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Abstract: A new 1,5-dioxaspiro[5.5] derivative coupled with a benzimidazole moiety: 5,6-dimethyl-
1H-benzo[d]imidazol-3-ium 3-((2,4-dioxo-1,5-dioxaspiro[5.5]undecan-3-ylidene) methyl) -2,4-dioxo-
1,5-dioxaspiro[5.5]undecane hydrate (DBH) was prepared. The crystal structure confirmed that
it belongs to triclinic, P-1 space group. The title compound includes one (C19H21O8)− anion, one
(C9H11N2)+ cation and one water molecule, which assembled into a 2D-net framework by O–H···O
and N–H···O hydrogen bonds. The quantum chemical computations using the B3LYP/6-311G
(d, p) basis level of theory reveal that the optimized geometric structure is suitable to study the
molecule. The theoretically simulated FT-IR spectra and electronic spectra of DBH are compared
with experimental data. The results show that the B3LYP/6-311g (d, p) method fits well with the
molecular structure. In addition, the thermodynamic properties have also been studied to determine
the nature of the DBH.

Keywords: 5,6-dimethyl-1H-benzo[d]imidazole; crystal structure; DFT calculation; vibrational
frequencies; thermodynamic properties

1. Introduction

Heterocyclic compounds play an important role in biochemistry, medicinal chemistry,
organic chemistry and agrochemical industries. In recent years, attention has been given to
the benzimidazole class of compounds due to their diverse biological activities, such as
anticancer [1,2], antifungal [3], antioxidant [4], cytotoxic [5], antiprotozoal [6], anti-T. cruzi
(Trypanosoma cruzi) [7], antiproliferative [8], antihistaminic [9], anti-inflammatory [10],
analgesics [11], antibacterial [12], anticonvulsant [13] and acetylcholinesterase [14]. In
addition, benzimidazole has been used as corrosion inhibition for mild steel [15], cat-
alytic activity [16], fluorescence chemosensors [17] and chiroptical sensors [18]. As other
heterocyclic compounds, spiro compounds containing O heteroatom have also attracted
much attention due to its special structure in recent years. All kinds of spirocyclic com-
pounds were designed and synthesized [19–21]. Based on the above reasons, our group
has prepared several spirocyclic compounds derived from the 1,5-dioxaspiro group or
the 6,10-dioxaspiro group in ten years [22–25]. However, to the best of our knowledge,
among so many reported oxaspirocyclic compounds, neither theory studies nor comparison
between the experimental and calculational results for derivatives from a benzodimida-
zole moiety are available. Herein, we have prepared a new 1,5-dioxaspiro[5.5] derivative
coupled with benzodimidazole moiety: 5,6-dimethyl-1H-benzo[d]imidazol-3-ium 3-((2,4-
dioxo-1,5-dioxaspiro[5.5]undecane-3-ylidene)methyl)-2,4-dioxo-1,5-dioxaspiro[5.5] unde-
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cane hydrate (DBH), seen as Scheme 1. In addition, its crystal structure, FT-IR spectra and
electronic spectra have been compared with DFT or TD-DFT calculational results.
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2. Materials and Methods
2.1. Physical Measurements

The infrared (IR) spectra were recorded using a Nicolet 6700 spectrometer (Nicolet
Instrument Inc., Madison, WI, USA). The C, H, and N elemental analyses were performed
on an Elementar Vario EL III elemental analyzer (Elementar, Hanau, Germany). The UV–
Vis spectra were measured on a TU-1901 spectrometer (Persee, Beijing, China). 1H NMR
and 13C NMR spectra were obtained with a Bruker AVANCE III HD NMR (400 MHz)
spectrometer (Bruker, Elisabethhof, The Netherlands) in CDCl3.

2.2. Preparation of DBH

The trimethyl orthoformate (1.27 g, 12 mmol) was refluxed with 1,5-dioxaspiro[5.5]undecane-
2,4-dione (1.84 g, 10 mmol) in ethanol (30 mL) for 3 h at 60 °C. After adding 5,6-dimethyl-1H-
benzene (1.46 g, 10mmol), the mixture lasted for a further 4 h. Then, the above mixture was cooled,
and the yellow powder (DBH) was isolated by filtration. Yield 17.8 %. m. p.: 175.2–175.3 ◦C.
Anal. Calcd. for C28 H34 N2 O9: C, 61.98; H, 6.32; N, 5.16. Found: C, 61.83; H, 6.27; N, 5.25.
1H NMR (400 MHz, CDCl3, δppm) 9.55 (s, 1H), 8.80 (s, 1H), 7.53 (s, 1H), 4.37 (m, 3H), 2.36
(s, 6H), 2.01 (t, J = 8.0 Hz, 8H), 1.56 (s, 2H), 1.44 (m, 6H), 1.34 (m, 6H). 13C NMR (125 MHz,
CDCl3, δppm) 151, 138, 134, 132, 114,103, 95, 34, 24, 23, 20. Yellow block crystals are obtained
using ethanol solvents.

