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Abstract: Heat treatment processing is commonly applied for additively manufactured metal mate-
rials, since the as-fabricated material frequently exhibits high internal stress and self-cracking. In
this work, a heat treatment route was applied to an additively manufactured Ti-6Al-4V alloy, and
its effect on the dynamic compressive behavior was investigated. The experimental results showed
that the heat treatment process not only increased the dynamic compressive strength of the material,
but also induced a change of the dynamic compressive strength from isotropic to anisotropic. In
addition, the strain rate sensitivity of the material was reduced by heat treatment, even though
both the as-deposited and heat-treated samples demonstrated positive sensitivity to the loading rate.
Microstructural analysis suggested that the grain size and morphology were the same before and
after heat treatment, while the internal stress increased due to heat treatment.

Keywords: laser solid forming (LSF); additive manufacturing; dynamic properties; strain rate
sensitivity; anisotropy

1. Introduction

Three-dimensional printing is a breakthrough technique and is now widely used to
manufacture complex structures that can hardly be produced with traditional techniques.
In comparison with traditional technologies, 3D printing or laser deposition additive man-
ufacturing is characterized by high flexibility and short production cycle and is especially
suitable for complex-shaped components. Therefore, it has been widely used in many
fields including automobile and aerospace industries [1–3]. Due to the rapid cooling
and solidification characteristics of laser additive manufacturing, the microstructure of
as-deposited samples consists of Widmanstätten α laths and a little acicular columnar
prior-β grains, which grow epitaxially from the substrate along the deposition direction.
The lattice structure is characterized by high strength and low plasticity. In addition,
the heat treatment processing is used for additively manufactured (AM) components to
advance mechanical properties. The author’s previous research results show that α laths
precipitate from the original β grain boundary after heat treatment and that they coarsen
within the grain, which contributes to the improvement of plasticity [4]. Although research
on processing–microstructure–properties is widely reported, there are few reports on the
dynamic properties of AM alloys, especially on AM alloys after heat treatment process-
ing. Previous studies showed that Ti alloys have a remarkable dependency on loading
conditions in terms of the mechanical behavior and failure mode [4–7]. For example,
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an adiabatic shear banding failure mode is more likely to occur under high strain rate
loading than under low strain rate loading [6]. It has been revealed that the strain rate
dependency is naturally related to deformation mechanisms or further to microstructures.
Ahmed et al. [8] reported that the activation of deformation-induced phase transformation
and twinning is strongly dependent on strain rate. Deformation twinning especially has
long been reported in metals of hexagonal close-packed structures and is found to be
strongly strain rate-sensitive [9–11]. Furthermore, it is known from former reports that
additively manufactured alloys show quite different microstructures from those processed
by traditional technology [12–15], implying that AM alloys may have a different strain rate
sensitivity as regards deformation mechanisms, mechanical properties and failure modes.
Besides, this issue is very important for structural materials that are intended to be used
in high-speed vehicles such as high-speed trains and space shuttles. In the present study,
a heat treatment process was applied to an AM Ti-6Al-4V alloy to study its effect on the
dynamic behavior and strain rate dependency of the materials.

2. Materials and Methods
2.1. Preparation of Materials

Commercial Ti-6Al-4V powders with a diameter of 80–120 µm were used as initial
materials. A block with dimensions of 40 mm (length) × 40 mm (width) × 15 mm (height)
was produced via 3D laser deposition additive manufacturing using an LSF-I laser solid
forming system that consists of a 5 kW ROFIN-SINA 850 continuous wave CO2 laser
(Rofin AG, Berzeliusstraße, Hamburg, Germany), a 5-axis numerical control working
table, a lateral powder feeder nozzle and an inert gas chamber filled with pure argon
with the oxygen content below 50 ppm. The detailed processing parameters are shown in
Table 1. It is worth mentioning that to reduce moisture, the original powders were dried
at a temperature of 393 K in a vacuum environment for 2 h before the manufacturing
process. A forged pure Ti-6Al-4V plate with dimensions of 110 × 40 × 6 mm3 was
used as a substrate for the Laser Additive manufacturing (LAM) process, which was
grounded with the SiC paper and then degreased with acetone and ethanol before use. A
photograph of the fabricated block is shown in Figure 1a. A solution aging heat treatment
process at 950 ◦C × 1.5 h/air cooling + 600 ◦C × 1 h/air cooling was then applied to the
as-deposited sample.
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Laser 
Power (W) 

Speed of Scan-
ning (mm/s) 

Powder Feed-
ing (g/min) 

Shielding Gas 
Flow Rate (L/h) 

Spot Diame-
ter (mm) 

Overlap-
ping (%) 

Increment of 
the Z-axis (mm) 

2500 5 6 200 3 40 0.3 

 
Figure 1. Image (a) demonstrates an as-deposited AM Ti-6Al-4V alloy (the arrow indicates the
direction in which the powder feeding nozzle moves), while image (b) illustrates the definition of
sample faces and loading directions schematically.
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Table 1. Forming processing parameters.

