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Abstract: Cadmium telluride (CdTe), a metallic dichalcogenide material, was utilized as an absorber
layer for thin film-based solar cells with appropriate configurations and the SCAPS-1D structures
program was used to evaluate the results. In both known and developing thin film photovoltaic
systems, a CdS thin—film buffer layer is frequently employed as a traditional n—type heterojunction
partner. In this study, numerical simulation was used to determine a suitable non-toxic material
for the buffer layer that can be used instead of CdS, among various types of buffer layers (ZnSe,
Zn0O, ZnS and In;S3) and carrier concentrations for the absorber layer (N4 ) and buffer layer (Np)
were varied to determine the optimal simulation parameters. Carrier concentrations (N from
2 x 102 em=3 to 2 x 1017 em =3 and Np from 1 x 101 cm™3 to 1 x 1022 cm~3) differed. The results
showed that the use of CdS as a buffer-layer-based CdTe absorber layer for solar cell had the highest
efficiency (%) of 17.43%. Furthermore, high conversion efficiencies of 17.42% and 16.27% were for the
ZnSe and ZnO-based buffer layers, respectively. As a result, ZnO and ZnSe are potential candidates
for replacing the CdS bulffer layer in thin—film solar cells. Here, the absorber (CdTe) and buffer
(ZnSe) layers were chosen to improve the efficiency by finding the optimal density of the carrier
concentration (acceptor and donor). The simulation findings above provide helpful recommendations
for fabricating high—efficiency metal oxide-based solar cells in the lab.

Keywords: absorber layer and buffer layer; CdTe; ZnSe; conversion efficiency; SCAPS-1D; solar cell

1. Introduction

The challenge of global warming has prompted the further study of solar and other re-
newable energy sources. Solar cells are a fundamental component of solar energy. Different
materials are used to create solar cells, with silicon being the most commercially feasible
and prevalent. The majority of the alternative materials were developed with the goal of
producing low—cost, high—efficiency and long-lasting solar cells. Although the efficiency is
still modest, nanostructured metal oxide solar cells have moved a step farther in delivering
clean, cheap and sustainable solar cells [1]. Solar energy conversion to useable power using
a solid-state p—n junction based photovoltaic (PV) device offers enormous promise in the
efforts to reduce our current reliance on fossil fuels and, as a result, to reduce harmful
greenhouse gas emissions [2,3].

Due to its unique properties, cadmium telluride (CdTe) thin film is widely employed
in a variety of optical and electrical applications. CdTe thin—film cells are gaining popu-
larity because of their abundance, excellent efficiency, long-term stability and low cost of
manufacture [4] and they can be used in a variety of devices such as nanodevices, sensors
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and solar cells [5]. CdTe is classified as an II-VI transition metallic dichalcogenide and has
a high absorption coefficient (>10°> cm ') that is greater than other known semiconductor
materials with a narrow band gap (Eg~1.5 eV) [6,7]. This band gap value is suitable for the
visible solar light spectrum [8-10].

Thin—film solar cell applications make extensive use of metal chalcogenide semicon-
ductors such as cadmium telluride (CdTe). This is due to its inexpensive cost, abundance
on the planet and reasonable conversion efficiency. Because of its excellent performance,
outdoor long-term stability, strong optical absorption, low cost, adjustable bandgap and
unique optoelectronic features, CdTe was chosen as the absorber layer in this work. Various
attempts have been made on CdTe to improve its stability and conversion efficiency [11].
In the form of p-type semiconductors, CdTe is a potential absorbing material for thin—film
PV technology [12]. Despite the widespread usage of CdTe thin films, its primary form has
a low conversion efficiency in PEC procedures. When electrodeposited on Ni substrates,
CdTe thin films have poor conversion efficiency, depending on the redox couplings and the
type of conduction utilized [13]. PEC performance was also poor when CdTe thin films
were formed on FTO and ITO substrates [14,15]. When CdTe films were deposited by spray
pyrolysis [16], the conversion efficiency was 3.4%, whereas chemical bath—formed films
that had been treated with CdCl, had a conversion efficiency of 2.5% [17-19]. CdTe thin
films have been reported to have a conversion efficiency of 17.5% or more under certain cir-
cumstances [9]. To increase low PEC performance, CdTe thin films are frequently combined
with other systems, such as CdS films [14,20]. Cadmium sulfide (CdS) is a well-known
II-VI compound semiconductor with excellent transparency, a straight band gap transition
(Eg~2.4 eV), strong electron affinity (~4.2 eV) and n-type conductivity [21,22]. CdS also
enhances the interface fit of lattice heterojunctions, increases the surplus carrier lifetime
and optimizes the band alignment of the devices in which it is utilized [23]. The optical,
electrical and structural properties of CdS films are useful in a wide variety of scientific,
technical and commercial applications involving optoelectronic devices, particularly solar
cells [24]. CdS is a promising option for use as a buffer layer in CdTe thin film—based solar
cells due to its properties of low surface recombination and little absorption loss. On the
other hand, CdS can be hazardous to the environment and human health due to its high
toxicity. Different materials with a larger band gap as well as non—toxic compounds such
as ZnS (O, OH) and ZnS have been studied as suitable buffer layers for thin—film solar
cells [25-27]. However, because of the complex reaction mechanism and light soaking
effects of these buffer layers, cell durability and repeatability may be compromised [28].

