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Abstract: Room-temperature ball milling technique has been successfully employed to fabricate
copper-zinc graphene nanocomposite by high-energy ball milling of elemental Cu, Zn, and graphene.
Copper powder reinforced with 1-wt.% nanographene sheets were mechanically milled with 5, 10,
15, and 20 wt.% Zn powder. The ball-to-powder weight ratio was selected to be 10:1 with a 400-rpm
milling speed. Hexane and methanol were used as a process control agent (PCA) during composite
fabrication. The effect of PCA on the composite microstructure was studied. The obtained composites
were compacted by a uniaxial press under 700 MPa. The compacted samples were sintered under
a controlled atmosphere at 1023 K for 90 min. The microstructure, mechanical, and tribological
properties of the prepared Cu-Zn GrNSs nanocomposites were studied. All results indicated that
composites using hexane as PCA had a uniform microstructure with higher densities. The densities
of sintered samples were decreased gradually by increasing the Zn percent. The obtained composite
contained 10 wt.% Zn had a more homogeneous microstructure, low porosity, higher Vickers hardness,
and compression strength, while the composite contained 15 wt.% Zn recorded the lowest wear rate.
Both the electrical and thermal conductivities were decreased gradually by increasing the Zn content.

Keywords: copper-zinc alloy; graphene nanosheets; microstructure; mechanical properties; electrical
conductivity; thermal conductivity; wear rate

