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Abstract: In this paper, kinematic relations and constitutive laws in crystal plasticity are analyzed in
the context of geometric nonlinearity description and fulfillment of thermodynamic requirements in
the case of elastic deformation. We consider the most popular relations: in finite form, written in terms
of the unloaded configuration, and in rate form, written in terms of the current configuration. The
presence of a corotational derivative in the relations formulated in terms of the current configuration
testifies to the fact that the model is based on the decomposition of motion into the deformation
motion and the rigid motion of a moving coordinate system, and precisely the stress rate with
respect to this coordinate system is associated with the strain rate. We also examine the relations
of the mesolevel model with an explicit separation of a moving coordinate system and the elastic
distortion of crystallites relative to it in the deformation gradient. These relations are compared
with the above formulations, which makes it possible to determine how close they are. The results
of the performed analytical calculations show the equivalence or similarity (in the sense of the
response determined under the same influences) of the formulation and are supported by the results
of numerical calculation. It is shown that the formulation based on the decomposition of motion with
an explicit separation of the moving coordinate system motion provides a theoretical framework for
the transition to a similar formulation in rate form written in terms of the current configuration. The
formulation of this kind is preferable for the numerical solution of boundary value problems (in a
case when the current configuration and, consequently, contact boundaries, are not known a priori)
used to model the technological treatment processes.

Keywords: crystal plasticity; multilevel models; large strain; motion decomposition; constitutive
law; anisotropic materials; corotational derivative

1. Introduction

In recent decades, extensive research efforts have been made to develop a multilevel
approach to constructing constitutive models for metals and alloys via the introduction of
internal variables [1–4]. The crystal plasticity models obtained within the framework of
this approach provide an opportunity to explicitly describe changes in the structure of the
material (its anisotropic physical and mechanical macro-properties) and deformation mech-
anisms [5–9]. This validates the application of these models for studying and improvement
of materials processing technologies, as well as for solving the problems associated with
the development of new functional materials.

Crystal plasticity models can be divided into three classes. In statistical models aimed
at describing the behavior of representative macrovolumes, consideration is given to a
sample of uniformly deformed grains (reviews of the models of this class are provided
in [10–12]. The application of modified statistical models makes it possible to take into
account the interaction of neighboring grains, e.g., during the explicit description of
the motion of dislocations across the boundary [13]. Self-consistent models are used
to investigate the behavior of uniformly deformed grains in a matrix representing the
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effective characteristics of polycrystals. These models provide the fulfillment of equilibrium
conditions; the effective characteristics are determined using statistical averaging methods.
Reviews of the self-consistent models are given in [7,10,14]. Direct models based on the
finite element method are recognized to be the most effective models for analyzing the non-
uniform stress-strain state of grains (reviews of these models can be found in [7–9,15,16].

The crystal plasticity models mentioned above differ in the way of aggregation (com-
bining the elements of a lower scale level into one element of a higher scale level), but all
these models are based on the mesolevel relations used to describe crystallites, which led
to the name “crystal plasticity”.

In the last decade, numerous attempts have been made to develop crystal plasticity
models based on generalized, mainly gradient, continua [17–20]. However, most authors
assumed that the material under study is a simple (first-order) material [21]. In this
case, the basic structure of the mesolevel constitutive model aimed at taking into account
intragranular dislocation slip and lattice rotation is composed of the following equations:
constitutive law for the relationship between stresses and elastic component of deformation,
kinematic relations (including equations for determining the lattice spin), relation for the
determination of the inelastic component of deformation and equations for the description
of hardening.

The description of hardening (usually through the evolutionary relations for the intro-
duced internal variables “critical shear stresses”) is the important element of the model;
there are many works devoted to the development of crystal plasticity in this direction
(we mention here only some of the well-known works [22–24]). To date, other ratios of
the basic structure of the model can be considered as the typical ratios, and therefore they
are often dropped from the consideration in papers. However, researchers use several
different types of basic formulations that differ in kinematic and constitutive relations. In
our opinion, it is important to undertake a thorough analysis of these relations, which will
enable their comparison in the context of geometric nonlinearity description and fulfillment
of thermodynamic requirements. This is especially important given the fact that an inten-
sively developing direction in crystal plasticity is related to the application of constitutive
models for describing other, side by side with intragranular dislocation sliding, significant
mechanisms and processes, such as twinning [8,25–27], phase transitions [8,28,29], grain
boundary sliding [13,30–32], recrystallization [33–35]. In order to create advanced models,
it is necessary to make a reasonable choice of a platform (the basic structure of the model).