CdS/CdTe thin films produced on ITO substrates have been shown to have a conversion
efficiency of 3.5% and when silver (Ag) was coated on the films, the conversion efficiency
increased to 9.82% [29]. In multijjunction CdTe/CdS combinations, conversion efficiencies of
up to 13% have also been recorded [30]. MultiGunction CdS/CdTe/ZnTe/ZnTe:Cu cells have
a high conversion efficiency of 13.38% [31,32]. The efficiency of the CdS/CdTe:Cu/CNT struc-
ture has been reported to be up to 14.1% [33]. The buffer layer connects the absorber and
window layers and it is important for a variety of reasons, including providing structural
stability for the thin film and preventing static electricity in the absorber layer [34,35].

In heterojunction thin—film solar cells, the buffer layer generally serves as a focus
point. The photons that reach the absorption layer through the reach—in layer travel via the
buffer layer. As a result, the number of photons that is lost due to absorption in the buffer
layer should be kept to a minimum. As a result, in the buffer layer, electrical resistance and
minimal surface recombination are required. In order to provide the buffer layer between
the absorber layer and the transparent window layer, it is necessary to provide thin—film
solar cell stability. As a result, the buffer layer must have a large energy gap. This permits
the majority of visible light to pass through to the absorption layer. On the other hand, for
the depletion layer to overlap, the bandgap margins of the buffer and the absorption layer
should be roughly compatible. In heterojunction thin—film solar cells, metal chalcogenides
such as CdS, CdSe, ZnS, ZnSe and In,S; are ideal for the role of a buffer layer. CdS, CdSe
and CdTe are the most popular metal chalcogenide compounds that are used in thin—film



Crystals 2021, 11, 1454

30f16

solar cells with heterojunctions. These substances are harmful to the environment. Green
and less dangerous chemicals (such as ZnS, ZnSe, ZnO, Zn; _ yMgxO and In;,S3) should
be studied and assessed as a substitute for the traditional hazardous semiconductors that
are often used in heterojunction thin—film solar cells [36]. Numerical simulations may be
used to investigate the influence of various materials on the final properties of solar cells.
The results of such numerical research and analyses can be utilized to improve device
performance [35,37-39]. The optimum and best structure of thin film-based solar cells is
determined by numerical modeling. There is currently a scarcity of thin—film solar cell
simulation research. As a result, we have narrowed the scope of our numerical simulation
in this work by utilizing SCAPS-1D software to investigate the material that is needed
for the buffer layer and for substituting the CdS with another material. A different buffer
layer’s effect on cell performance was investigated. Different buffer layer materials (CdS,
7Zn0O, ZnSe, In,S3, ZnS) have been shown to exhibit J-V characteristics (Vo, Jsc, FF and
1) under standard illumination AM1.5G, 100 mW /cm?, 300 K (Table 1). The primary
goal of this research is to replace CdS with a different buffer material. Furthermore, the
concentration densities of carriers (acceptor and donor) have been considered in this study.

Table 1. The working points and illumination.