1. Introduction

The fabrication of Cu-matrix composite has attracted an increased interest, especially
the fabrication of Cu-Zn alloy (brass), which has been widely used as an industrial material
due to its excellent characteristics, such as: high corrosion resistance, non-magnetism,
and good plasticity [1]. Cu-Zn alloy is significantly less expensive than copper, but un-
fortunately, has low strength properties, which can negate the economic advantage of
brass [2,3]. Zinc plays a crucial role in the mechanical properties of copper-zinc alloys. For
many working conditions, the copper-zinc alloys are subjected to the static tensile load or
dynamic fatigue load. During the past decades, much of the research on the microstructure
and mechanical properties of the copper-zinc alloys has been carried out, including the
microstructure evolution and tensile plastic deformation, by using equal-channel angular
pressing process, which demonstrated the increase in both plasticity and strength of re-
fining grain of copper-zinc alloy with grain sizes less than 100 nm [4–6]. In recent years,
engineering applications of copper-zinc alloys have increased steadily due to their attrac-
tive properties, such as high specific strength and good machinability. In order to improve
the strength of Cu-Zn alloy, previous researchers have completed the addition of one or
more alloying elements, such as Sn, Mn, Ni, Al, or Co.
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An excessive effort has been made to develop a high-strength duplex brass alloy with
small amounts of a chromium (Cr) additive by powder metallurgy technique [7]. After iron,
aluminum, and copper, zinc is the fourth most widely used metal globally. In 2018, the
global zinc supply increased to 13.4 Mt, with a global demand of 13.77 Mt. [8]. Significant
amounts of zinc are recycled, and secondary zinc production is estimated to be 20–40%
of global consumption [9]. However, due to of the strict limitation on impurities in die-
casting composition standards, almost all zinc die-casting alloys are prepared from primary
zinc production. In general, about one half of the consumed zinc finds its application in
galvanizing steel, to prevent corrosion [10]. Other essential applications involve using
zinc for other coatings, or as an alloying element in brasses, bronzes, aluminum, and
magnesium alloys. Zinc is exploited as an oxide in chemical, pharmaceutical, cosmetics,
paint, rubber, and agricultural industries. Zinc-based alloys offer a series of properties
that make them particularly attractive for die-casting manufacturing and, in general, for
foundry technologies [11]. The large precipitates reduce the ductility of this alloy. On
the other hand, less than one mass% Cr addition in the brass alloy can prevent many
precipitations, which causes a remarkable decrease in ductility and machinability. It is
possible to produce a high-strength brass alloy with a supersaturated solid solution using
the rapid solidification method. Brass alloys were prepared using rapid solidification
of the ternary Cu-40 mass% Zn-0.5 mass% Cr alloy powder. The effect of solid solute
Cr behavior in the consolidated materials on microstructures and mechanical properties
was investigated [12]. Mechanical milling has received an increased interest as a simple
and environmentally friendly alternative to high temperature [13]. It is well known that
ball milling elemental powders induces a solid-state reaction through the atomic mixing
of the components, which has been used to synthesize various equilibrium and non-
equilibrium alloy powders with extremely fine microstructures. To avoid the formation of
an oxide in the preparation process, mechanochemical reactions of Cu and its oxides under
several atmospheres have been investigated separately. The advantage of this technique is
the comparison with other fabrication techniques in the ability to synthesis Cu-Zn alloy
without oxide phases, and the uniform distribution of the reinforcement particles in one-
step [14]. Cu-Zn alloy was prepared by high-energy ball milling of elemental copper
and zinc powders by the attrition mill. The different parameters, such as milling time,
ball-to-powder ratio, and milling speeds, were optimized. The results show that different
milling parameters can produce the different Cu-Zn alloy phases. It has been found that
milling time is highly significant to the refining process, and the ratios of the ball to powder
also benefit the new phases formed. Copper-based composites are widely used in various
applications, and the Cu-Zn system is rich in equilibrium and non-equilibrium phases
such as α, β, γ, η, and β′ [15]. In addition, different compositions of many copper-zinc
alloys, such as 70 Cu-30 Zn, 75 Cu-25 Zn, and 80 Cu-20Zn alloys, have already been studied
as a function of strain amplitude during the load interruptions, and the characteristic
shapes of these loops were considered to arise from zinc segregation to dislocations as a
function of cycle strain. Although the damage mechanism of copper-zinc alloys has already
been obtained by many researchers, the quantitative effects of the proportion of zinc on
the deformation behavior, plastic work consumption, and strain-life of copper-zinc alloys
during static tensile tests and dynamic fatigue tests were seldom mentioned. C11000 copper
and H63 copper-zinc alloy were adopted to investigate the quantitative effects of zinc on the
static and dynamic mechanical properties of copper-zinc alloys. The deformation behavior,
plastic work consumption, and strain-life of the C11000 copper and H63 copper-zinc
alloy during static tensile and dynamic fatigue tests were investigated. During the tensile
testing, C11000 copper shows apparent plastic deformation behavior with a tensile strength
of 270.1 MPa and elongation of 19.6%. H63 copper-zinc alloy shows the obvious brittle
deformation behavior with a tensile strength of 396.8 MPa and elongation of 3.4% [16].

The present work aims to offer simple and suitable techniques for fabrication Cu-Zn
GNSs nanocomposites by powder metallurgy techniques, including mechanical milling,
cold compaction, sintering process, and studying the effect of hybrid reinforcement of
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copper with constant percent of GNSs and a variable percentage of Zn for different
mechanical applications.

2. Experimental Work

Elemental powders of high purity (99.94%) Cu (75 µm), Zinc 99% purity (75 µm), and
1 wt.% of high purity (99.95%) Graphene nanosheets with 50 nm particle size were used
as starting reactant materials. Figure 1 showed the microstructure of the used powders,
in which graphene had a nanosheet structure (Figure 1a), while copper had a dendritic
structure (Figure 1b), and zinc had irregular spheres-like morphology (Figure 1c).
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Figure 1. SEM micrographs for Graphene nanosheets (a), Copper (b), and Zinc powder (c).

The powders were mixed to give the desired composition and then sealed in a stainless
steel (SUS 316) vial (80 mL in volume) together with 10 stainless steel (SUS 316) balls (12 mm
in diameter) in a glove box under an Ar gas atmosphere (O2 and H2O are less than 10 ppm).
The ball-to-powder weight ratio was selected to be 10:1. The milling procedure was carried
out at room temperature, using a high-energy ball mill (FRITACH P6) for 12 hr. milling
time with 400-rpm milling speed.