In Section 2, popular formulations of mesolevel models are presented and analyzed.
In the finite form, the models are formulated in the unloaded configuration, and in the rate
form, in the actual configuration. The incorporation of a corotational derivative into the
models formulated in the actual configuration means that the motion is decomposed into a
rigid motion of the moving coordinate system and a deformation motion of the medium
relative to it; the stress rate relative to the moving coordinate system is associated with the
rate of this deformation. Section 3 considers the structure of kinematic and constitutive
relations in the case when the component responsible for the rigid rotation of a moving
coordinate system, relative to which the elastic distortions of the lattice are determined,
is explicitly separated in the deformation gradient. An analytical comparison of different
formulations and the results of numerical calculations are given in Section 4.

2. Some Well-Known Variants of Base Mesolevel Relations

In a number of works, linear constitutive relations with isotropic elastic law are used
to describe small deformations [36]. However, since crystal plasticity models are usually
focused on describing the behavior of materials at large displacement gradients, including
changes in anisotropic properties at the macrolevel (texture formation), such approximation
is rarely used. In addition, the application of anisotropic elastic law causes significant
errors in the calculation of residual stress [37].

Let us consider the well-known variants of geometrically nonlinear anisotropic re-
lations of the basic structure of crystal plasticity models, including the description of
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intragranular dislocation slip and crystallite lattice rotation. Single and double contractions
are denoted by “·” and “:”, respectively, and the outer tensor product is denoted by “⊗”.

2.1. Relations in Terms of the Unloaded Configuration (U-Model)

In many studies, the classical decomposition of the Kröner–Lee deformation gradient
f is explicitly utilized [38–40]:

f = fe · fp, (1)

where fe, fp denote the elastic and plastic components of the deformation gradient.
The crystal lattice rotation is associated with the orthogonal vector re from the polar

decomposition fe = re · ue = ve · re, so the lattice spin is described by the relation:

ω =
.
re · reT , (2)

where the dot indicates the time derivative.
Constitutive relations are formulated in the “classical” unloaded configuration found

from the actual configuration by applying an affine transformation with (fe)−1:

k = π0 : ce, (3)

where k = J(fe)−1 · σ · (fe)−T is the second Piola–Kirchhoff tensor defined in the unloaded
configuration (σ is the Cauchy stress tensor, J = detfe), ce = 1/2

(
(fe)T · fe − I

)
is the elastic

Green-Lagrange strain defined in the unloaded configuration, π0 = πijmnk0i ⊗ k0j ⊗ k0m ⊗
k0n is the elastic tensor, in which k0i denotes the crystallographic basis in the reference
configuration.

The plastic component of the deformation gradient fp is obtained from the relation:

.
f

p
· (fp)−1 =

K

∑
k=1

.
γ
(k) o

b
(k)
⊗ o

n
(k)

, (4)

where
o
b
(k)

,
o
n
(k)

are the unit vectors of the slip direction and the normal to the slip plane in
the reference configuration, and K is the number of the slip systems in a crystallite. Here,
positive and negative dislocations (doubling of slip systems) are considered separately,
which makes the specification of hardening laws more variable, and therefore we make use
of this technique in our study.

In most models, the shear rates
.
γ
(k) on the slip systems are determined by viscoplastic

relations [41–43]:
.
γ
(k)

=
.
γ0

(
τ(k)

τ
(k)
c

)m

H(τ(k) − τ
(k)
c ), (5)

where τ(k), τ
(k)
c are the resolved and critical shear stresses on the k-th slip system,

.
γ0 is the

shear rate in the slip system in the case when the tangential stress approaches the critical
shear stress, and m is the strain rate sensitivity exponent of the material, and H(·) is the
Heaviside function. There are some papers, the authors of which propose different ways to
determine the resolved shear stress; this issue deserves a separate discussion because it
lies, strictly speaking, beyond the scope of this paper. For definiteness, we suppose that
τ(k) = k : n(k) ⊗ b(k), where k is the weighted Kirchhoff stress tensor (k = Jσ), b(k), n(k)

are the unit vectors of the slip direction and the normal to the slip plane in the actual
configuration.

