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Abstract: The effect of solutal Marangoni convection on flow instabilities in the presence of thermal
Marangoni convection in a Si-Ge liquid bridge with different aspect ratios As has been investigated
by three-dimensional (3D) numerical simulations under zero gravity. We consider a half-zone
model of a liquid bridge between a cold (top plane) and a hot (bottom plane) disks. The highest
Si concentration is on the top of the liquid bridge. The aspect ratio (As) drastically affects the
critical Marangoni numbers: the critical solutal Marangoni number (under small thermal Marangoni
numbers (MaT As . 1800)) has the same dependence on As as the critical thermal Marangoni number
(under small solutal Marangoni numbers (400 . MaC As . 800)), i.e., it decreases with increasing
As. The azimuthal wavenumber of the traveling wave mode increases as decreasing As, i.e., larger
azimuthal wavenumbers (m = 6, 7, 11, 12, and 13) appear for As = 0.25, and only m = 2 appears
when As is one and larger. The oscillatory modes of the hydro waves have been extracted as the
spatiotemporal structures by using dynamic mode decomposition (DMD). The present study suggests
a proper parameter region of quiescent steady flow suitable for crystal growth for smaller aspect
ratios of the liquid bridge.

Keywords: numerical simulation; dynamic mode decomposition; floating zone method; liquid bridge

1. Introduction

Semiconductor single crystals with high purity are a vital requirement for novel
optoelectronic devices in various fields of information technology. At present, the floating
zone (FZ) method is one of the most promising techniques to obtain silicon germanium
(SiGe) single crystals with superior purity. During this process, a small free melt zone
stabilized by surface tension is suspended between the polycrystalline feed rod and the
grown single crystal. The crystal growth is achieved by a relatively slow movement of
the crystal and feed rod through the molten zone. This container less configuration is
beneficial since it eliminates possible crucible contamination. However, the temperature
and concentration gradients along the free surface of the liquid bridge give rise to surface
tension gradients that can induce strong thermo-solutal Marangoni convective flows.
The compositional variations (striations) due to time-dependent Marangoni flows may
lead to inhomogeneities in the electronic properties of grown crystals and be responsible
for dislocations in grown crystals. A better understanding of the growth conditions under
thermo-solutal Marangoni convection is needed to prevent or minimize such undesirable
structural flaws.

As mentioned earlier, the FZ technique, being a container-less growth method, has the
advantage of growing high purity crystals over other crystal growth techniques. However,
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it also has challenges. First, the materials used have high melting points and are opac for
situ observations. This presents difficulties in experiments. Second, the size of the liquid
bridge is limited due to the gravity on Earth. This prevents the growth of larger crystals.
The growth of larger crystals is only possible under microgravity conditions. However, the
possibility of microgravity experiments is very rare and in addition such experiments are
very expensive. Thus, numerical simulation studies under either micro- or zero-gravity
conditions present themselves as very viable and inexpensive alternatives to study various
aspects of the FZ growth technique [1]. In these simulations, mostly the half-zone model is
adopted for computational efficiency by considering the half of the full-zone liquid bridge.
The half zone configuration is characterized by a single toroidal vortex developed between
hot and cold disks of the zone.

Literature in this area is relatively well developed. For instance, experiments and
numerical simulations (see, for instance, in [2–4]) performed with high-Prandtl-number
fluids considering pure thermal Marangoni convection showed that the flow in the liq-
uid bridge is laminar, steady, and axisymmetric for sufficiently small thermal Marangoni
numbers, but when the thermal Marangoni number exceeds a particular threshold, flow
show oscillatory three-dimensional (3D) flow patterns. For low Prandtl number fluids
(semiconductor melts), the steady flow breaks the axisymmetry and becomes a 3D-steady
flow regime (stationary bifurcation) before the onset of a 3D oscillatory flow (Hopf bifur-
cation) (see, for instance, in [5–7]). The numerical simulations [8–10] and linear stability
analysis [11] on thermo-solutal Marangoni convection in literature have shown that not
only thermal Marangoni convection, but also solutal Marangoni convection significantly
contributes to the flow structures in the liquid bridge of the FZ method. When consider-
ing the combined effects of thermal and solutal Marangoni convections for low Prandtl
number fluids, the axisymmetric steady flow bifurcates to 3D oscillatory with the absence
of a stationary bifurcation depending on the thermal and solutal Marangoni numbers
values. It is noteworthy that a recent study on the characterization of thermal and solutal
Marangoni flows of opposite directions in a SiGe liquid bridge by Jin et al. [12] has found
the coexistence of both stationary and Hopf bifurcations depending on the thermal and
solutal Marangoni numbers.