Hexane or methanol was used as a PCA (to choose the preferable one, Cu with 1wt.%
GNSs was mixed mechanically with 10 wt.% of hexane or methanol). Copper GNSs was
reinforced with 5, 10, 15, and 20-wt % Zinc powder (Table 1). The mixed composite powders
were compacted in a uniaxial single hydraulic press using stainless steel die under 700 MPa
pressure. Next, the compacted samples were sintered in a vacuum furnace at 1023 K for
90 min., in which there were three holding steps. During the first step (degassing step),
the applied heating rate was 276 K/min. and holed in 523 K. The second step (melting
of Zn) was headed with the same heating rate and holed in 673 K. Finally, the third step
(sintering process) was headed with a heating rate of 278 K/min. and holed in 1023 K for
the complete sintering process.

Table 1. The composition of fabricated composites.

Alloys Cu wt.% Zn wt.% GNSs wt.%

Cu94Zn5GNSs1 94 5 1

Cu89Zn10GNSs1 89 10 1

Cu84Zn15GNSs1 84 15 1

Cu79Zn20GNSs1 79 20 1

The phase structure and composition of the sintered Cu-Zn GNSs were characterized
by scanning electron microscope (SEM) and X-ray diffraction (XRD). For microstructure
investigation, the samples were ground with 220, 400, 600, 800, 1000, 1200, 2000, and
3000 grit SiC paper and polished with 6-micron alumina paste. The microstructure was
studied using an Optical microscope (model Leco LX 31, camera PAX-Cam). Additionally,
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a field emission scanning electron microscope (models FEI Inspect S 50) was used. The
densities of the sintered samples were estimated according to Archimedes’ principle, using
water as a floating liquid. The sintered samples were weighed in air and in distilled water,
and the actual density (ρact.) was calculated according to the Equation (1):

ρact. =
Wa

Wa −Ww
(1)

where Wa and Ww were the weight of the sample in air and water, respectively. The
theoretical density (ρth.) for the investigated composite was determined according to the
following Equation (2):

ρth. = (VM∗ρM) + (VR∗ρR) (2)

where VM and RM were the volume fraction and density of the matrix, respectively, while
VR and ρR were those for the reinforcement sample, respectively [17].

Relative Density = ρact./ρth. (3)

XRD device of the (model D8 XPORT) was used to emphasize the chemical composi-
tion and any new chemical compound or intermetallic formed between the constituent of
the composition, and to study the crystal structure of the sintered composition. Vickers
hardness was measured using Vickers microhardness tester (D-6700 Wolpert, Meisenweg,
Germany) at a load of 10 kg/f, and an indentation time of 10 s for all specimens. The
reported Vickers hardness values of the specimens were represented by the average of five
readings of each sample. Compression strength test of the investigated samples was per-
formed using a micro-computer controlled uniaxial universal testing machine (WDW300).
The samples used for compression tests had a 10 mm cross-section and a height of 15 mm.
The applied crosshead speed of the universal test machine used was 2 mm/min, and the
tests were conducted at room temperature.

The electrical conductivity, resistivity, and (International Annealed Copper Standard)
IACS% were estimated for the sintered sample. The test was established using Material
Tester for Metal, PCE-COM20. Next, the thermal conductivity was calculated using the
Wiedemann and Franz equation, which is a relationship between electrical and thermal
conductivity [14]. The Wiedmann-Franz relation is shown in the following equation:

K/σ = LT

where K is the thermal conductivity in w/m·k, σ is the electrical conductivity s/m, L is
Lorenz constant which equals 2.44× 10−8 wxΩk−2 value, and T is the absolute temperature
in Kelvin.

The adhesive wear was carried out using the Tribometer pin on a ring testing machine
under normal loads of 10, 20, and 30 N, at 150, 300, and 450 rpm, respectively, during the
sliding process. The adhesive wear of the pin was determined as the weight loss divided
the time to determination wear rate per unit second. A sensitive electronic balance was
used to measure weight loss.

