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Abstract: In recent years, time of flight-secondary ion mass spectrometer (ToF-SIMS) has been widely
employed to acquire surface information of materials. Here, we investigated the alloy surface by
combining the mass spectra and 2D mapping images of ToF-SIMS. We found by surprise that these
two results seem to be inconsistent with each other. Therefore, other surface characteristic tools
such as SEM-EDS were further used to provide additional supports. The results indicated that such
differences may originate from the variance of secondary ion yields, which might be affected by
crystal orientation.

Keywords: ToF-SIMS; alloy; component distribution; crystal orientation; 2D mapping image

1. Introduction

The rapid development of advanced experimental methods has made surface analysis
a popular research topic. Obtaining the surface/interface information of materials/devices
is extremely important, as the quality of surface/interface could directly determine the ma-
terial/device performance. Solar cells based on hybrid perovskite have been considered as
one of the most promising candidates for next generation of photovoltaics [1–3]. However,
perovskite solar cells exhibited instability problems even under encapsulation [4–7], i.e., the
surface of function layer began to degrade within only hundreds of hours, which limited
their practical applications. To resolve this, understanding the degradation mechanism at
the surface and improving its stability become imperative and important [8,9]. Moreover, in
the battery research, investigating the surface components of cathodes or electrodes could
provide kinetic information about the charging/discharging process [10,11], which may
help with improving the cell efficiency and developing new materials for batteries. Surface
analysis has also been applied into other fields including bioelectronics [12], polymers [13],
catalysts [14–16], etc.

Nowadays, X-ray photoelectron spectroscopy (XPS) and ToF-SIMS have been consid-
ered as the two most powerful tools to probe surface characteristics of different materials.
The working principle of XPS is quite straightforward, where the sample is bombarded
by X-rays to emit photoelectrons. The binding energy of the photoelectron could then
be determined by subtracting its kinetic energy from the total energy [17]. The working
principle of ToF-SIMS is also complicated. Typically, a pulsed primary ion beam is em-
ployed to bombard the sample surface, which leads to the yields of positive and negative
second ions. These secondary ions are then collected into the analyzer by applying high
voltage potential and their mass is determined by measuring their time of flight from the
sample to the detector [17,18]. The ion mass and 2D imaging could thus be obtained to

Crystals 2021, 11, 1465. https://doi.org/10.3390/cryst11121465 https://www.mdpi.com/journal/crystals

https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-3907-7956
https://orcid.org/0000-0002-3608-4088
https://orcid.org/0000-0003-0833-1982
https://doi.org/10.3390/cryst11121465
https://doi.org/10.3390/cryst11121465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11121465
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst11121465?type=check_update&version=1


Crystals 2021, 11, 1465 2 of 9

probe the component and its distribution at the surface of the sample [19,20]. In addition,
the excellent sensitivity [17], variable depth probing [21], high spatial resolution and mass
range [22] further make ToF-SIMS a popular technique to acquire surface information of
materials. In recent years, ToF-SIMS has been widely employed in nano- and bio-materials
to investigate their surface and bulk properties [20,22–28]. In contrast, employing the
mass spectra and 2D mapping to analyze the alloy surface has been rarely reported [19,29],
which needs to be investigated.

It is, therefore, the purpose of the current report, to investigate the alloy surface
characteristics by combining the mass spectra and 2D mapping functions of ToF-SIMS.
Both surface components and their spatial distribution could be evaluated. In addition,
various regions of interest (ROI) were selected and extracted to compare their compositional
difference. However, the results obtained from the mass spectrum, which suggested there
is no obvious difference of composition among ROIs, seems to be contradictory with
the mapping images. To reveal its reason, SEM-EDS was further conducted, and the
results indicated an even distribution of all elements, corresponding well with the mass
spectrum. Such phenomenon could be ascribed to their various crystal orientations, which
might induce different ion yields of secondary ions, thereby appearing color differences in
mapping of various crystals. This work may expand the application of ToF-SIMS to other
fields such as probing the sample crystal orientation.