Numerical results of Lappa et al. [13] have confirmed the existence of different
behaviors of Marangoni flows exist depending on the Prandtl number and the geometrical
aspect ratio of the liquid bridge. A detailed study of the linear stability analysis for low
Prandtl number fluids by Wanschura et al. [7] has found the modes with higher azimuthal
wave numbers critical as the aspect ratio decreases. Similar relationships between the
aspect ratio of the liquid bridge and wavenumbers for high-Prandtl numbers also been
observed experimentally (see, for instance, in [14]). A parametric analysis of the influence
of the aspect ratio of the full zone can also be found in the literature [15,16]. The assumption
of the full zone model is the only way to capture in detail the mechanism of the instability
of Marangoni flow generating in the real floating zone is one of the advantages of full zone
model. They have concluded that the critical wavenumber increases if the geometrical
aspect ratio decreases but the critical Marangoni number does not change much with the
aspect ratio. However, the full zone model has a disadvantage that the temperature at the
equatorial cross section cannot be fixed due to convective and heat transfer mechanisms
establishing the temperature difference which is driving the surface flow. In the half zone
model, on the other hand, the temperature difference can be fixed by holding maximum
and minimum temperatures at the end disks. The no-slip condition imposed on the
symmetric plane at the mid-height between the rods of the real floating zone makes the
flow dynamics of the half zone model much closer to the real floating zone. Thus, the
half zone model has become a very important and computationally inexpensive paradigm
model for fundamental research.

These studies show that the geometrical aspect ratio of the liquid bridge is as critical
as the Marangoni numbers for the thermo-solutal Marangoni flow developing in the liquid
bridge. To the best of our knowledge, the dependency of flow regimes on the aspect ratio
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of the liquid bridge when the thermal and solutal Marangoni convections are coexist is still
unknown in the literature. Thus, this was the objective of the present study.

In addition to numerical simulations, the linear stability analysis (LSA), proper or-
thogonal decomposition (POD), and dynamic mode decomposition (DMD) are some useful
techniques to investigate the hydrodynamic processes. DMD is a leading technique in
analyzing the spatio-temporal flow patterns in transitional regimes. The POD extracts a
hierarchical set of orthogonal spatial modes ranked according to their contribution to the
total energy of flow modes. The POD is much suitable, therefore, for extracting the statisti-
cal structures from a complex flow. In comparison, DMD assumes physically more relevant
modes to the oscillatory growth and decay in time. DMD is an emerging data-driven
technique to obtain linear reduced-order models for high-dimensional complex systems.
In addition to linear reduced-order models, the spatial-temporal coherent structures or
patterns that dominate the observed measurement data from that dynamical system can
also be extracted by DMD. This is initially introduced in the fluid dynamics community by
Schmid [17], and it has later been connected to this nonlinear dynamical systems theory
called Koopman theory by Rowly et al. [18]. This technique comes out of the fluid me-
chanics community, but since then, DMD has been applied to a broad range of systems,
including disease modeling, neuroscience, robotics, and finance. Part of the reason for the
broad application of DMD is that it is pure data-driven and does not require any description
of underlying governing equations. It can be used as a postprocessing tool for analyzing
the spatio-temporal structures of experimental data.