In many works, Relation (5) are often supplemented with a term exp
(
− U

κθ

)
, where κ

is the Boltzman constant, and U is the model parameter (activation energy). This allows
one to consider the dislocation motion as a function of temperature. There is also an
approach that involves determination of the temperature-dependent parameters

.
γ0, m [44]
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or formulations of corresponding relations for the critical stresses τ
(k)
c [24]. In any case, the

initial critical stress values τ
(k)
c (0) should appear to be temperature-dependent.

Based on the literature review, we can conclude that the strain rate dependence of
stresses in crystal plasticity can be taken into account in different ways. In most of the
works

.
γ0 = const, and therefore the strain rate sensitivity is defined by the parameter m.

The value of
.
γ0 should match the strain rate in order to avoid the sawtooth stress-strain

response (curve) of the material during the numerical implementation of the model. It
should also be noted that in the general case, there is an interaction between the parameters
.
γ0 and m. At high m, the elastoviscoplastic model is almost similar to the elastoplastic
model. Relation (5) provides a point in the stress space in a small neighborhood of the
yield surface defined by Schmid’s criterion: when the point is trying to move at great
distance away from the neighborhood, significant relaxation of stresses is realized, and

the point gets back to it. One can also use the relation
.
γ0 = ηdu, du =

√
2
3 d′ : d′ is the

strain rate intensity, d′ is the deviator of the stretching tensor d, η is the model parameter
(usually η = 1) [24,45]. For the active slip systems, the shear stresses tend towards critical
stresses [45]. In the framework of this approach, the effect of the strain rate on the material
response is embedded into the evolutionary relations for critical stresses τ

(k)
c .

The aim of this study is to analyze the kinematic relations and constitutive laws. To
this end, we use, for definiteness, Relation (5) with constant

.
γ0 in all cases under study and

describe a hardening behavior according to a simple and well-known law [46–48] as:

.
τ
(k)
c =

K
∑

l=1
h(kl) .

γ
(l),

h(kl) =
[
ql at + (1− ql at)δ

(kl)
]

h(l), h(l) = h0

∣∣∣1− τ
(l)
c /τsat

∣∣∣a,
(6)

where the latent hardening parameter ql at takes the values 1 and 1.4 for coplanar and
noncoplanar slip systems (with numbers k and l), respectively, and δ(kl) is the Kronecker
delta.

Thus, for definiteness, all the base models considered in our study involve Relations
(5) and (6) so that the inelastic strain rate can be determined.

We will call the model, which uses the kinematic relations and constitutive laws (1)–(4),
the “U-model” (the unloading configuration type of the model). The given base structure
of the relations is employed in numerous works, for instance, in [8,47–53]. In [54], this
model is termed the Kalidindi–Bronkhorst–Anand formulation [55].

2.2. Relations in Terms of the Actual Configuration with a Taylor Spin (T-Model)

The models are often formulated using the Jaumann type rate of the Cauchy stress.
The law of elasticity is written in this case as [56,57]:

σ J =
.
σ −ωT · σ + σ ·ωT = π : (d− dp) , (7)

where π is the elastic tensor in the actual configuration (defined for the current crystal-
lographic orientation), d is the stretching tensor (presented on the basis of the additive
decomposition d = dp + de), the plastic part of which is determined as:

dp =
K

∑
k=1

1
2

.
γ
(k)
(

b(k) ⊗ n(k) + n(k) ⊗ b(k)
)

. (8)

The spin ωT is calculated in the framework of the Taylor’s rotation model [58]:

ωT =
1
2
(l− lT) +

K

∑
κ=1

1
2

.
γ
(k)

(n(k) ⊗ b(k) − b(k) ⊗ n(k)), (9)

where l is the velocity gradient.
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Some recent studies (e.g., [59,60]) have used the law of elasticity written as:

σ J =
.
σ −ωT · σ + σ ·ωT = π :

( .
ε− .

