption is different for each material sys-
tem. Metals like Ag, Au, Al, and Cu have close to zero nonresonant absorption above 600 
nm while Pt has significant background absorption throughout the visible range. We are 

Figure 1. (a) Cross-sectional SEM image of the fabricated corrugated grating. (b) The refractive index
profile of the structure modelled by Equation (1).

A 2D simulation was carried out with a fine mesh of 1 nm × 1 nm and an oblique
excitation with a plane wave source. Bloch boundaries were used along the x-direction
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(in plane of the grating), and perfectly matched layer (PML) boundaries were used in y-
direction (perpendicular to the grating) for single wavelength simulations. For broadband
simulations at a fixed incident angle, broadband fixed-angle source technique (BFAST)
was used within Lumerical FDTD solutions. The polarization of the incident light was
set to p-polarization with respect to the gratings. A power monitor was placed behind
the source to record the reflected power (Pref). Absorbed power (Pabs) was calculated as
Pabs = 1 − Pref. The electric field intensity was monitored with a 2D field monitor. The
broadband absorption spectra were calculated for different incident angles for each metal,
as shown in Figure 2 (top row).

In order to excite the surface plasmon polaritons (SPPs) in the grating structure,
the momentum and energy of the incident photons had to match those of the SPPs (i.e.,
wavevector matching). The incident angles that satisfied this condition at each wavelength
were found by solving the following equation [13]:

2πnd
λ

sin θ+ m
2π
a

= −Re
{
ω

c

√
εdεm

εd + εm

}
(2)

where a is the periodicity of the grating, m is the order of the surface plasmon mode, θ is
the incidence angle, and εm and εd are the dielectric functions of the metal and surrounding
medium, respectively. By solving Equation (2) for different metals, the spectral position of
the plasmon-resonant modes for each incident angle could be calculated. Figure 2 (bottom
row) shows the analytical band structures of different metallic gratings calculated using
Equation (2).
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Figure 2. Simulated absorption of gratings plotted as a function of incident angle and wavelength (top)
and resonant wavelength for different incident angles for each mode using Equation (1) (bottom).

It is evident from Figure 2 that the absorption is at a maximum at the resonance
conditions obtained from Equation (2), reaffirming that the absorption enhancement is due
to the surface plasmon polaritons. The resonant absorption is different for each material
system. Metals like Ag, Au, Al, and Cu have close to zero nonresonant absorption above
600 nm while Pt has significant background absorption throughout the visible range. We
are interested in establishing whether the performance of these gratings is materially
limited or geometrically limited and determining how much of an improvement is possible
by adjusting the structural parameters.

3. Theory

Hot carriers are generated by the nonradiative decay of the surface plasmon polaritons.
Hot electron generation rate is, therefore, proportional to the electric field intensity in
the metallic structure [16]. Even though Equation (2) provides a convenient analytical
method to determine the excitation condition for SPPs in a plasmonic structure, it is not
adequate to determine the magnitude of plasmonic enhancement in the structure. Field
enhancement in plasmonic structures has been modelled and studied using coupled mode
theory (CMT) [17,18]. Using CMT, the following relation connecting the field enhancement
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in plasmonic structures and the quality factor of the resonant optical modes can be derived
as [19,20]

|Eloc|2max

|E0|2
=

2Acλr

πVeff

Q2
absQrad

(Qrad + Qabs)
2 (3)

where |Eloc|max and |E0| are the maximum value of electric field intensity and the incident
field amplitude, respectively; λr is the resonance wavelength; and Veff is the effective mode
volume. Ac is the effective aperture of the microstructure, which is determined by the
radiation pattern of the whole grating array [20,21]. The total radiation pattern of the large
area grating structure can be regarded as a plane wave, and therefore Ac is equal to incident
planewave cross section. Qrad and Qabs are the radiation and absorption quality factors of
the structure, respectively, and are related to the resonant wavelength and loss rates in the
structure as follows [20]:

Qabs =
ω0

Γabs
, Qrad =

ω0

Γrad
and

1
Qtotal

=
1

Qabs
+

1
Qrad

(4)

where ω0 is the resonance frequency, and Γrad and Γabs are the radiative and absorp-
tive losses in the metallic structure. Equation (3) can be modified to express the field
enhancement in terms of loss rates

|Eloc|2max

|E0|2
∝
ω0

Veff

Γrad

(Γrad + Γabs)
2 (5)

Equation (5) signifies that the field enhancement of the grating structure can be
modified by engineering the radiation and absorption loss rates. Radiation loss from the
structure is a strong function of its geometric parameters while absorption losses mainly
depend on the material type and wavelength [22]. The mode volume is proportional to the
propagating length of the surface plasmon polaritons and the field decay constant in the
direction normal to metal surface. Veff is not expected to depend strongly on the geometry
when the dimensions are small compared to wavelength [22]. The field enhancement
increases with Γrad, reaches maximum when Γrad = Γabs, and then decreases with further
increase in Γrad. This condition (Γrad = Γabs) is called the critical coupling. The critical
coupling could be understood as analogous to the impedance matching principle. When an
electromagnetic wave couples with the resonant structure, the maximum energy is stored
in the resonator when the loss rates are matched [19]. The maximum field enhancement at
critical coupling varies inversely proportional to the absorption losses (Γabs). Therefore, the
maximum field enhancement is obtained when Γrad = Γabs and Γtot = Γrad + Γabs = 2Γabs
is as close to minimum as possible.

For a given structure, we can extract the loss rates from the spectra and tune them to
improve the field enhancement. Using CMT, the absorption spectra of these plasmonic
gratings can be expressed as [22–24]

A(ω) = 1−
∣∣∣∣∣rp +

Γradeiφ

i(ω−ω0) +
Γrad+Γabs

2

∣∣∣∣∣
2

(6)

where rp is the nonresonant background reflection from the structure and φ is the phase
factor of the surface plasmon mode. The loss rates can be extracted by fitting the absorption
spectra of the structure to the analytical expression obtained from CMT.

4. Corrugated Grating Structure

We considered two incident wavelengths, 632 nm and 785 nm, at which the metals
supported a well-defined resonant mode for incident angles ranging from 40 to 100. The
absorption spectra obtained from the FDTD simulations for each metallic grating were then
fitted to the analytical equation (6) using non-linear curve fitting with the NLopt library [25]
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in MATLAB to deduce the fitting coefficients (Γrad, Γabs,ω0, rp,φ). Figure 3 shows the
simulated absorption spectra (markers) and fitted absorption spectra using the analytical
equation (solid lines). The field profile corresponding to the resonant angles at wavelengths
633 nm and 785 nm is also plotted. For fitting the spectra with multiple resonant modes,
the linear superposition of Lorentzian-like coupled surface plasmon polariton modes are
considered [26]. It can be seen from Figure 3 that the analytical equation agrees well with
the simulated spectra.
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Figure 3. (top row) The absorption spectra numerically obtained from finite difference time do-
main (FDTD) simulations (markers) and fitted spectra from Equation (6) (solid lines) (top row).
Corresponding resonant field enhancements at 633 nm (middle row) and 785 nm (bottom row).

The corrugated structure for each metal was analyzed within the CMT framework
to see whether the structure was optimal for the specific material system. Figure 4 shows
the radiative and absorptive loss rates obtained from the fit for different metals at their
resonant modes for 633 nm (blue) and 785 nm (red), respectively. The black dashed line
represents the critical coupling condition (Γrad = Γabs). The points that lie close to the
center line towards the origin in the Gamma plots will have maximum field enhancement
as it satisfies Γrad = Γabs and Γtot = Γrad + Γabs is minimum. We found that the initial
structure depicted in Figure 1 was far from optimum for all the metals at 633 nm. At
785 nm, the structure was close to critical coupling for all the metals except Pt.
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5. Tuning the Corrugation for Each Material