2.3. X-ray Diffraction Analysis of DBH

The crystal of DBH was mounted on a Spider Rapid IP (Rigaku, Japan) area detector
at 293 K. Reflection data were obtained using MoKα (λ = 0.71073 Å) radiation. Its structure
was solved using SHELXL-2015 and SHELXT-2015 [26,27], respectively. The H atoms of DBH
were refined using the riding model. The final R indices: R1 = 0.045, wR2 = 0.1099 for 4741
reflections with I > 2σ(I) using the weighting scheme, w = 1/[σ2(Fo2) + (0.645 P)2 + 0.1579P],
where P = (Fo2 + 2Fc2)/3.

2.4. Computational Methods

The Gaussian 09 [28] software is used to execute the quantum chemical computations
by the DFT/B3LYP method with a 6-311G (d, p) basis set [29]. Gauss view is used to inspect
the output graphically obtained by the Gaussian 09 software. The geometric optimization of
DBH is accomplished by DFT/B3LYP/6-311G (d, p) level of theory [30]. The FT-IR infrared
and electronic spectra are calculated by the same method. The calculated wavenumbers
are scaled by 0.96 at the B3LYP/6-311G (d, p) level.
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3. Results and Discussion
3.1. Crystal Structure of DBH

The crystal data and structure refinement for DBH are list in Table 1. Its molecular
structure, which includes no H atoms, and its optimized geometric structure are both
shown in Figure 1.
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Table 1. Crystal Data and Structure Refinement for DBH.

Formula C28H34N2O9

CCDC 1948628
Mr 380.35

Color/shape yellow/block
Temperature 293(2) K

Crystal system, space group Triclinic, P-1

Unit cell dimensions
a = 10.5431(3) Å α = 73.9160(10)◦

b = 11.3397(4) Å β = 70.7600(10)◦

c = 12.4926(4) Å γ =89.8030(10)◦

V 1348.57(8) Å3

Z, Density 2, 1.336 Mg/m3

µ 0.100 mm−1

F(000) 576
θ 3.117 to 27.484◦

Limiting indices −13 ≤ h ≤ 12, −14 ≤ k ≤ 14, −16 ≤ l ≤ 16
No. of reflections collected/unique 13,425/6145 (Rint = 0.0188)

No. of parameters 357
GOF 1.132

R1 (I > 2σ (I)) 0.0450
wR2 (I > 2σ (I)) 0.1099

R1 (all data) 0.0595
wR2 (all data) 0.1284

Largest diff. peak and hole 0.372 and −0.224 e. Å−3

As shown in Figure 1 and Table 2, DBH is composed of one (C19H21O8)− anion, one
(C9H11N2)+ cation and one water molecule. The central C(10) atom is used to join two
1,5-dioxaspiro[5.5] undecane-2,4-dione moieties. The bond lengths reported for C8–C10
and C10–C11 are 1.389(2) Å and 1.382(2) Å, respectively, which resemble related published
compounds (1.386(2) Å, 1.380(2) Å) [24]. Their corresponding calculated results are 1.395 Å
and 1.388 Å. On the other hand, the bond angle of C8–C10–C11 in predicted values with the
experimental ones is 132.30◦ and 130.62(13)◦, respectively, which is also similar to related
structures reported(C15–C17–C9 131.19(1)◦) [24]. The experimental torsion angles for C7–
C8–C10–C11, C8–C10–C11–C12, C8–C10–C11–C14 and C9–C8–C10–C11 are 167.64(14)◦,
168.36(13)◦,−20.60(2)◦ and−21.40(2)◦, respectively. Their corresponding calculated torsion
angles are 168.64◦, 166.71◦, −24.00◦, and −24.28◦, respectively. The two 1.3-dioxane rings
R1 (O1, C1, O4, C9, C8, C7) and R2 (O6, C12, C11, C14, O7, C13) display distorted envelope
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conformation, with puckering parameters (Q, ϑ, ϕ) of (0.5052 Å, 105.63◦, 234.40◦) and
(0.4781 Å, 70.33◦, 304.46◦), respectively. The maximum difference of bond lengths, bond
angles and torsion angles between experimental values and calculated ones is 0.019 Å,
1.68◦ and 3.4◦, respectively, which hereby certifies that the B3LYP/6-311G (d, p) level can
simulate the crystal structure.