Laser Power
(W)

Speed of
Scanning

(mm/s)

Powder
Feeding
(g/min)

Shielding Gas
Flow Rate (L/h)

Spot Diameter
(mm)

Overlapping
(%)

Increment of
the Z-axis

(mm)

2500 5 6 200 3 40 0.3

2.2. Microstructure Characterization

The microstructures of as-deposited samples were characterized along the top, front
and side faces using an optical microscope, as shown in Figure 1b, where the sample
surfaces were first mechanically polished with Grit 7000 sandpaper and then finished by
etching using a solution composed of 2 mL HF, 6 mL HNO3 and 100 mL H2O. Electron
backscatter diffractor (EBSD) attached to a scanning electron microscope (SEM, Zeiss
Supra55, Carl Zeiss AG, Göschwitzer, Jena, Germany) was also used to examine the
microstructures of as-deposited and heat-treated samples. Before EBSD scanning, the
specimens were electrochemically polished using a solution of 8% perchloric acid and 92%
ethanol, at 28 V, 40 s and 20 ◦C after mechanical polishing. The EBSD was performed in
the following conditions: an acceleration voltage of 20 KV and a step size of 0.5 µm. The
results were processed using the HKL Technologies Channel 5 software.

2.3. Mechanical Testing

The dynamic mechanical properties of the samples before and after heat treatment
were evaluated on a desktop split-Hopkinson pressure bar (SHPB) (self-made by Shaanxi
Key Laboratory of Impact Dynamic and Its Engineering Application, Xi’an, China) with
two strain rates, 500 s−1 and 3000 s−1, under compression loading. The compression tests
were performed along both longitudinal (L) and transverse (T) directions, as shown in
Figure 1b. The samples have a cylindrical shape with dimensions of Ø 5 mm × 5 mm. To
ensure reproductivity, at least three repetitive tests were performed for each condition.

3. Results and Discussion

Figure 2a–c display the optical images of the as-deposited sample along top, side and
front faces, while Figure 2d presents the microstructure in a 3D view. Figure 3a–c display
the optical images of the heat-treated sample. Columnar prior-beta grains with an average
grain width of 300 µm are clearly observed due to epitaxial growth from bottom to top.
There is no significant change in the beta grain size after heat treatment. Furthermore, fine
needle grains are visible within the columnar grains. The needle grains have been widely
reported for additively manufactured Ti-6Al-4V alloys as the α’ martensite phase [16]. From
the optical images, it is easy to understand that the large grains of hundred microns were
originally beta-phase grains that grew along the deposition direction. As heat disperses
very quickly in metals, the beta-phase grains transferred into alpha needles but main-
tained their shape. That is why needle grains were observed within the columnar grains.
Laser-induced phase transition is the way of laser irradiation, so that the temperature of
the phase-change material increases due to the absorption of heat, and phase transition
is observed above the phase transition temperature. The laser additive manufacturing
process uses a high-energy laser beam as a moving heat source, synchronously melting
the metal powder. This microstructure is formed by rapid solidification. In the remelting
process, the microstructure of the previous layer is reheated and cooled, the mechanism of
microstructure formation is related to the laser-induced phase transition. It is necessary
to mention that β-phase grains are merely observed in the samples before and after heat
treatment, as shown in Figure 4a,b. The phase distribution map in Figure 4e,f also shows
that most of the observations were beta phases. This result is in accordance with the
previous report [16]. In particular, it is visible, for example, in micrographs in Figure 2b–d
that some of the grains of eutectoid colonies (appearing grey) are separated from each
other by the layers of the phase appearing white. Such behavior of the grain boundary
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phase is intimately connected with the so called complete and incomplete wetting of grain
boundaries by the second solid phase. The morphology of the integranular phase strongly
influences the overall mechanical properties of a polycrystalline composite [17]. A reason
for the difference might be due to the microstructure evolution with grain boundary wet-
ting phase transformation of the α allotriomorph during the β→ α phase transformation
in the Ti-6Al-4V alloy during heat treatment (Figure 4b). This will be further studied. By
comparing the EBSD images, it can be seen that the grain morphology hardly changes
after heat treatment. The conclusion is also supported by the α lath size spread diagram.
The results of XRD are also consistent with these results in Figure 5b. As can be seen
from the XRD diffraction spectrum, the volume fraction of alpha phases increased after
heat treatment.
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Figure 2. (a–c) show optical images of the as-deposited Ti-6Al-4V alloy from the top, side and front
view, respectively. Image (d) shows a 3D view of the microstructure of the as-deposited sample.