Working Points Value Spectrum AM1.5G Spectrum
Temperature (K) 300 Wavelength range (nm) 200-4000
Bias voltage (V) 0.00 Transmission (%) 100
Frequency (Hz) 1 x 10° Ideal light current (mA/cm?) 20

Series resistance (Q) cm?) 0 Transmission of attenuation filter (%) 100

Shunt resistance (Q2 cm?) 1 x 1030 Ideal light current cell (mA /cm?) 0

2. Numerical Modeling and Material Parameters

SCAPS-1D was created at ELIS, University of Ghent and it may be used for free in
photovoltaic research investigations [40,41]. The SCAPS-1D structure program is frequently
used to model the electrical and optical characteristics of AC and DC heterojunctions. It is
primarily designed for CIGS and CdTe solar cells. The main goal of SCAPS-1D is to use
an existing database to explore the properties of thin film-based solar cells with various
buffer layers. SCAPS-1D simulation solutions may be used to examine outputs such as
voltage and currents on illumination and dark characteristics. This simulation may also
generate a temperature-based analysis. SCAPS-1D simulation may also provide important
information such as recombination profiles, the current density of individual carriers as a
positional function and electrical physical distribution. The main goal is to replicate solar
cells in order to achieve high efficiency before beginning actual experimental manufacturing
with various parameters. SCAPS-1D simulation may be used to investigate the impact of
various parameters on (Voc, Jsc, FF, 17) and operating temperature.

2.1. Numerical Modeling
SCAPS-1D can solve Poisson’s equation for holes and electrons (Equation (1)) [42]:

>y e
e @[P(x)—”(x)JFND—NA-FPP—Pn] )
where Y is the electrostatic potential, ¢ is the elementary charge, €, is the relative permittiv-
ity and ¢, is the vacuum permittivity, p is hole concentration, # is electron concentration,
Np, N4 are donor and acceptor charge concentrations, respectively and p, and p,, are holes
and electrons distribution, respectively.
Additionally, it can also solve the continuity equation (Equation (2)) [43]:

a2y e
BT = oo PO = n(x) + No —Na+pp— pi] @)
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where ], and ], are the hole and electron current densities, respectively and R and G are
recombination rates, respectively.
Carrier transport occurs by drift and diffusion according to Equations (3) and (4), respectively:

B dn do

Jn = D"ﬂ“”‘””ﬁ 3)
_ o dp de

Iy = DpEﬂLﬂpPE 4)

where ¢ is the potential difference and D, and D, are the electron and hole diffusion
constant, respectively. i, and i, are the electron and hole mobility and 7 and p are the
electron and hole carrier concentration.

2.2. The Suggested Thin-Film Solar Cell Device Structure

Figure 1 shows the thin film’s structure, which includes a p-type absorber (CdTe) layer
on a molybdenum (Mo) coated back glass substrate, an n-type buffer layer (CdS, In;Ss,
ZnS, ZnO, ZnSe) and a SnO,; window layer.

hv

N\

Front Contact

Window Layer (Sn0;): ~ 250

Buffer Layer: ~ 25 nm

(CdS. ZnO., ZnSe, In;Ss. ZnS)

Absorber Layer (CdTe): ~ 2000

Back Contact (MO)

Glass Substrate

Figure 1. Schematic diagram of thin film.

2.3. Numerical Material Parameters

The starting conditions (bias voltage, operating temperature, lighting and so on)
should be established, as stated in Table 1, at the start of the simulation. Table 2 shows
the reflection and transmission of the front and back contacts, respectively. Each layer’s
material characteristics should be entered into a software application. Table 3 shows the
material parameter characteristics for the thin film layers and lists the physical parameters
utilized in the Mo/absorber /buffer/window solar cell simulation [44-61].
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Table 2. Electrical parameters properties of back and front contact used for the metal oxide SCAPS-1D simulation.