3D flow structures are developing inside the liquid bridge floating zone system due
to Marangoni convection. Investigation of the flow dynamics of those structures is a vital
requirement for producing defect-free crystals. As the 3D time snapshots by numerical
simulations alone do not help to understand the hydrodynamic process, the DMD is giving
a proper understanding of the dynamical system.

The present study aims to investigate the influence of aspect ratio on thermo-solutal
Marangoni instabilities of the liquid bridge by three-dimensional numerical simulations
and also study the spatio-temporal coherent structures directly from numerical data
by DMD.

2. Numerical Method
2.1. Numerical Simulation

The model of a half-zone liquid bridge between two parallel concentric cold and
hot disks of radius a with a distance L apart (Figure 1) is adopted. The aspect ratio
of the liquid bridge is defined as As = L/a. We assumed (i) the liquid surface is non-
deformable, cylindrical, and adiabatic; (ii) the melt (a mixture of Silicon and Germanium)
is an incompressible Newtonian fluid; and (iii) the system is under zero gravity, thus the
liquid bridge keeps its cylindrical shape as we assume zero gravity.

We consider a cylindrical coordinates system (r, θ, z), and the representative length
a, velocity ν/a, temperature difference ∆T, concentration difference ∆C (between top and
bottom walls), and time a2/ν, where ν(= µ/ρ) denotes the kinematic viscosity given
in terms of melt density ρ and melt viscosity µ. Then, we obtain the non-dimensional
governing equations of the melt from the overall conservation of mass, the balance of
momentum, the balance of energy, and the conservation of species mass,

∇ · u = 0 (1)
∂u
∂t

+ u ·∇u = −∇p +∇2u (2)

∂T
∂t

+ u ·∇T =
1

Pr
∇2T (3)

∂C
∂t

+ u ·∇C =
1
Sc
∇2C (4)
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where the coordinates (r, θ, z) and time t are, hereafter, nondimensional, and u = (ur, uθ , uz),
p, T, and C denote the dimensionless flow velocity, pressure, temperature, and silicon
concentration, respectively. The associated Schmidt and Prandtl numbers are defined
by Sc = ν/D and Pr = ν/α, where α and D represent, respectively, the melt thermal
diffusivity and the diffusion coefficient of Si in the melt.

The boundary conditions on the walls are non-slip (u = 0) for flow velocity compo-
nents, the top cold disk surface (z = As) has T = 0 and C = CSi = 1, the bottom hot disk
surface (z = 0) has T = 1 and C = 0. The conditions for the free surface at r = 1 are

ur = 0 (5)

r
∂

∂r

(uθ

r

)
=

1
r

(
MaT

∂T
∂θ

+ MaC
∂C
∂θ

)
(6)

∂uz

∂r
=

(
MaT

∂T
∂z

+ MaC
∂C
∂z

)
(7)

∂T
∂r

= 0,
∂C
∂r

= 0 (8)

Here, we choose the same definition of the thermal and solutal Marangoni numbers
as in the literature [6,19] MaT and MaC which, respectively, represent the magnitude of
the surface tension due to the temperature and concentration gradients relative to the
viscous force,

MaT = −σT
∆Ta
µν

, MaC = σC
∆Ca
µν

, (9)

where σT and σC denote the surface tension coefficients of the temperature and concentra-
tion fields, respectively. As shown in Figure 1, the directions of Marangoni forces along the
free surface are the same direction in the present study.

The grid resolution used in the present study is Nr × Nθ × Nz = 40× 40× 60 and
the details of the nonuniform grid refinement, numerical schemes, and the validation
of transient OpenFOAM solver can be found in our previous study [20]. The physical
properties of SixGe1−x liquid bridge are from Abbasog et al. [21]: the kinematic viscosity
ν = 1.4× 10−7 m2/s, the thermal diffusivity α = 2.2× 10−5 m2/s, the diffusion coefficient
D = 1.0× 10−8 m2/s, which corresponds to Pr = 6.37× 10−3 and Sc = 14.