In Figure 5 one can observe that the α lath size spread is quite similar for both of the
samples. It is clear that for both samples, the majority of the grains are around 10 µm, with
an average grain aspect ratio of ~0.25, which, in other words, has an equivalent thickness of
~5 µm for the acicular α phases. This is reasonable that the static air cooling rate has been
reported to be less than 20 ◦C/s [18], which could produce an α-plate thickness of a few
microns in accordance with previous studies [19,20]. Gupta et al. [19] also reported that at
such a cooling rate, extremely fine β-precipitates remain. Yet, there is no evidence. This
also explains why there was a limited β-phase region observed in our materials. Despite
the same grain morphology, the analysis of grain average misorientation (GAM) suggests
that the GAM value increases after heat treatment in the sample, as shown in Figure 4c,d.
It can be seen that Figure 4d demonstrates a higher GAM in comparison to Figure 4c. The
result suggests that higher strain or internal stress or higher dislocation density presents
in the heat-treated sample in comparison to the as-deposited one. This is very confusing
as normally the additive manufactured alloys show much higher internal stress than the
annealed ones, which therefore accounts for the cracking that occurs occasionally during 3D
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printing. The contrary result revealed here is still unclear and deserves further investigation.
On the other hand, although the underlying mechanism of yielding higher GAM values in
the heat-treated sample is unknown, its effect on the compressive strength was studied
under dynamic loading.
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The mechanical testing results are shown in Figure 6. In order to contrast the reliability
of the results, the representative parameters directly originating from the experimental
results were chosen. In addition, the results of each condition have high repeatability. It can
be seen that heat treatment had a great influence on the dynamic behavior of the samples.
First, in all cases, the heat-treated sample exhibited a higher compressive strength than the
as-deposited one. This is in accordance with the microstructural results that the heat-treated
sample has a higher internal stress than the as-deposited sample, while their grain size
and morphology are, however, quite similar. Second, the as-deposited sample exhibited
isotropic behavior along the L and T directions at both loading rates, while on the other
hand the heat-treated sample exhibited anisotropic behavior instead, i.e., the compressive
strengths along the L direction became visibly higher than those along the T direction after
heat treatment. Using the true stress-strain curves, we could also estimate the strength
discrepancy between the T and L loading directions, which was ~50 MPa at 500 s−1 and
~130 MPa at 3000 s−1. Considering the loading rates, the values of strain rate sensitivity
(SRS) at an offset strain of 3% were calculated for both samples. For the original sample, the
value was estimated to be around 0.051, while for the heat-treated sample, the values were
about 0.013 and 0.029 for the T and L directions, respectively. This suggests that the rate
sensitivity of the material reduces after heat treatment. Previous studies proved that for Ti
alloys, the SRS value decreases with increasing plastic strain [21]. Considering the higher
GAM values observed in the heat-treated sample than in the as-deposited sample, the
reduced SRS values are reasonable. Yet, the anisotropic behavior induced by heat treatment
still needs further investigation.
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Phase distribution maps for (e) as-deposited and (f) heat-treated samples.
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(b,d) indicate the strain rate is 500/s, 3000/s for the heat-treated, respectively.

4. Conclusions

In this work, the heat treatment effect on the dynamic compressive behavior of addi-
tively manufactured Ti-6Al-4V alloy was studied, and the following conclusions were ob-
tained.

(1) The grain structure was similar before and after heat treatment; however, higher
internal stress was induced in the heat-treated sample.
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(2) The dynamic compressive strength was increased by the heat treatment process
for the 3D-printed material, accompanying a change of the strength from isotropic
to anisotropic.

(3) Both the as-deposited and the heat-treated samples exhibited their compressive
strengths positively sensitive to the loading rate, while the heat treatment reduced
the strain rate sensitivity.
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