3. Results and Discussions

The density results of Cu-1% GNSs with hexane and methanol indicated that the
hexane sample had a higher density than the methanol sample, as shown in Table 2.

Table 2. Relative densities and process control agent (PCA) used.

Sample Process Control Agent (PCA) Relative Density

Cu-1 wt.% GNSs Hexane 86.35

Cu-1 wt.% GNSs Methanol 76.32
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Furthermore, microstructure indicated the good homogeneity of the hexane sample
rather than the methanol sample, as shown in Figure 2.
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From the above results (Table 2), we found the use of hexane was better than using
methanol as a PCA. In the present study, all CU-Zn GNSs composites were manufactured
using hexane as a PCA. This result was mentioned previous in prior work [18].

3.1. Optical Micrographs

Figure 3 shows the microstructure of Cu-Zn GNSs composites estimated by optical
microscope, in which a, b, c, and d represented Cu-Zn-1% GNSs with 5, 10, 15, and 20 wt.%
Zn percentage, respectively. GNSs were well distributed throughout the copper matrix.
Samples containing 10 wt.% Zn had the most homogenous and uniform microstructure,
which was confirmed by the SEM images and the density values.
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10 wt.% + Graphene 1 wt.%; (c) Cu-Zn 15 wt.% + Graphene 1 wt.%; and (d) Cu-Zn 20 wt.% + Graphene 1 wt.%.

3.2. Microstructure Examination

Figure 4 showed the microstructure of Cu-Zn (5, 10, 15, and 20 wt.% zinc)/1 wt.%
GNSs nanocomposites (a, b, c, and d), respectively. For all samples there were three
areas: white, gray, and black. The white area represented the Zn metal; the gray area
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represented the Cu matrix; and the black area represented the GNSs and the pores. It
could be noted that, samples containing 10 wt.% Zn had a good microstructure, good
homogeneity between GNSs, and a Cu-Zn matrix with the lowest porosity. By increasing
the Zn contents, some aggregations transpired that causes the formation of pores, as
recorded in the density results.
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3.3. EDX Analysis

Figure 5a–d showed the EDX analysis of Cu-Zn (5, 10, 15, and 20)/1 wt.% GNSs
samples, respectively. It was clear that the specimens had perfect homogenous dispersion
with a smaller number of GNSs agglomerations, due to the good mixing process between
Cu-Zn and GNSs. Furthermore, the EDX patterns of all samples referred to the presence of
Cu, Zn and C (that belong to GNSs) in a good homogeneity (Figure 5). The percent of each
constitute were near to the added ones, which indicated the good processing parameters.
This could be due to the suitable PCA in the mechanical milling process with good sintering
conditions suitable for Cu-Zn solid solution formation.

3.4. Relative Density

Table 3 Showed the effect of Zn metal additions on the relative density of Cu matrix
reinforced with 1 wt.% GNSs. The density increased by increasing Zn value from 5 up to
10 wt.%, then decreased gradually by increasing Zn up to 20 wt.%. Generally, decreasing
the density could be attributed to the lower density values of Zn (7.14 g/cc) and GNSs
(2.2 g/cc) than that of Cu (8.96 g/cc). As such, the addition of light material to a heavier
one decreased the overall density [19]. Furthermore, the mismatch between GNSs and the
Cu-Zn brass alloy was due to the high surface energy and the non-wettability problem
between GNSs and its ceramic nature with the metallic brass Cu-Zn alloy [20]. This
was causing a gap between the internal particles, which formed voids that decreased the
density. However, the 10 wt.% Zn sample had the highest density value, as it had the best
homogenous microstructure; both Zn and GNSs were well distributed on the Cu matrix,
and 10 wt.% Zn percentage was the most suitable for Cu-Zn alloy formation.
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Table 3. Relative density measured value for obtained composites.