ε
p
) − σtr(

.
ε) (10)

Apparently, these studies suggest that any strain rate can be defined as
.
ε, yet

.
ε = d

remains the most common option. The
.
ε

p is determined by making use of (8).
It is easy to see that, for

.
ε = d, Relation (10) can be written in the form:

kJ =
.
k−ωT · k + k ·ωT = π̃ : (d− dp) , (11)

where π is the elastic tensor for establishing the relation between the stress rate and elastic
strain rate shown above, π̃ = Jπ.

Relation (11) and equivalent Relation (10) are supposed to be used instead of (7) since
the internal energy density (per unit mass) is defined as:

u =

τ∫
0

(
1
ρ̂

σ : d
)

dt =
1
◦
ρ

τ∫
0

(Jσ : d)dt =
1
◦
ρ

τ∫
0

(κ : d)dt, (12)

According to (12), at small deformations (at ωT = 0 and for in case of change in
volume) when (11) is fulfilled, there will be no energy dissipation during the purely elastic
deformation, which does not provide (7). A detailed analysis of the fulfillment of the
thermodynamic constraints is given in Section 2.3. Note that, due to the smallness of
volume changes in metals and alloys, (11) and (7) give similar results.

The model that involves the kinematic relations and constitutive laws (8), (9), and (11)
will be further called the “T-model” (Taylor spin model). The relations of such conceptual
structure have been used in many papers, in particular, in [59–61]. Some variants of self-
consistent models [7] are based on the mesolevel equations of the same structure but with
correction of spin (9) via subtraction of the antisymmetric part of the Eshelby tensor for
considered grain.

2.3. Analysis of the Formulations with an Emphasis on Describing Geometric Nonlinearity and
Fulfillment of Thermodynamic Constraints

In many works cited above, it was shown that, due to the structure of the model
relations, the dissipation of energy under inelastic deformation is positive within the
framework of both U- and T-models.

The U-model elastic law (3) involves the energetic conjugate stress-strain measures,
and this guarantees the absence of energy dissipation during purely elastic deformation.
Besides, the finite form of the relations ensures that, after the purely elastic deformation
of the material (being in the unloaded configuration) along any closed deformation tra-
jectories, the stresses will be zero. Thus, the conservation conditions for purely elastic
deformation [62] are fulfilled within the framework of the U-model.

At the same time, the U-model implies the necessity to perform numerical integration
of (4) so that fp can be determined. This can violate the condition of isohoricity of plastic
deformation and require corrective techniques. Therefore, ref. [54] proposes an alternative
formulation for crystal plasticity that is based on the Kröner–Lee decomposition (also)
and logarithmic strain measure, whose rate was decomposed additionally by using elastic
corrector rates (defined on the basis of the plastic flow characteristics—shear rates on the
slip systems). A major advantage is the lack of a necessity to calculate the exponent when
determining fp at the end of each step. Meanwhile, we need to point out here that the
interpretation of the physical meaning of the elastic law when considering it as a relation
between the introduced complex measures of the stress-strain state (not only in the context
of thermodynamics) is rather complicated. In addition, the fulfillment of the additivity
condition for the components of the strain rate measure is guaranteed only if one slip
system is active; in the general case, this condition is fulfilled approximately [54].
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On the other hand, for the study of technological processes of thermomechanical
processing, it is more convenient to formulate the boundary value problem in terms of
the actual configuration in the rate form. This enables one to use numerical methods: a
step-by-step solution with a redefinition of the configuration of the computational domain
(including the contacting surfaces) can be realized. Another significant advantage of
this formulation is an additive decomposition of the rate of inelastic deformation into
contributions from various mechanisms. So, advanced crystal plasticity models taking into
account grain boundary sliding were constructed on the basis of this structure [13,30–32].
The T-model, referring to this type of formulation, uses a transparent measure of the strain
rate—stretching tensor d.