Table 2. Experimental and Computational Bond Distances (Å), Bond Angles (◦) and Torsion Angles for DBH.

Bond Lengths Exp. (Å) Calc. (Å) Bond Exp. (Å) Calc. (Å)

C8–C10 1.389(2) 1.395 O1–C1 1.436(16) 1.419
C10–C11 1.382(2) 1.388 O1–C7 1.365(18) 1.385
O8–C14 1.213(16) 1.201 C1–O4 1.441(15) 1.449
O5–C12 1.212(16) 1.231 O2–C7 1.218(17) 1.201
O6–C12 1.361(17) 1.351 O3–C9 1.221(16) 1.231
O6–C13 1.438 (15) 1.456 O4–C9 1.356(16) 1.352
O7–C14 1.363(18) 1.382 N1–C20 1.318(2) 1.329
N2–C20 1.322(19) 1.333 N2–C21 1.389(17) 1.391
Bond angle Exp (◦) Calc. (◦) Bond angle Exp (◦) Calc. (◦)
C11–C10–C8 130.62(13) 132.30 C10–C8–C7 118.45(13) 117.36
C10–C11–C12 117.58(12) 117.45 C10–C8–C9 123.96(12) 123.18
C10–C11–C14 123.67(12) 122.91 C7–C8–C9 117.00(13) 118.61
C12–C11–C14 118.17(13) 118.41 N1–C20–N2 110.32(12) 110.43
Torsion angle Exp (◦) Calc. (◦) Torsion angle Exp (◦) Calc. (◦)
C7–C8–C10–C11 167.64(14) 168.64 O1–C7–C8–C9 19.52(18) 18.90
C8–C10–C11–C12 168.36(13) 166.71 O2–C7–C8–C9 −158.30(15) −160.69
C8–C10–C11–C14 −20.6(2) −24.00 C9–C8–C10–C11 −21.4(2) −24.28

In DBH, the H2O molecule connects the two (C19H21O8)− anions with the (C9H11N2)+

cation via O9–H9A···O2, O9–H9B···O5 hydrogen bonds and N2–H2···O9 hydrogen bonds,
respectively. The distance of O9···O2, O9···O5 and N2···O9 is 2.792(18) Å, 2.728(16) Å
and 2.650(18) Å, respectively (Table 3). The (C9H11N2)+ cation and the (C19H21O8)− anion
were linked by N1–H1···O3 intermolecular hydrogen bonds, and donor and acceptor
distances are 2.777(15) Å, symmetry code: x, y − 1, z. DBH displays a 2D-net structure
by O–H···O and N–H···O hydrogen bonds (Figure 2). A three-dimensional network was
further generated by the above hydrogen bonds, as shown in Figure 3.
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Table 3. N–H···O and O–H···O Molecular Interactions for DBH.

D–H···A Symmetry D–H
(Å)

H···A
(Å)

D···A
(Å)

∠D–H···A
(◦)

N1–H1···O3 x, y − 1, z 0.86 1.94 2.777 (15) 165.0
N2−H2···O9 intra 0.86 1.79 2.650(18) 172.3
O9–H9A···O2 −x + 2, −y + 1, z + 1 0.86 1.97 2.792(18) 161.6
O9–H9B···O5 intra 0.86 1.90 2.728(16) 165.5
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3.2. Vibrational Analysis

As shown in Figure 4, the νO−H vibration appeared at 3383 cm−1 in the infrared
spectra and at 3388 cm−1 in DFT calculations, which is due to the water of DBH. The
νC−H vibration of the 5,6-dimethyl-1H-benzo[d]imidazole ring appeared at 3106 cm−1,
and the corresponding calculated band was observed at 3126 cm−1. The calculated and
experimental νC=O vibrations of the 1,3-dioxane ring were observed at 1737 cm−1 and
1629 cm−1 and at 1691 cm−1 and 1652 cm−1, respectively. The νC–O bands of 1,3-dioxane
ring were seen at 1261 cm−1 and 1225 cm−1 in DFT and at 1255 cm−1 and 1215 cm−1 in
the IR spectra, respectively. These values agree well with literature reports [22–24]. The
νC=N and νC–N vibrations occurred at 1490 cm−1 and 1347 cm−1 in DFT, respectively. The
corresponding bands were seen at 1489 cm−1 and 1366 cm−1 in the IR spectra. In a word,
the IR spectra for DBH agree very well with the calculated values.
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3.3. Thermodynamic Properties

Thermodynamic parameters for different temperatures were calculated at the B3LYP/6-
311G (d, p) level and scaled by 0.96. Three main thermodynamic properties—capacity
(C0

p,m), entropy (S0
m) and enthalpy (H0

m)—are listed in Table 4. As shown in Table 4, all
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the values increase when the temperature rises in the range of 100.0–1000.0 K, which is
mainly because a higher temperature can strengthen the vibration of molecules [31].