Alloys Relative Density %

Cu94Zn5GNSs1 89.90

Cu89Zn10GNSs1 90.64

Cu84Zn15GNSs1 87.41

Cu79Zn20GNSs1 85.82

3.5. XRD Analysis

XRD pattern for obtained nanocomposites (Figure 6) showed the phase composition
and structure of the manufactured Cu-Zn GNSs. For 5 and 10 wt.% Zn samples, only the
phases corresponding to Cu and Zn were observed, while for the higher percentages of Zn
(15 and 20 wt.%), new peaks were recorded corresponding to the β (Cu-Zn) solid solution.
This could be explained according to the phase rule and phase diagram between Cu and
Zn. Cu-Zn was an important binary alloy system. In the interested temperature ranges
from 300 to 1500 K, there were eight phases: liquid, Cu, β, β′, γ, δ, ε, and Zn phases, as
shown in Figure 7. A new description of the liquid phase and a simplified description of
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the body-centered cubic (bcc) phase was proposed, in which a solution of a solid in a solid
occurred for a certain concentration of both alloys at a certain temperature. Two metals
were combined in a solid solution, such as zinc in copper, where the Zn atoms replaced the
Cu atoms in the unit cell, leading to the formation of Cu-Zn solid solution. For the small
Zn percent, the Cu-Zn beta phase was formed, but its percent was lower than the XRD
device limits.
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3.6. Vickers Hardness

Figure 8 presented the effect of Zn additions on Vickers hardness values of Cu matrix
reinforced with 1 wt.% GNSs. The Figure demonstrated that the hardness of all prepared
samples was higher than that of pure annealed Cu (40 Hv). As such, reinforcing Cu with
1 wt.% GNSs and Zn metal improved the hardness of Cu up to 78.1 Hv for 10 wt.% Zn sam-
ple. This may be attributed to the high strength of GNSs, which dispersed homogeneously
on the Cu matrix. GNSs had superior properties, such as being super-flexible, super-strong,
super-light, and super-thin. Owing to all these extraordinary properties, reinforcing any
ductile metal with GNSs improved its mechanical properties, especially hardness. GNSs
were the hardest material known, until now. It had a tensile strength of 130 GPa, and as
such, the addition of GNSs to Cu-Zn alloy enhanced the microhardness. A Zn sample has
the highest hardness with a 10 wt.%, possibly attributed to its highest density and more
uniform microstructure. Although the hardness of 15 and 20 wt.% Zn was decreased, it
was still higher than that of pure Cu. This could be attributed to reinforcing Cu with a
hard ceramic GNSs and Zn metal that formed a solid solution that gave strength to the
samples [21].
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3.7. Compression Strengths Estimation

Figure 9 showed the effect of 1 wt.% GNSs and Zn additions on the compression
strength of Cu-Zn-GNSs nanocomposites. The Figure showed that compression strength
increased by Zn addition up to 10 wt.% sample, which subsequently decreased by increas-
ing the Zn percentage up to 20 wt.% Zn. This may be explained according to the higher
density and hardness of the 10 wt.% Zn sample. Furthermore, the good homogeneous
structure of GNSs and Zn was throughout the Cu matrix. Meanwhile, by increasing the
Zn percentage, the density decreased, and consequently, porosity increased. As such, the
availability of material cracking was increased as the internal pores were considered as a
center for crack initiation and spreading [22]. It must be mentioned that dispersing GNSs
in the Cu-Zn alloy improved the overall strength of the manufactured samples due to the
good mechanical milling parameters that helped in its dispersing and distribution in the
Cu matrix. The strength of the Cu-Zn alloy matrix was improved, which made the sample
able to withstand the high mechanical loads.
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3.8. Electrical Conductivity Measurements

Figure 10 showed the effect of Zn additions and graphene nanosheets on the electrical
conductivity of Cu-Zn-GNSs composites. A gradual decrease in the electrical conductivity
occurred by increasing Zn percentages. This could be attributed to the lower electrical
conductivity value of Zn than that of Cu (1.63 × 107 and 5.96 × 107 s/m for Zn and Cu,
respectively). The incorporation of low conductive particles with low free electrons to a
conductive matrix restricted the electron motion and decreased the conductivity value.
However, although the conductivity of Cu-Zn GNSs composites decreased, the 5 and
10 wt.% Zn samples had a high conductivity value, which was already in the application
ranges of Cu. Furthermore, the presence of GNSs helped in enhancing the electrical
conductivity of the prepared samples.
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3.9. Thermal Conductivity Estimation