It should be noted that the use of the corotational derivative in Relation (11) suggests
that the linear (verified) constitutive relation is assumed to be valid for the observer related
to a moving coordinate system rotating with the Taylor spin [63]. This suggests that the
motion is decomposed into the rigid motion of the moving coordinate system and the
deformation motion with respect to it [64]. Note that, to be fully consistent with the issue,
we should write the measure of the rate of elastic deformation on the right-hand side of (11)

as (l− lp −ωT), lp =
K
∑

k=1

.
γ
(k)b(k) ⊗ n(k) [65]. However, due to the tensor symmetry, the

results will be similar to those obtained when using (d− dp). In some studies, the authors
explicitly say that they use linear constitutive relations written in the local coordinate
systems of crystallites [66,67].

It is evident that, for the relations in terms of the actual configuration in the rate form,
the key question is how to determine the spin of the moving coordinate system.

The determination of a hypoelastic law of the form (11), for which the above-mentioned
conservation conditions are fulfilled under purely elastic deformation, is a well-known
problem in the mechanics of solids [62]. The popular Zaremba–Jaumann [68,69] and Green–
Naghdi [70] corotational derivatives do not guarantee the fulfillment of the conservation
conditions. Therefore, a logarithmic corotational derivative without this drawback was de-
veloped [62,71,72]. However, in [63,73], one can find examples that illustrate the difficulties
which can be encountered in modeling the multistage deformation processes (including
unloading): if the purely elastic cyclic loading is realized upon completion of elastoplastic
deformation and unloading, then the stress hysteresis will be observed. In [73,74], the
logarithmic spin, called the kinetic logarithmic spin (k-logspin), was improved. The mod-
ernized spin makes it possible to meet the conservation conditions in the simulation of
multi-stage deformation processes, including unloading, but the consideration is limited to
anisotropic material. Thus, the problem of formulating a hypoelastic constitutive relation
of the Form (11) for an anisotropic material that ensures the fulfillment of the conservative
conditions has not yet been completely solved. Obviously, this is also the case for the
crystal plasticity T-model.

So, both the U-model and the T-model have “a certain extent roughness” formulations,
which still arouses the interest of researchers in finding a more elegant solution, with the
leveling of these “roughness” formulations (see, e.g., [54]).

Note that, when formulating the T-model, the moving coordinate system (MCS) must
be related to the crystallographic coordinate system since the components of the elastic
tensor are assumed to be constant in the MCS. In other words, the MCS must be associated
with the symmetry elements of the crystal.

According to the Taylor constrained rotation model, the displacement gradient at the
mesoscale (grain level) is represented in the form [58]:

l = ωT +
K

∑
κ=1

.
γ
(k)b(k) ⊗ n(k), (13)

whence, by taking the antisymmetric part, we obtain the relation for the lattice spin (9).
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Traditionally, the Taylor model is used for rigid-plastic models (this follows from
the symmetrized Relation (13)—all deformation is associated with the shears on the slip
systems). The closeness of the spin (9) to the “material rotation” spin (2) was demon-
strated [9,75]. In both cases, one cannot speak of a direct relation between the MCS and
the symmetry elements of the lattice. We also note that during deformation, the crystal-
lographic coordinate system (CSC) can be distorted, while the MCS remains rigid, and
therefore, strictly speaking, their identification is an approximation of the mathematical
model.

In [63,65,76], an approach to the formulation of geometrically nonlinear relations
is proposed. The approach is based on a modified multiplicative decomposition of the
deformation gradient with an explicit selection of rigid rotation of the MCS, which is
associated with the symmetry elements of crystallites. In the next section, the equations of
the corresponding mesoscale formulations are given in a brief form (in the finite form in
the lattice unloaded configuration and in the rate form in the current configuration). In
Section 4, these ratios are compared with the U-model and T-model and are utilized to
compare these formulations to each other.