Figure 1. Geometry of a half zone liquid bridge system. The dashed arrows represent the direction of
Marangoni force driven by temperature and concentration gradients along the free surface. Note that
the top/bottom temperature and concentration values are dimensionless defined with respect to the
differences of ∆T and ∆C.

2.2. Dynamic Mode Decomposition (DMD)

Dynamic mode decomposition essentially gives a coupled system of spatial temporal
modes, and it was recently used to extract an approximate periodic system from unknown
data samples. The Marangoni convection along the free surface of the liquid bridge gives
rise to the development of periodic flow structures and DMD is useful to analyze the
dynamical behavior of such structures.
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A temporal sequence of data snapshots from numerical simulation are given by a
matrix XN

1 ,
XN

1 = {x1, x2, x3, ..., xN} (10)

where xi denotes the i-th flow field (N = 1, 2, 3, ..., N). A constant sampling time ∆t of the
data sequence is chosen according to the Nyquist criterion (see in [17] for details). A linear
mapping A between a flow field xi and the subsequent flow field xi+1 is

xi+1 = Axi (11)

which is considered as a linear approximation of solving the governing equations. The
dynamic characteristics of the system is given by the eigenvalues and eigenvectors of the
matrix A. Furthermore, Equation (11) can be written in the matrix form

XN
2 = AXN−1

1 + reT
N−1 (12)

where r is the residual vector and eN−1 ∈ RN−1. The singular value decomposition (SVD)
is applied since SVD is robust to numerical errors and noises in the data. Substituting the
SVD of XN−1

1 (= UΣW H) into Equation (12), then

UH AU = UHXN
2 WΣ−1 ≡ Ã (13)

with U contains the proper orthogonal modes of XN−1
1 . As the A related to Ã via a

similarity transformation, the dynamic modes Φi can be expressed as

Φi = Uyi (14)

where yi is the i-th eigenvector of Ã, i.e., Ãyi = µiyi. The logarithmic transform of µi,

λi = log(µi)/∆t (15)

represents the stability of extracted dynamics oscillatory mode, where, the real part of
the eigenvalues, <[λ], represents the growth/decay rate, and the imaginary part, =[λ],
represents the frequency (wavelength) of each mode. For each case, 250 snapshots of the
instantaneous concentration fields with a sampling rate ∆t = 2 were processed in the
present study using the DMD algorithm.

3. Results and Discussion

The flow diagram (MaC, MaT) for three different aspect ratios As = 0.25, As = 0.5,
and As = 1 are summarized in Figure 2, including the previous DNS results of Mi-
nakuchi et al. [22] for As = 0.5. The results indicate that, when MaT and MaC are suffi-
ciently small, the flow in the liquid bridge is steady and axisymmetric (m = 0). When MaT
as well as MaC are larger, the flow becomes 3D oscillatory or 3D steady depending on the
aspect ratio of the liquid bridge.

3.1. Critical MaC at Small Thermal Marangoni Numbers, MaT ≤ 1800A−1
s

Present simulations have revealed that, at relatively small MaT ≤ 1800A−1
s , all the

primary bifurcations are from steady axisymmetric flows to 3D rotating oscillatory patterns
as shown in the flow maps in Figure 2. This direct transition from an axisymmetric steady
to a 3D time-dependent flow has been reported in many numerical works [3,4] for high-Pr
number fluids. In this study, due to high-Sc number, the primary bifurcation corresponds
to the one of high-Pr number fluids. On the other hand, the Marangoni flow of low-Pr
number fluids becomes oscillatory via a 3D steady flow when considering pure thermal
Marangoni convection [5,19].