The correlation equations of C0
p,m, S0

m, H0
m and temperature T are as follows:

C0
p,m = 15.072 + 2.275 T − 9.247∗10−4 T 2 (R2 = 0.99947)

S0
m = 293.009 + 2.345 T − 4.947∗10−4 T 2 (R2 = 0.99999)

H0
m = −26.153 + 0.249 T +6.323∗10−4 T 2 (R2 = 0.9994)

Table 4. C0
p,m, S0

m and H0
m from 100.0 to 1000.0 K at the B3LYP/6-311G (d, p) level.

T
(K)

C0
p,m

(J·mol−1·K−1)
S0

m
(J·mol−1·K−1)

H0
m

(kJ·mol−1)

100.0 245.91 520.42 14.32
200.0 423.94 745.99 47.88
298.1 601.87 948.26 98.18
300.0 605.24 951.99 99.29
400.0 780.04 1150.47 168.70
500.0 930.87 1341.24 254.48
600.0 1054.72 1522.29 353.97
700.0 1155.81 1692.73 464.66
800.0 1239.14 1852.68 584.54
900.0 1308.68 2002.76 712.03

1000.0 1367.29 2143.76 845.91

3.4. Electronic Analysis

To compare with the experimental spectra, the calculated spectra of DBH are per-
formed with the TD-DFT/B3LYP/6-311G (d, p) basis level and shown in Figure 5. As seen
in Figure 5, two peaks arise at 245 nm and 378 nm in the experimental spectra and 252 nm
and 339 nm in the calculated spectra, respectively. Figure 6 depicts eight frontier molecular
orbitals of DBH, which is in agreement with the electron transitions shown in Table 5. As
shown in Figure 6, the electron clouds of DBH are mainly localized on 5,6-dimethyl-1H-
benzo[d]imidazole ring, two 1,3-dioxane rings and C8–C10=C11 bands, which indicate
that the electronic transitions in UV–Vis spectra are in accordance with π→ π* and n→ π*
transitions. For example, the first peak at 252 nm is mainly assigned to three electronic
transition modes HOMO-5→LUMO+2, HOMO-4→LUMO and HOMO-3→LUMO. In
HOMO-5, HOMO-4 and HOMO-3, electrons are distributed on the 5, 6-dimethyl-1H-
benzo[d]imidazole ring, two 1,3-dioxane rings and C8–C10=C11 bonds, while in LUMO
and LUMO+2, electrons are distributed on the 5, 6-dimethyl-1H-benzo[d]imidazole ring.
The second peak at 339 nm is only one electronic transition mode HOMO→LUMO+1.
In HOMO and LUMO+1, electrons are distributed on both two 1,3-dioxane rings and
C8–C10=C11 bonds. Then, electronic transitions related with the peak at 339 nm are mainly
from C8–C10=C11 bonds and oxygen atoms of 1,3-dioxane rings to C8–C10=C11 bonds,
which are consistent with π→ π* and n→ π* transitions [32].

Table 5. Experimental and calculated electronic absorption spectra values.

Exp. Calc. (TD-DFT)

Wavelength
(nm)

Wavelength
(nm)

Oscillator
Strength(f) Electronic Transition Modes

245 252 0.2079
139HOMO − 5→147LUMO + 2

140HOMO − 4→145LUMO
141HOMO − 3→145LUMO

378 339 0.4089 144HOMO→146LUMO + 1
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4. Conclusions

5,6-dimethyl-1H-benzo[d]imidazol-3-ium,3-((2,4-dioxo-1,5-dioxaspiro[5.5]undecan-3-
ylidene)methyl)-2,4-dioxo-1,5-dioxaspiro[5.5]undecane hydrate (DBH) has been prepared,
and its structure has been confirmed by single-crystal X-ray diffraction. DBH includes
one (C19H21O8)− anion, one (C9H11N2)+ cation and one water molecule, which assembled
into a 2D-net framework by O–H···O and N–H···O hydrogen bonds. By comparing with
experimental values, the calculated vibration frequencies and electronic spectra of DBH
using the DFT/B3LYP/6-311g (d, p) level of theory fit well with the molecule.
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