Electrical Properties Back Contact Front Contact
Thermionic emission surface Electron 1 x 107 1 x 107
recombination velocity (cm/s) Holes 1 x 107 1 x 107
Metal work function (eV) 5 4.1
L . . . Relative to Eg 04 0.1
M b height (eV .
ajority carrier barrier height (eV) Relative to Ey or Ec —0.1227 0.0199
Allow contact tunnelin Effective mass of electron 1 1
& Effective mass of holes 1 1
Filter mode Reflection Transmission
Optical Properties Filter value 0.8 0.95
Complement of filter value 0.2 0.05
Table 3. The electrical parameters for the thin—film solar cell at 300 K.
Electrical Parameter p-CdTe n-CdS n-ZnS n-ZnSe n-ZnO n-In,S3 SnO,
Thickness (um) 2 0.025 0.025 0.025 0.025 0.025 0.25
Band gap (eV) 1.5 24 3.5 29 3.3 2.8 3.6
Electron affinity (eV) 3.9 45 4.5 4.09 4.45 47 4
Dielectric permittivity (relative) 9.4 10 10 10 9 13.5 9
CB effective density of states (cm~2) 8 x 10V 1.5 x 1018 1.5 x 1018 1.5 x 1018 2.2 x 1018 1.8 x 10Y 2.2 x 1018
VB effective density of states (cm~2) 1.8 x 101 1.8 x 1018 1.8 x 1018 1.8 x 1018 1.8 x 101 4 % 108 1.8 x 1018
Electron thermal velocity (cm/s) 1 x 107 1 x 107 1 x 107 1 x 107 1 x 107 1 x 107 1 x 107
Hole thermal velocity (cm/s) 1 x 107 1 x 107 1 x 107 1 x 107 1 x 107 1 x 107 1 x 107
Electron mobility (cm?/V s) 300 50 50 50 100 400 100
Hole mobility (cm?/V s) 40 20 20 20 25 210 25
Shallow uniform donor density 0 1 x 102 1 x 1022 1 x 102 1 x 1022 1 x 102 1 x 102
Np (em™)
Shallow uniform acceptor density 2 % 1015 0 0 0 0 0 0

Na (em™3)

3. Results and Discussion
3.1. Effect of Different Buffer Layer on Thin Film-Based Solar Cell

Cadmium (Cd) is poisonous and CdS is classified as a carcinogen, both of which are
harmful to the environment and humans. Other potential buffer layers, such as ZnO, In;,Ss,
ZnSe and ZnS, have been explored as a result. The optimal photovoltaic parameters (Vp,
Jsc, FF and 7 %) of a CdTe thin film with various buffer layers are shown in Table 4 and
Figure 2. It should be highlighted that CdS performs the best as a buffer layer, obtaining an
efficiency of 17.43%. The results also reveal that buffer layers made of ZnSe and ZnO have
excellent efficiency, at 17.42% and 16.27%, respectively. While buffer layers based on ZnS
and InyS3 had a lower efficiency of 15.88% and 14.23%, respectively. As a result, ZnO and
ZnSe have been proposed as replacements for CdS as a buffer layer in thin films [62].

Figure 3a depicts the ]-V characteristics for various buffer layers. It is worth noting
that when the efficiency is high, the curve shifts to the right.

Table 4. Effectiveness of the buffer material (donor) on |-V characteristics.

Buffer Layer Voc (V) Jsc (mA/cm?) FF Efficiency (%)
Cds 0.9113 23.4497335 81.41 17.43
ZnSe 0.9112 23.484037 82.38 17.42
ZnO 0.9142 23.303926 76.37 16.27
ZnS 0.9121 23.260166 74.84 15.88
In,S;3 0.9198 23.153579 66.81 14.23
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Figure 3. (a) |-V current curves for the cell; (b) spectral response of solar cells and CdTe layer (acceptor characteristics) with
different buffer layer at T = 300 K.

The following equation, Equation (5), can be used to calculate the spectrum response
using the external quantum efficiency:

1))

EQE(A) = %j( 7 5)

where g represents the fundamental electrical charge, I(A) represents the photogenerated
current and ¢, (A) represent the photon flux. On the light spectrum, Figure 4 depicts the
external quantum efficiency QE (%) for various buffer layers. The results reveal that when
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the buffer layer is CdS, the efficiency is at its peak [63]. The impact of the different buffers
on the light spectrum might be seen in Figure 3b.

30
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Figure 4. The simulated electrical performance parameters as a function of the acceptor charge carrier concentration (N4 ):
(@) Voc, (b) Jsc, (¢) FF, (d) 17%.

