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The Special Issue, entitled Directed Surface Plasmon Resonance for Hot Carrier Applications,
is a collection of four original articles centered around harnessing energetically “hot”
carriers in tailored plasmonic materials for emergent applications in energy harvesting
and sensing.

Non-radiative damping of plasmonic resonances was long thought to be a parasitic
limitation to the realization of many plasmon-based technologies. Advances in our con-
ceptual understanding, synthesis capabilities, and instrumentation over the last decade
elicited renewed interest in using electrical or chemical probes to extract plasmonic, energet-
ically “hot” carriers prior to their thermalization as a means to drive new photodetection
and photochemistry concepts. The realization of these concepts for new technologies
necessitates advances in our theoretical infrastructure for the design and optimization of
nanoplasmonic materials/morphologies, their associated synthesis techniques, and novel
spectroscopies with enhanced spatiotemporal resolution to better understand the dynamic
behavior of plasmonic “hot” carriers. Envisioned integration spaces span optoelectronic
telecommunication, high-density data storage, chemical catalysis, novel manufacturing
methods, energy scavenging, therapeutic and diagnostic medicine, heat management, and
uncooled infrared photodetectors.

The thematic cornerstones of this Special Issue were computational and empirical
design optimization of nanomaterials with directed plasmonic activity towards solar
photocatalysis and infrared photodetection. Aravind et al. [1] leveraged iterative finite
difference time domain (FDTD) simulations and coupled mode theory to optimize the
electric field enhancement, and thereby the generation rate of “hot” electrons, at the
surface of corrugated metal gratings for visible photochemistry. Sarma et al. [2] used an
artificial intelligence (Al) inverse design approach to experimentally realize near-perfect
absorption for “hot” carrier generation on a meta-surface at telecommunication wavelength.
Experimental photooxidation demonstrations using nanoplasmonic catalysts, along with
their respective empirical optimizations complemented by numerical calculations, are
reported in [3,4] by Gordon et al. and Boltersdorf et al., respectively.

The authors hope that this collection of papers will provide inspiration towards new
experiments, insights, and conceptual applications in the field of “hot” carrier plasmonics.
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