3. Modification of Mesolevel Relations with an Explicit Separation of the Rigid
Moving Coordinate System with Respect to Which Elastic Distortion Is Defined
3.1. Relations in Terms of Lattice Unloaded Configuration (LU-Model)

In [63,76], it was proposed to modify the decomposition of motion at a mesolevel, i.e.,
to realize a multiplicative representation of the deformation gradient f with an explicit
separation of the rigid moving coordinate system (MCS) Op1p2p3:

f = fe · fp = fe · r · fp. (14)

Here, r = k̂i ⊗
(

k̂i
∣∣∣
t=0

)
≡ k̂i ⊗ ki is the proper orthogonal tensor which converts

the reference basis MCS) ki into the current basis k̂i; in other words, r is the tensor of
rotation of the MCS from reference to actual configuration; fp is the component of the
deformation gradient that transforms the initial configuration into the plastically deformed
configuration, fe

is the component of the deformation gradient component that transforms
the plastically deformed configuration into the actual configuration (this tensor also char-
acterizes crystalline lattice distortion), and fe

, fp are, in the general case, the non-symmetric
second rank tensors.

The motion of the MCS is a rigid motion, and the motion relative to the MCS is
a deformation motion: geometrically generalized nonlinear constitutive relations are
formulated by an observer related to the MCS [65]. Relation (14) is a modification of the
classical Kröner–Lee decomposition (1) via the explicit separation of the quasi-rigid motion
r. Note that, in the general case, the tensor does not coincide with the orthogonal tensor re

in the polar expansion fe = re · ue = ve · re in the case when the spin of the corresponding
MCS is defined (2).

For analytical calculations, we also introduce the crystallographic coordinate system
(CCS) Oy1y2y3 with basis qi. Without loss of generality, we assume that, in the reference
configuration, the CCS basis qi(0) is an orthonormal basis that coincides with ki. Note that
the lengths of the CCS basis vectors and the angles between them vary during deformation.

The constitutive laws are formulated in the context of the observer related to the
MCS. This MCS is assumed to be linked to the symmetry axes of the material. Probably,
the idea of the necessity of determining corotational derivatives with reference to the
symmetric elements of the material (directors) was initially put forward by J. Mandel [77],
yet, unfortunately, his study contains no specific relations for describing a crystallite lattice
spin.

Based on the introduced multiplicative decomposition (14) and assuming that the
elastic properties of the crystallite in MCS are constant, the constitutive elastoviscoplastic
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relation was formulated in terms of the unloaded configuration (unloading is carried out

with (fe
)
−1

, and the MCS remains fixed) [63,76]:

k = π : ce, (15)

which includes the second Piola–Kirchhoff tensor k, defined in the unloaded configura-

tion, k = k
ij

k̂i ⊗ k̂j = J(fe
)
−1 · σ · (fe

)
−T

and the four-rank elastic tensor π = πijmnk̂i ⊗
k̂j ⊗ k̂m ⊗ k̂n, ce is the elastic constituent of the right Cauchy–Green deformation tensor

ce = cijk̂i ⊗ k̂j = 1/2((fe
)

T · fe − I), and I is the unit tensor. The accepted definition of
the elastic tensor (its components are constant in the MCS) conforms to the principle of
independence of constitutive relations from reference choice [21].

The plastic component of the deformation gradient fp is determined using the vis-
coplastic or elastoplastic relations applied to describe the intragranular dislocation slip. In
the model, as in other compared models, we use Relations (4)–(6).

An important component of the constitutive model is the kinetic relation for the
motion of the MCS. As noted above, it seems reasonable to relate the mesoscale MCSs and
the symmetry elements of the crystal lattice [65,76,77]. Plastic deformations occur due to
the movement of dislocations and they do not cause symmetry distortion, and therefore r
can be completely determined by the tensor fe.

The elastic gradient fe = fe · r contains both the quasi-rigid motion (rotation) of the
MCS and the distortion of the lattice relative to it. Generally speaking, there are different
variants of this relation. In order to overcome this challenge, it is necessary to accept a
hypothesis for the definition of r. We consider here one of the options. Let a relation
between CCS and MCS be as follows: (1) the axes Oy1 and Op1 coincide at every instant of
deformation (the vector k̂1 is directed along the vector q1); (2) the vector k̂2 is located in the
plane Oy1y2 at each instant of deformation. In [65], the following relation for the MCS spin
is presented:

ω1 =
.
r · rT =

.
k̂i ⊗ k̂i = −

(
k̂2 · le · k̂1

)
k̂1 ⊗ k̂2 +

(
k̂2 · le · k̂1

)
k̂2 ⊗ k̂1−

−
(
k̂3 · le · k̂1

)
k̂1 ⊗ k̂3 +

(
k̂3 · le · k̂1

)
k̂3 ⊗ k̂1−

−
(
k̂3 · le · k̂2

)
k̂2 ⊗ k̂3 +

(
k̂3 · le · k̂2

)
k̂3 ⊗ k̂2.