3.2. Modelling and Optimization of CdTe Absorber Layer Doping Level

The absorber (CdTe) acceptor carrier concentration (N4) changes in the ranges of
2 x 102 em=3 to 2 x 10”cm™3, as shown in Table 5. The main goal of this study is
to obtain a carrier concentration (Na) of the CdTe absorber layer without losses in cell
performance. As consequence, low cost can be accomplished by reducing the amount of
expensive materials that is used.

Table 5. Effectiveness of the acceptor carrier concentration (N ) on the electrical cell performance
parameters at T = 300 K.

Nja (cm—3) Voc (V) Jsc (mA/cm?) FF% 1 (%)
2 x 1012 0.7333 24.249669 82.57 14.68
2 x 1013 0.7398 24248777 82.33 14.77
2 x 1014 0.8263 24.223452 79.49 15.91
2 x 1015 0.9113 23.484037 81.38 17.42
2 x 106 0.9662 21.748835 82.02 17.23
2 x 1017 1.0247 19.810091 84.21 17.09
2 x 1012 0.7333 24.249669 82.57 14.68

The electrical parameter performance with an acceptor (hole) carrier charge concen-
tration (N 4) when the CdTe absorber has a 2000 nm thickness of is shown in Figure 4a—d.
Figure 4a depicts a linear rise in an open—circuit voltage (Voc) with (Npo> 2 x 10 cm—3).
Figure 4b depicts a linear reduction in the short—circuit current density (Jsc) with
(Nao>2 x 10" em™3); this can be ascribed to an increase in free carrier charge recom-
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bination inside the bulk [64]. On the other hand, the fill factor (FF), as shown in Figure 4c,
increases linearly with (N> 2 x 10'* cm™3). Figure 4d also demonstrates that a low hole
doping level (Na< 2 x 10> cm™~3) leads to a significant reduction in the device conversion
efficiency, with values of less than 3%. When the hole concentration of the absorber layer
increases, however, minor cell efficiency changes are found, as shown by Equations (6)—(9):

Jse = e T 200 an, ©

where g denotes the elementary charge, &; denotes the spectral power density, T(A)
denotes the optical transmission and AA; denotes the distance between two adjacent
wavelength values.

Voc = nlen<]5C+1> @)
q Jo

Voc — In(Voc +0.72)
FF% = 8
Voc+1 ®)

Voc X X FF%
7% = oC ];c ©)
1

The improved efficiency (Figure 4d) in the simulated findings is explained by the
combined impact of current density [sc saturation (Figure 4b) as well as the rapid increase
of Voc and FF (Figure 4a,c) with the acceptor carrier charge concentration (N). As a result,
(Na ~2 x 10! em~3) provides the best performance for the CdTe thin film.

The effect of the changes in the CdTe acceptor charge carrier concentration (Na) on
solar cell fundamental characteristics was thoroughly explored. The thin film’s spectral
response to the CdTe acceptor carrier charge concentration (N ) is shown in Figure 5a. The
simulated findings show that when the acceptor concentration increases from 2 x 1012 cm~3
to 2 x 10" cm~3, the quantum efficiency (QE%) decreases. The enhanced gathering of
photons at longer wavelengths can be ascribed to this. The production of additional pairs
of electron holes in the thin—film solar cell results from the absorption of longer wavelength
photons, resulting in an increase in Jsc at low acceptor charge carrier concentrations (Np)
(Figure 5b). The |-V curves show that the V¢ increases as the acceptor charge carrier

concentration (N ) of the CdTe layer increases (Ny>2 x 10% cm_3>. This rise shows

that the open—circuit voltage (Voc) of the CdTe layer is substantially influenced by the
acceptor charge carrier concentration (N4 ). The generated electric field in the depletion
region is altered when the acceptor (hole) carrier charge concentration (N) of the CdTe
layer is high [65]. As a result, the free charge carrier recombination decreased, increasing the
Voc. While lowering the CdTe acceptor carrier charge concentration below 2 x 10> cm~3
results in increased optical losses, which might be due to surface recombination at the back
contact [66].
The following Equations (8) and (9) explain the p—n junction model:

D D
Ip = Agn?| —= L 1
0 q’”(LeNA +LhND) 10

v _ KT
oc — qli’l(IL/Io)