For a shorter liquid bridge, As = 0.25, when MaC increases, m-fold symmetric struc-
tures for concentration distributions in the middle plane as in Figure 3a,c, and the azimuthal
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wavenumbers are m = 11, 12, and 13 depending on MaT. The azimuthal wavenumbers
m = 4, 5, 6, and 7 dependent on MaT have been reported by Minakuchi et al. [22] at
As = 0.5. Figure 4 depicted that the azimuthal wavenumber of oscillatory modes dras-
tically decreases as the aspect ratio increased. The high-frequency wave mode appears,
because there is not enough space for the large circulation in the liquid bridge for a flatter
aspect ratio. According to Lappa et al. [15], in the case of a short liquid zone, Marangoni
convection (known as surface phenomena) is confined to a region near the free surface
which prevents the coalescence of the opposite convection cell. Thus, several layers of
vortices emergence by continuity in the interior of the liquid bridge which leads to the
occurrence of the traveling waves with high frequency. A similar dependence of azimuthal
wave numbers of oscillatory modes (m) on As has been observed in previous studies in
the case of pure thermal Marangoni convection [6]. The relationship between m and As
obtained from the present study is of a roughly constant value, mAs = 2.0–2.75 (Figure 4).
This range is consistent with those obtained by Chen et al. [6] for the Pr = 0.02 fluid with
0.4 ≤ As ≤ 2.0, and is also in good agreement with those obtained by Wanschura et al. [7]
especially in the present range, 0.5 ≤ As ≤ 1.3. It is evident that mAs becomes nearly
constant when the aspect ratios are relatively smaller than As = 1. The present results also
suggest that solutal Marangoni convection does not affect the azimuthal wavenumber of
oscillatory modes at small MaT ≤ 1800A−1

s .
In the region, MaT ≤ 1800A−1

s , the critical values, MaC,Cri, are dependent on the
aspect ratio of the liquid bridge. Figure 5a shows an detailed example at MaT = 0
and MaT = 1400. The MaC,Cri decreases with As, which dependency of MaC,Cri on As
corresponds to the results of pure thermal Marangoni convection for a high-Pr number
(Pr = 1) fluids [3] shown in Figure 5b as dashed line.

According to Chun et al. [23], instability mechanism for low-Pr number fluids is not
based on the amplification of temperature disturbance because of high thermal diffusivity
leads to spread out any possible disturbance over the liquid bridge. In the present study,
due to high-Sc number, a concentration disturbance leads to a disturbance of the concen-
tration gradient and thus to a surface tension gradient that triggers a distortion on the
velocity field. The distortion of the velocity induces distortion of the concentration field.
This coupling mechanism is responsible for the growth or decay of the initial concentration
disturbance. Thus, the instability mechanism emerged as hydrosolutal in nature.

The frequency spectrum of the time-dependent concentration at a sampling point
of (r, θ, z) = (0.75, 0, 0.5As) when (MaT, MaC) = (9100, 3572) in Figure 6 shows that the
azimuthal traveling waves are associated with harmonics of their fundamental frequencies.
The dynamic mode decomposition results are used to determine fundamental frequencies
of azimuthal traveling waves developed in the liquid bridge. Representative dynamic
modes for As = 0.25 are displayed in Figure 7 using the concentration field in the middle
plane (z = 0.5As); their respective eigenvalues and calculated frequencies are given in Case
(i) of Table 1. The calculated time periods from DMD for As = 0.25 show good agreements
with the time periods of the concentration at the sampling point of (r, θ, z) = (0.75, 0, 0.5As)
as show in Figure 8.
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Figure 2. Flow map, (MaT, MaC) for (a) As = 0.25, (b) As = 0.5 (Minakuchi et al. [22]), and
(c) As = 1. The different symbols represent the wavenumbers of oscillatory modes. The dashed lines
represent MaT,Cri = 3150A−1

s (400 < MaC As < 800), roughly indicating the critical value.