(16)

where le =
.
f

e
· fe−1 is the elastic component of the velocity gradient. In [78], the authors

described the way to define r in finite form taking into account the above relation between
the CCS and the MCS and showed the compliance of the obtained result with that obtained
by integrating (16).

Expression (16) can take a more compact form [79]:

ω1 = I× (k̂1 ⊗ k̂2 ⊗ k̂3 − k̂2 ⊗ k̂1 ⊗ k̂3 + k̂3 ⊗ k̂1 ⊗ k̂2) : le (17)

where «×» denotes the vector product.
A model that involves kinematic Relations (4), (14), and (17) and constitutive law

(15) is termed here the “LU1-model” (lattice unloading configuration type of model with
spin 1).

Besides, the MCS can be related to other symmetry elements of the crystal lattice. As
an alternative, we consider the case when the axes Oy3 and Op3 coincide at each instant of
time (the vector k̂3 is directed along the vector q3), the vector k1 is positioned at each instant
of deformation in the plane Oy1y3. Under these conditions, the spin can be calculated:

ω2 = I× (−k̂1 ⊗ k̂3 ⊗ k̂2 + k̂2 ⊗ k̂3 ⊗ k̂1 + k̂3 ⊗ k̂1 ⊗ k̂2) : le. (18)

We call the modified version of the LU-model with spin (18) the “LU2-model”.
Consider the issue regarding the difference between LU1-model and LU2-model.
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We assume that, at equal kinematic effects f, the current positions of the MCS related
to the symmetry axes of the lattice in different ways can be described by different tensors
r and r∗ (due to the smallness of elastic distortions, these tensors are similar). So, the
deformation gradient can be written as f = fe · r · fp = fe ∗ ·r ∗ ·fp∗.

Based on the constitutive Relation (15), in the case when the orientation of the MCS is
defined via the application of the tensor r, the Cauchy stress are established as:

σ = 1/Jfe ·
(

π : 1/2
(

feT · fe − I
))
· feT

, (19)

where π = πijmnk̂ik̂jk̂mk̂n = πijmn(r · ki)(r · kj)(r · km)(r · kn). Relation (19) is easy to
rearrange [80] into the form:

σ = 1/Jfe ·
(

πijmnki ⊗ kj ⊗ km ⊗ kn : 1/2
(

feT · fe − I
))
· feT (20)

Analogously, when the position of the MCS position is defined via the application of
the tensor r∗, the Cauchy stress can be obtained from the relation:

σ∗ = 1/J ∗ fe ∗ ·
(

πijmnki ⊗ kj ⊗ km ⊗ kn : 1/2
(

feT ∗ ·fe ∗ −I
))
· feT∗ (21)

Comparative analysis of (20) and (21) shows that the difference in the definitions of
stresses obtained using the LU1- and LU2-models can be attributed to the fact that fe and
fe∗ are determined in different ways in case of inelastic deformation. As noted above, the
definition for shear stress can be expressed as τ(k) = k : n(k) ⊗ b(k). The unit vectors of the
slip direction and the normal to the plane are found in terms of the actual configuration

as b(k) = fe ·
o
b
(k)

/‖fe ·
o
b
(k)
‖, n(k) = fe−T · o

n
(k)

/‖fe · o
n
(k)
‖. It is evident that, at the elastic

deformation stage and in a transition to plasticity (as fe = fe∗), the crystallographic charac-
teristics will be the same, and therefore the reasons for the differences between fe and fe∗
that may occur are absent.