Ip denotes the saturation current, n; is the intrinsic concentration, A is the diode
quality factor, g is the elementary charge, T is the temperature, k is the Boltzmann constant,
I is the light-generated current, L and D are the diffusion length and coefficient and
Np and Ny are the donor and acceptor charge concentrations. The letters /1 and e stand
for holes and electrons, respectively. As the acceptor carrier concentration N rises, the
saturation current Ip decreases, resulting in an increase in Vpc and a drop in Jsc. The
reason for this is that when the acceptor carrier concentration is high, the recombination

(11)
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process increases and reduces the probability of electron-hole production pairs, lowering
the QE (%) of long wavelength photons. Long-wavelength photons will be absorbed
profoundly in the absorber (CdTe) layer [67].
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Figure 5. (a) Spectral response of the enhanced quantum efficiency (QE) at longer wavelength and (b) J-V current curves

for the cell with the increase of acceptor carrier concentration (Ny).

3.3. Modelling and Optimization of ZnSe Buffer Layer Doping Level

The major goal of this section is to decrease the buffer layer’s losses (both optical and
electrical). Following that, the carrier charge concentration level of the ZnSe layer was
adjusted from 1 x 10 ' cm =3 to 1 x 10?2 cm~3. The effect of the ZnSe buffer on the thin—film

performance characteristics is shown in Table 6 and Figure 6. With (Np > 1 x 10'8 cm’3) ,

the simulated results show that there is a small amount of modification that can be seen
in the cell performance characteristics. The effectiveness of the thin film improved by 3%

when the donor concentration increased to (Np = 1 x 10?2 cm’3). It is better to have

a high doping level in thin film to retain its exceptional overall performance [68]. The
maximum conversion efficiency is 17.42% when the donor carrier charge concentration
(Np~1 x 10%2 cm—3) is used.

Figure 6a—d illustrate how a high donor concentration in the buffer layer improves cell
performance. This is due to the apparent requirement for a minimum buffer layer thickness
to compensate for the dislocation effect that is caused by the grid mismatches between the
ZnSe and CdTe layers. Although the Js¢, FF and 1 parameters all rise (Figure 6b—d), the
Voc drops (Figure 6a). The explanation for this may be ascribed to photon loss on a large
buffer layer, as seen in Figure 7a. As the concentration of the buffer layer (Np) decreases,
more incident photons that are generated by the ZnSe layer are absorbed, reducing the
number of photons that the absorber (CdTe) layer can absorb. As illustrated in Figure 7b,
absorbed photons generate fewer electron-hole pairs, resulting in a lower QE (%). As the
donor carrier charge concentrations increase, so does the QE. In the simulation, it is better
to have a high buffer layer donor concentration (Np > 1 x 10'® cm~3) for thin films.

Table 6. Effective of the donor charge carrier concentration (Np) on the electrical cell performance
parameters, at T = 300 K.

Np (cm—3) Voc (V) Jsc (mA/cm?) FF 17 (%)
1 x 106 0.9178 23.275532 67.70 14.46
1 x 10Y7 0.918 23.25272 68.22 14.57
1 x 1018 0.9103 23.33507 78.62 16.70
1 x 101° 0.9111 23.419193 80.54 17.19
1 x 1020 0.9112 23.453013 81.07 17.33
1 x 102 0.9113 23.474864 81.29 17.39

1 x 10%2 0.9113 23.484037 81.38 17.42
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Figure 6. The simulated electrical performance parameters as a function of donor charge carrier concentration (Np): (a) Voc,
100+
22E-0 50
0.0E-O ™ /
-20e-04 90
4.0E-0)- § 70 Np =1 x 10 16 -3
-~ 60e-0f o p=1x cm
L) 60
E -80E-0F
i 10E-1¢ 50
-12E+14-
40
é 146414
= .16Ea 304
18E-1¢ 204 B o &
2 0E-1 Np =1 x 10““ cm
104
-22E-1
231k 0 3 }
200 300 400 500 600 700 800 900 1000

Voltage(V)

Wavelength (nm)

(@)

(b)

Figure 7. (a) ]-V as a function of ZnSe donner carrier concentration (Np). (b) Spectral response of the enhanced quantum
efficiency (QE) at longer wavelength with the increase in the donner carrier concentration (Np).