(a) (b) (c) (d) (e)

Figure 3. The non-dimensional concentration distributions in the middle plane (z = 0.5As) for
As = 0.25 of DNS: (MaT, MaC) = (a) (2100, 3572), (b) (1400, 3572), (c) (9100, 3572), (d) (14000, 1786),
and (e) (13300, 1786).
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Figure 4. The azimuthal wavenumbers of the bifurcated oscillatory modes (m) as a function of the
aspect ratio of the liquid bridge.
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Figure 5. (a) Dependency of critical solutal Marangoni numbers, MaC,Cri, on the aspect ratio of the
liquid bridge. The lines are the stability curves: MaT = 0 and MaT = 1400. (b) Critical thermal
Marangoni number MaT,Cri as a function of As: ——, Present (at MaC = 714 and Pr = 0.006);
— ·—, Present (at MaC = 0 and Pr = 0.006); · · · · ··, Imaishi et al. [19] (MaC = 0, Pr = 0); – – – –,
Yasuhiro et al. [3] (MaC = 0, Pr = 1). The different symbols represent the wavenumbers of
oscillatory modes.
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Figure 6. The time evolution of the non-dimensional concentration for As = 0.25 at the sam-
pling point of (r, θ, z) = (0.75, 0, 0.5As) when (MaT, MaC) = (9100, 3572) (a) and the frequency
spectrum (b).
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(a) (b) (c) (d) (e)

Figure 7. Representative dynamic modes corresponding to the primary dominant eigenvalues,
visualized by contours of the concentration field in the middle plane (z = 0.5As) for a flat liquid
bridge, As = 0.25: (MaT, MaC) = (a) (2100, 3572), (b) (1400, 3572), (c) (9100, 3572), (d) (14000, 1786),
and (e) (13300, 1786).

Table 1. The dominant eigenvalues obtained from DMD and non-dimensional frequencies ((i) at
As = 0.25 and (ii) at As = 1).

Case As MaT MaC Eigenvalue (λ1) Frequency m

(i) 0.25 14000 1786 0.0002 ± 0.1719i 19 6
13300 1786 0.0002 ± 0.2936i 33 7
2100 3572 0.0052 ± 0.4877i 55 11
1400 3572 0.0219 ± 0.4468i 50 12
9100 3572 0.00006 ± 1.0629i 120 13

(ii) 1 3150 1490 0.006 ± 0.0545i 6.19 2
3150 1786 0.0032 ± 0.0556i 6.32 2

0.60 0.62 0.64 0.66 0.68 0.70
t

0.60

0.65

0.70

0.75

0.80

0.85

Co
nc

en
tra

tio
n

(MaT,MaC,m)=(14000,1786,6)
(MaT,MaC,m)=(13300,1786,7)
(MaT,MaC,m)=(2100,3572,11)
(MaT,MaC,m)=(1400,3572,12)
(MaT,MaC,m)=(9100,3572,13)

Figure 8. The time evolution of the non-dimensional concentration for As = 0.25 at the sampling
point of (r, θ, z) = (0.75, 0, 0.5As).

3.2. Critical MaT under a Weak Solutal Marangoni Convection

When MaC ≤ 700A−1
s as MaT increases, the axisymmetric steady flow becomes 3D

oscillatory for shorter liquid bridges (As = 0.25 and 0.5). We note that the flow transition
for a long liquid bridge (As = 1) is from axisymmetric steady (Figure 9a) to 3D steady
(Figure 9b). The critical thermal Marangoni number MaT,Cri decreases with the aspect ratio
of the liquid bridge and a similar trend can be observed for the results of pure thermal
Marangoni convection by Imaishi et al. [19] as shown in Figure 5b. Under the presence
of weak solutal Marangoni convection, the critical thermal Marangoni number is roughly
MaT,Cri As ≈ 3200 at the small solutal Marangoni numbers, 400 . MaC As . 800, as shown
by the dashed lines in Figure 2a,c.
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The higher azimuthal wave numbers (m = 6 in Figure 3d and m = 7 in Figure 3e) are
observed for a short liquid bridge (As = 0.25) as MaT increases due to the limited space
inside the liquid bridge, therefore the characteristic length for As . 1 is the height of the
liquid bridge L.