Absorptive and radiative decay rates of different metallic gratings depend on the geo-
metric parameters of the corrugation. Here, we varied the corrugation amplitude (A) and
the steepness factor (σ) to determine the changes in field enhancement and peak absorption
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at 633 nm and 785 nm, respectively, for each metal. The average field enhancement was
calculated by

Iavg =

s
|E(x, y)|2dxdy
s
|E0|2dxdy

(7)

Figure 5 shows the field enhancement at 633 nm and 785 nm for different metal
gratings under consideration as a function of A and σ. We used the resonant angles
obtained from the analytical expression in Equation (2) to excite the surface plasmons in
each metal at both wavelengths. A was varied from 10 nm to 100 nm while σwas varied
from 50 to 400 nm. These parameters ranges were chosen to represent fabrication feasible
corrugation gratings.
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Within this parameter space, Ag shows the highest field enhancement among the met-
als while Pt has the least. The 785 nm modes were found to have higher field enhancement
than 633 nm modes for all the metals. Table 1 lists the A and σ values of the optimum
structure that maximizes the field enhancement at 633 nm and 785 nm, as compared to
that of the original grating geometry. The optimum structures are shallower than the
original gratings for all the metals except Al and Pt. For Pt, the corrugation amplitude has
to increase to get the maximum field enhancement, whereas the initial grating amplitude
was closer to optimum for Al. For all metals, the steepness (1/σ) was reduced by almost
1.5 times the original gratings to increase the field. The resulting average field enhance-
ments for 633nm and 785nm are 1.8× and 3.8× for Ag, 1.4× and 3.6× for Au, 1.4× and
1.3× for Al, 1.2× and 2.6× for Cu, and 1.2× and 1.3× for Pt.
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Table 1. Values of corrugation amplitude (A) and steepness factor (σ) that yield maximum field enhancement at 633 nm and
785 nm.

Original Gratings Optimized Geometry

A (nm) σ (nm) Iavg 633 nm Iavg 785 nm A (nm) σ (nm) Iavg 633 nm Iavg 785 nm

Ag 58.9 125 7.05 6.04 41.4 235 13.00 23.00

Au 58.9 125 4.37 4.85 46.2 198 5.90 17.60

Al 58.9 125 5.14 5.82 59.5 198 7.06 7.44

Cu 58.9 125 3.65 4.77 50.5 215 4.47 12.20

Pt 58.9 125 1.50 1.97 95.7 178 1.73 2.48

Figure 6 shows the absorption spectra corresponding to resonant angles at 633 nm
(blue) and 785 nm (red) for the optimum structures for each metal. The resonant field
profiles corresponding to the two wavelengths are also shown. The resonant field en-
hancement and resonant absorption improved in these structures compared to the initial
geometry. The field enhancement for 633 nm modes was lower than that of 785 nm. Ag
showed maximum field enhancement compared to other metals considered. The field was
found to be more uniformly distributed along the corrugated surface in the final structures.
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Figure 6. (top row) The absorption spectra numerically obtained from FDTD simulations (dots) and
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resonant field enhancements at 633 nm (middle row) and 785 nm (bottom row).

To compare the loss rates of the optimized structures with those of the initial gratings,
we fitted the absorption spectra with Equation (6). Figure 7 shows the radiative and
absorptive losses at resonant angles corresponding to 633 nm and 785 nm for the above-
mentioned gratings. Compared with Figure 4, we can see that tuning the geometrical
parameters will alter the losses, which subsequently influences the field enhancement. The
optimum structures have similar absorption and radiation loss rates and, thus, lie closer to
the critical coupling condition (dashed center line). However, this alone does not determine
the maximum field enhancement condition. The sum of these loss rates should be as low
as possible as well. The geometrical optimization tends to match the radiation losses with
absorptive losses. The maximum field enhancement these corrugated gratings can achieve
is found to be limited by the metal type. The gamma values for 785 nm modes are closer to
the optimum conditions required for field enhancement than the 633 nm modes, likely due
to fewer interband transitions at 785 nm. Overall, Ag works the best in terms of plasmonic
field enhancement while Pt is found to be the least optimal.
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