3.4. Optimization of the Mo/CdTe/ZnSe/SnO, Thin Film-Based Solar Cell

Based on the simulation results described above in the specified parameter range, the op-
timum PV characteristics can be achieved with an efficiency of 17.42% (with Voc =0.9113 V,
Jsc = 23.484037 mA /cm? and FF = 81.38), when the thickness and acceptor concentra-
tion of the CdTe are 2000 nm and 2 x 10> cm~3, respectively, the thickness and donor

concentration of the ZnSe are 25 nm and 1 x 1022 cm

—3 and the thickness and donor

concentration of the SnO; are 250 nm and 1 x 10?2 cm 3, respectively. Other electrical and
optical parameters of the thin film are unchanged, as shown in Table 1.
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3.4.1. Band Diagram

One of the most notable factors impacting thin—film performance and current trans-
mission across heterojunctions is band alignment shown in Figure 8. CdTe is used as the
absorber layer (0 to 2 pym), where ZnSe is the buffer layer (2 pm to 2.025 pm) and SnO,
is the window layer (from 2.025 pm to 2.275 pm). When the absorber layer’s conduction
band is higher than the buffer layer’s conduction band, the result is a “cliff” type band
alignment [69]. As seen in Figure 8, this is the situation with CdTe thin films. It can be
seen that the absorber, buffer and window layers have acceptable band alignment. Four
recombination regions can be seen in the band diagram.

EC.EV EC.EV EFn
acceplor, donor .QCCQ‘D:OV jonor
_ TN
N \ | =
000 : — 0
-1.00 ‘ B \__/
: Y ; R3
200 200{R1 R2 R4l
300 300
B R e e S N S S S S S - 382
00 02 04 06 03 10 12 14 16 18 20 23 00 02 04 06 08 10 12 14 16 18 20 23
distance (jm) distance (m)
(a) (b)

Figure 8. The band energy diagram CdTe layer (acceptor). ZnSe layer (buffer) and SnO, layer window; (a) dark current,

(b) photo current.

Recombination at the back contact (region R1), bulk (quasi-neutral) recombination
in the absorber layer (region R2), space charge (region R3) and recombination at the
absorber /buffer interface (region R4) are the four regions. The thin absorber layer will
maintain the back contact close to the depletion region, resulting in a substantial increase
in back contact recombination. Reasonable neutral interface defects for recombination
were also included at the mid—-gap to accommodate recombination at the CdTe/CdS
and ZnSe/SnO, interfaces [70]. The reflectance of the rear and front contact surfaces
was adjusted to 0.1 and 0.9, respectively (Table 3). Photons that traverse the absorber
are reflected by this high reflectivity upon return contact, which improves absorption in
the absorber.

3.4.2. Current Mode

The cross—over and roll-over of the |-V curves are the J-V characteristics of the
Mo/CdTe/ZnSe/SnO, thin film. The intersection of dark and illuminated |-V curves is
known as a cross—over. The roll-over phenomenon occurs when the [-V curve is meshed
and when current levels of greater voltage are present. The dark and photo J-V curves are
depicted in Figure 9. The ideal layer carrier concentration densities in SCAPS-1D’s compu-
tation (CdTe Np =2 x 10" em ™3, ZnSe Np =1 x 1022 cm 3 and SnO, Np = 1 x 1022 cm~?)
were used in the simulation. Figure 9 shows the output cell efficiency parameters. The
carrier concentration of the absorber layer/buffer layer interface recombination or the
absorber /back contact was measured using this advantage [71].

3.4.3. Quantum Efficiency

The optimal QE for the thin film is shown in Figure 10. The ratio of the number of
captured electrons to the number of incident photons on the solar cell is known as the QE.
The QE will be 100% when all the carriers have been gathered and when all the photons
have been absorbed by CdTe. Photons (hv > E;) are absorbed by the absorber layer.
Because the absorption layer cannot absorb low—energy photons, high—energy photons
are able to contribute to the thermalization process, resulting in a variety of losses, such
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as shading losses, spectral mismatch losses, shading losses, incomplete absorption and
collection losses, all of which reduce quantum efficiency [67].