Figure 3 shows that the flow patterns with m = 6 and 7 do not distinctly appear
compared to m = 11 and 12. This observation is confirmed by Figure 8 as the concentration
values corresponding to m = 11 and 12 are relatively higher than those corresponding to
m = 6 and 7. Figure 10 shows the representative dynamic modes (m = 6) corresponding
to second leading eigenvalues (λ2) for (MaT, MaC) = (13,300, 1786), (13,300, 2144), and
(13,300, 2500) at As = 0.25. For these three cases, dynamic modes corresponding to
dominant eigenvalues (λ1) are shown m = 7 (see Figure 7e). It is concluded that the
azimuthal traveling waves of m = 6 (passively) and m = 7 are superimposed when
(MaT, MaC) = (13,300, 1786), (13,300, 2144), and (13,300, 2500).

For As = 1, when MaC ≥ 1250 as MaT increases, after a certain threshold, the steady
axisymmetric flow departs to rotating oscillatory flow with m = 2 (Figure 9c), and eventu-
ally, the flow becomes 3D steady (Figure 9b) while the azimuthal wavenumber remains
unchanged if MaT further increases. The extracted spatio-temporal coherent structures
(Figure 11) and respective frequencies (case(ii) of Table 1) of traveling waves associated
with rotating oscillatory flow regime are computed by DMD. The non-dimensional con-
centration with respect time calculated by DNS for (MaT, MaC) = (3150, 1490) and (1350,
1786) in rotating oscillatory flow regime at the sampling point of (r, θ, z) = (0.5, 0, 0.5As)
and As = 1 is presented in Figure 12. The frequencies of traveling waves are close each
other when (MaT, MaC) = (3150, 1490) and (3150, 1786) even though MaC increased.

(a) (b) (c)

Figure 9. The non-dimensional concentration distributions in the middle plane (at z = 0.5As and
As = 1) of DNS: (MaT, MaC) = (a) (1050, 1786), (b) (3500, 1786), and (c) (3150,1786).

(a) (b) (c)

Figure 10. Representative dynamic modes corresponding to the second leading eigenvalues, visual-
ized by contours of the concentration field in the middle plane (at z = 0.5As and As = 0.25): (MaT,
MaC, λ2) = (a) (13,300, 1784, 0.00005 ± 0.2764i), (b) (13,300, 2144, −0.0029 ± 0.3518i), and (c) (13,300,
2500, −0.0006 ± 0.3351i).
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(a) (b)

Figure 11. The non-dimensional concentration distributions in the middle plane at z = 0.5As

obtained DMD analysis for As = 1: (MaT, MaC) = (a) (3150, 1490) and (b) (3150, 1786).
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Figure 12. The time variation of the non-dimensional concentration for As = 1 at the sampling point
of (r, θ, z) = (0.5, 0, 0.5As).

4. Conclusions

The dependency of flow regimes of thermo-solutal Marangoni convection in the half-
zone liquid bridge on aspect ratios (As) has been investigated using three-dimensional
numerical simulations under zero-gravity. The dependency of MaC,cri on As for weak
solutal Marangoni convection is in good agreement with the previous results of the case
of pure thermal Marangoni convection for high-Pr number fluids. MaT,Cri values are
decreased as As increases, which is similar to the previous results for the case of pure
thermal Marangoni convection. From our results, for a short liquid bridge (As ≤ 1), the
critical MaT,Cri As in the case of a weak solutal Marangoni convection is roughly constant
3200. The Marangoni convection is limited by the height of the liquid bridge which
determines the characteristic length of the Marangoni convection that becomes comparable
to the radius with increasing As (the flow behavior changes at As ≈ 1), consistent with
the previous analysis of the pure thermal Marangoni convection in tall liquid bridges
with As & 1.

The flow pattern in the flat liquid bridge is analyzed by dynamic mode decomposition
(DMD). The azimuthal wavenumbers of oscillatory modes are increased when the aspect
ratio of the liquid bridge gets smaller. From our results, mAs ≈ 2.0–2.75 is obtained, which
is a similar relationship obtained in previous studies in the case of pure thermal Marangoni
convection. The azimuthal wavenumbers of oscillatory modes are insusceptible of solutal
Marangoni convection.
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