2. Materials and Methods
2.1. Materials

254. SMO austenitic stainless steel (batch: 00Cr20Ni18Mo6CuN) (Jiangsu Haixin steel
Inc., Taizhou, China). The specimen was polished with 2000 grit mesh and then electrically
polished by the twin-jet electropolishing method in a solution of 5% perchloric acid. Before
EDS and ToF-SIMS measurements, sputtering was performed to clean the sample surface.
The cleaning was conducted using a 3 kV 100 nA Argon gas beam (area: 600 µm × 600 µm;
time: 2 min).

2.2. Characterizations

The scanning electron microscopy (SEM) measurements were carried out on a Regulus
8230 instrument (Hitachi Inc., Naka, Ibaraki, Japan) with EDS function. X-ray diffraction
(XRD) patterns were obtained using a Rigaku Smartlab diffractometer with Cu Kα as the
X-ray source. ToF-SIMS measurements were conducted with a PHI nano ToF II (ULVAC-
PHI Inc., Chigasaki, Kanagawa, Japan), where a 30 kV Bi+ pulsed primary ion beam was
used for analysis.

3. Results
3.1. XRD

The crystal structure of the alloy sample was investigated by XRD measurements.
As shown in Figure 1, the alloy crystallized into a face-centered cubic (FCC) structure.
The diffraction peaks could be assigned to (111), (200), (220) and (311) planes of austenite,
respectively, as confirmed by its corresponding Joint Committee on Powder Diffraction
Standards (JCPDS) card.

3.2. Mass Spectra

Next, TOF-SIMS was employed to investigate the components of the sample. It is
worth mentioning here that selecting proper ion-beam parameters to conduct the mea-
surements is necessary and important. Both the primary and sputtering ion beams could
influence the acquired data [30–32] by varying their damage depth, cluster sizes, sputtering
rate, etc. For instance, C60

+ and Ar+ ion beams could reveal the component distribution of
perovskite solar cells more accurately than O2

+ beam and Ar-gas cluster ion beam [31] (Ar-
GCIB). In the current work, Bi+ was employed as the primary ion source due to its higher
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monatomic ion yields and better mapping spatial resolution than Bi3+. The sample was
sputtered employing an Ar+ ion beam to remove oxides and contaminants on the surface.
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Figure 1. XRD results of the steel sample.

The sample surface was etched before ToF-SIMS measurements to remove any ox-
ide/contaminant at the sample surface. Since the probing depth of ToF-SIMS is only within
2 nm, the existence of oxides and contaminants may affect the results. Both positive and
negative ions were collected, and the mass spectrum was presented in Figure 2. To calibrate
the ToF-SIMS spectra, m/z peaks at 15.0235 (CH3), 27.0235 (C2H3) and 41.0391 (C3H5)
were used for the calibration of positive ions spectra, while m/z peaks at 13.0078 (CH),
17.0027 (OH) and 25.0078 (C2H) were selected for the calibration of negative ions spectra. In
general, the spectra of both positive ions and negative ions should be measured to acquire
complete/full compositional information. From the negative spectral data of the sample,
elements including F/N/Cl/S and oxides such as Cr-O/Fe-O/Mo-O were detected, while
for positive spectral data, Fe/Ni/Cr, etc., were probed. The spectrum collected from posi-
tive ions shows more information about metallic elements, while non-metallic elements
were observed from the negative ion mass spectrum. The alloy mainly contained metallic
elements including iron (Fe), nickel (Ni), chromium (Cr), molybdenum (Mo), sodium
(Na) and calcium (Ca), as well as fluorine (F) and chlorine (Cl) as non-metallic elements.
Moreover, the compound information may also be revealed, which is another advantage of
ToF-SIMS. As can be observed, chemical compounds such as CrO, FeO and HSiO3 were
also formed at the surface of the sample. The formation of oxides could be attributed to the
adsorption of carbon and oxygen atoms on the sample surface when it was placed in air.
It should be mentioned here that the intensity of each ion in the spectra can reveal their
contents qualitatively.