26E-14
20e-14 z
156+14
10e-14 L

o~

3]

g

i

gSOE-O

S’

[~ 0.0E +0 - bubuiufubuuus - it —— L 2
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-1.0E+14 -
-1.5E+1 Photo |
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-20E-14- L
23801 deot———17" |
00 01 02 03 04 0s 06 0.7 08 09

Voltage(V)

Figure 9. Current density with voltage, at T = 300 K, (CdTe Ny = 2 X 1015 cm~3, ZnSe
Np =1 x 102 em~3 and SnO; Np =1 x 102 cm—3).

1004

] //— ﬁj

QE%
g

200 300 400 500 600 700 800 900 1000
Wavelength (nm)

Figure 10. Quantum efficiency (QE, %) outputs for the thin film (CdTe Nj =2 x 10'® cm~3, ZnSe
Np =1 x 102 em =3 and SnO; Np =1 x 102 cm—3), at T = 300 K.

3.4.4. Effect of Transparent Conducting Layer (Window Layer)

Both optical and electrical access are provided by transparent conducting oxide (TCO)
layers. SnO, was employed as the TCO in our situation. SnO, has a bandgap of 3.6 eV,
which is sufficient to cover the whole visible wavelength range. SnO, has a thickness
of 250 nm and a donor concentration of 1 x 10?2 cm ™3, respectively. The window layer
contributes to the production of electron-hole pairs slightly.

3.5. Comparison between Recent Published Work and Proposed Work

Table 7 shows that the proposed work outperforms recently published studies in terms
of the open circuit voltage (Voc), shot circuit current (Js¢) and conversion efficiency (17, %)
of the cell construction. The proposed cell structure glass/Mo/CdTe/ZnSe/SnO; outper-
forms other cell structures due to high Js¢ and Voc, which result in higher conversion
efficiency. The low FF value might be related to defect states in any of the device’s layers. If
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the proposed cell structure can be effectively manufactured, then this design method will
become the superior option.

Table 7. Comparison of functional parameters with experimental results.

Buffer

Voc (V) Jsc (mA/cm?) FF 71 (%) Ref.

Cds
ZnSe
ZnS
InyS3

ZnO

Experimental /CBD 0.69 30.9 72 15.3 [72]

Simulated /SCAPS-1D 0.9113 23.4497335 81.41 17.43 This work

Experimental /CBD 0.67 34.9 72.7 14.4 [73]

Simulated /SCAPS-1D 0.9112 23.484037 82.38 17.42 This work

Experimental/CBD 0.55 344 73 13.6 [73]

Simulated /SCAPS-1D 0.9121 23.260166 74.84 .88 This work
Experimental/ALCVD 0.27 46.8 715 12.9 [74]
Simulated /SCAPS-1D 0.9198 23.153579 66.81 14.23 This work

Experimental /CBD 0.835 241 75.46 15.19 [75]

Simulated /SCAPS-1D 0.9142 23.303926 76.37 16.27 This work

References

4. Conclusions

This article employs several buffer layers (CdS, ZnSe, ZnS, In;S3, ZnO) from a nu-
merical simulation standpoint and the outcome indicates that CdS is the best buffer layer.
Thus, it can be stated that ZnSe and ZnO are good options as alternate buffer layers
for the CdS of CdTe solar cells, which was determined based on the findings from the
simulation using SCAPS-1D. Additionally, the material that is used for the CdS buffer
layer must be changed to a more appropriate material. Furthermore, numerical simulation
analysis has shown that the rise in N5 and Np results in an increase in solar cell perfor-
mance. The effect on cell performance was also studied via the ZnSe buffer layer. Our
analysis also showed that this effect can also be obtained at a value of #% of 17.42% (with
Jsc =23.484037 mA /cm?, Voc = 0.9113 V and FF = 81.38) for a 2000 nm thick CdTe absorber
layer with No~2 x 10 cm~3, a 25 nm thick ZnSe buffer layer with Np~1 x 10?> cm~3
and a 250 nm thick SnO, window layer with Np~1 x 10%2 cm~3. While these results may
enable us to create the requested CdTe thin—film solar cell, certain other effective factors
have to be investigated in further studies that may influence cell performance.
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