Figure 11 showed the effect of Zn additions on the thermal conductivity of Cu-Zn
GNSs composites. The Figure showed gradual decreases in the thermal conductivity by Zn
increment. This could be attributed to more than one reason; the first is a decreased thermal
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conductivity value of Zn than that of Cu, which was 401 (w/m·k) for Cu and 116 (w/m·k)
for Zn. As such, the presence of Zn particles with low thermal conductivity decreased the
conductivity of the prepared samples [23]. The second reason was the formation of pores by
the addition of Zn and GNSs, which also had a negative effect on the thermal conductivity
as the conductivity of any pore is zero, which restricted the heat carrier mobility.
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3.10. Wear Behavior

Figures 12–14 showed the effects of Zn additions, applied load, and milling speed
on the wear rate of the manufactured Cu-Zn GNSs composites. From Figures 12–14, it
was clear that as the applied load increased, the wear rate increased, and by increasing
the milling speed (rpm), the wear rate also increased. This could be explained by the fact
that the contact area between the pin and the sample’s surface increased, giving the pin
more chance to wear more area from the contact surface, and consequently, the wear rate
increased [24]. By increasing the rpm, the increased wear rate could be explained by the
fact which stated that increasing (rpm) led to an increase in the frictional track on the
sample’s surface that increases the grooves and wear rate [25]. Another phenomenon from
the wear rate figures could be observed: the decreased wear rate from increasing the zinc
ratio up to the 15 wt.% that recorded the lowest wear rate value, then increased for the
20 wt.% sample. This was for both the 150 and the 450 rpm groups for the three applied
loads (10, 20, and 30 N). This could be explained by the addition of a ceramic or lubricant
material, such as the kind GNSs gives to increase strength to the ductile Cu with its good
distribution [19,26]. Furthermore, low density (2.2 g/cc) caused the collection of it on the
sample’s surface, increasing the sliding of the pin on the surface, consequently decreasing
the wear rate. The presence of GNSs caused the formation of tribo-layer on the sample’s
surface that decreased the wear rate. For the 20 wt.% Zn sample, some agglomerations of
GNSs occurred that increased the porosity, which consequently caused the wear rate to
increase. Zinc formed a solid solution with Cu and provided more strength by forming an
alloy that resisted wear and corrosion. However, for 300 rpm, the wear rate decreased by
increasing the Zn percentage gradually to 20 wt.% Zn sample, which recorded the lowest
wear rate [27].
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4. Conclusions

In this research, Cu-Zn GNSs nanocomposites were successfully produced by powder
metallurgy methods, including ball milling technique, followed by compacting steps using
uniaxial press. The results showed that bulk nanocomposites prepared using hexane as
PCA had a uniform microstructure with no evidence for the presence of voids. Furthermore,
the addition of 10 wt.% zinc increased the densities of obtained nanocomposite materials,
which ultimately decreased with further additions of zinc.

XRD revealed the formation of beta phase Cu-Zn solid solution for higher percentages
of Zn (15 and 20 wt.%). Obtained nanocomposites containing 10 wt.% zinc recorded
a higher value of Vickers hardness (78.1 Hv), while those with 20 wt.% zinc recorded
(49.6 Hv).

Good dispersing GNSs in the Cu-Zn alloy improved the overall strength of the man-
ufactured nanocomposites, with higher values of compressive strength for composite
containing 10% zinc.

Both the electrical and thermal conductivities for obtained nanocomposites decreased
gradually by increasing zinc content. In addition, the nanocomposite having 15 wt.% zinc
recorded the lowest wear rate.

Cu-Zn GNSs-CNTs hybrid nanocomposites were prepared using mechanical ball
milling technique. We will discuss the effect of the addition of CNTs with GNSs in the
near future.
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