3.3. 2D Mapping Image

To acquire the surface composition distribution, the 2D mapping images of the sample
were further analyzed. To investigate the distribution of each ion, individual color scale
bars were employed for both positive and negative modes. Figure 3 illustrates the mapping
results collected from positive ions, where grains with different colors could be observed.
This color difference might be originated from the variation of surface components, as
reported by previous literature [19,23]. In this work, a brighter color of same ion indicates
a higher content of the component. In addition, impurities such as Na was found to be
concentrated at certain spots, while other components (Fe, Cr, Ni, Mo) were uniformly
distributed in the grain. Such distribution difference may vary their properties, which need
to be investigated in future.
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ToF-SIMS negative ion maps of the sample were also presented (Figure 4) to reveal
more component distribution information. As can be observed, negative ion components
(F, O, Cl) exhibited high ion intensity (bright color), while positive ion such as Fe was
barely detected when employing negative ion collectors. To investigate the component
variation of grains with different colors, ROI measurements were conducted and discussed
in the next section.
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3.4. Region of Interest (ROI)

One of the advantages of ToF-SIMS technique is that it can extract ROIs from the
mapping images to compare their component variations. Three ROIs derived from positive
ion mapping were first demonstrated in Figure 5a. Although the ion intensity (color) is
different in three regions, no obvious differences of substrate elemental composition (Cr,
Fe, Ni, Mo, etc.) among ROI-1/2/3 were detected, as revealed by their mass spectrum
(Figure 5b–d). The above contradiction between mapping images and the mass spectrum
was also found in negative ion results (Figure 6). We therefore resolved to other surface
characteristic techniques to obtain its element distribution maps.
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3.5. SEM-EDS

To make a comparison, the morphology and element distribution of the sample were
measured via SEM-EDS. As shown in Figure 7, no grain was observed from planar SEM
image. The EDS results (Figure 8) indicated that the sample is mainly composed of Fe, Ni,
Mo and Cr, which is consistent with the mass spectrum results. In addition, the existence
of Na was not detected in EDS results, which indicated the excellent detective sensitivity
of ToF-SIMS (Figure 3). The distribution of elements was demonstrated in Figure 7. All
elements were distributed evenly, which is inconsistent with 2D mapping results. To
verify, 2D mapping images of positive ions normalized to total ion density were measured
and presented in Figure S1, which showed the same distribution as Figure 3 results. To
investigate the possible topographical effects of the sample, AFM measurements were
further conducted. As shown in Figure S2, the sample exhibited a smooth surface with an
average roughness of ~2.23 nm, which could exclude the topographic effect of the sample.
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where Ip is the intensity of primary ion, Y is the ion sputter yield, αA is the ionization
probability, ηA is the transmission efficiency of the detection system, θA and XA refer to the
species isotopic abundance and its fractional concentration in the material, respectively.
During the measurements, Ip and ηA should remain unchanged since the experimental
conditions were not altered. Previous literature [23,30] suggested that the sputtering yield
and ionization probability could be affected by the matrix, i.e., different matrixes may lead
to various secondary ion intensities even though they possess the same composition. As
mentioned earlier, topographical effects of 2D images could be excluded, as confirmed
by SEM and AFM results. Meanwhile, ROI and EDS results indicated that there is no
compositional difference, which indicated the same θA and XA. In addition, normalized
data of Fe and Ni were also analyzed to exclude topographic effects. Similar mapping
results were obtained. We thus hypothesized that such a difference of 2D imaging and
EDS results might be ascribed to various crystal orientations of the polycrystalline sample,
which would affect bonding strengths and the arrangement of surface atoms, resulting in
different secondary ion intensities. Figure 9 schematically illustrate such process. Future
investigation on its specific mechanism needs to be conducted.
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4. Discussion

In conclusion, ToF-SIMS was employed to investigate the surface characteristics of
an alloy sample. By acquiring its mass spectra and 2D mapping images, the surface
components and their inhomogeneous distribution were revealed. To make comparison,
three ROIs with different chromatic aberrations were selected. However, contradictory
results of component distribution were obtained from their mass spectrum and mapping
images. To resolve it, SEM-EDS was further performed, and the results suggested a
homogeneous distribution of all elements at the surface, which is consistent with the mass
spectrum results. We hypothesized that other possible factors such as crystal orientation
may cause any influence on the mapping image appearance by affecting the ion yields
of secondary ions. Our findings provide deeper insights into the working principle of
ToF-SIMS, and may expand its application in other fields such as crystal orientation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11121465/s1, Figure S1: Normalized ToF-SIMS positive ions 2D-mapping of the sample
(Scale bar: 100 µm), Figure S2: AFM image of the alloy sample.
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