Thus, the mesostresses obtained within the framework of both LU1- and LU2-models
are equal. The final orientations of the lattices determined using the models are different,
though due to the smallness of elastic distortions, they differ only slightly [80]. Since the
LU1-and LU2-models give almost the same definitions of stresses, we will call them an
“LU-model” (if the case in point concerns the definition of stresses).

It is easy to show that the constitutive relation of the LU-model is independent of
the imposed rigid motion [21]. Actually, let’s consider deformation gradient f̃ = OT · f,
where O = O(t)(O(0) = I) is the orthogonal tensor describing the rigid rotation added
to the initial motion. For pure elastic deformation, we get f̃

e
= OT · fe, and the analysis

of (20) yields σ (̃f
e
) = OT · σ(fe) ·O. In view of σ̃ = OT · σ ·O, we have σ̃ = σ (̃f

e
). Thus,

measures of the stress-strain state with an imposed rigid movement are related by exactly
the same function. It means that the principle of independence of the constitutive relation
from the imposed rigid motion is fulfilled. Hence, it follows that at the onset of the plastic
flow f̃

p
= fp is correct, and, as a result, the principle of independence of the constitutive law

from the imposed rigid motion (i.e., σ̃ = σ (̃f
e
) will also be fulfilled in the case of inelastic

deformation as well.
By virtue of the fact that the used stress and strain measures are energy conjugate,

the requirement for the absence of stress hysteresis and energy dissipation in the arbitrary
closed cycles of elastic deformations is fulfilled automatically in the LU-model [63], as in
the U-model.

In the general case, other physically justified rotation models (in particular, those
capable of taking into account the interaction of defects in neighboring crystallites [81] or
the contribution of grain boundary sliding [13]) can be incorporated into the proposed
approach to determine the MCS spin.
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3.2. Rate Form Relations in Terms of the Actual Configuration (LR-Model)

From the formulation of the LU-model with the constitutive law in finite Form (15)
through the corotational differentiation [64,76], we can pass to the rate analogue for the
observer in the MCS:

kCR
= π : ceCR, (22)

where kCR
=

.
k−ω1 · k + k ·ω1, ceCR =

.
c

e
−ω1 · ce + ce ·ω1 (for implementation of this

transition, we use the property of constancy of π for the observer in the MCS).
It was shown in [63,82] that, at fe ≈ I which is characteristic of metals, the following

formulation in the rate form can be derived in terms of the current configuration.
Since, at fe ≈ I, the unloaded and actual lattice configurations are close, the following

estimate is valid for the velocity gradient:

l ≈
.
f

e
· fe−1 + ω1 + r ·

.
f

p
· fp−1 · rT = ω1 +

.
f

e
· fe−1 +

K

∑
k=1

.
γ
(k)b(k) ⊗ n(k), (23)

where b(k), n(k) are the vectors of the slip direction and the normal to the slip plane in
the unloaded lattice configuration, i.e., they are in the actual position of the MCS. If the
unloaded and actual lattice configurations are in close proximity, then we can assume

b(k) = b(k), n(k) = n(k) for the latter relation and use
K
∑

k=1

.
γ
(k)b(k) ⊗ n(k) as an approximation

for the inelastic strain rate.
According to (23), the clear motion decomposition is established in the rate form: the

velocity gradient l is represented as a set of the MCS spin and the rate of elastic distortions
and inelastic deformations determined by the observer related to this MCS.

Taking into account the described approximations, the constitutive law (22) is close to

kcr = π :
( .

f
e
· fe−1

)
= π :

(
l−ω1 −

K

∑
k=1

.
γ
(k)b(k) ⊗ n(k)

)
(24)

where k is the weighted Kirchhoff stress tensor, and kcr =
.
k + k ·ω1 −ω1 · k is its coro-

tational derivative. Let us call the model involving the kinematic Relations (8), (17), and
(23) and a constitutive law (24) the “LR1-model” (lattice rate type of model with spin 1).
We also consider an analogous LR2-model in which Relation (18) is used for the spin. It
was shown in [80] that the Cauchy stress determined using the formulation of this kind
depends only slightly on the way they are related to specific material symmetry elements.

From the above discussion, we can draw a conclusion that the formulations of the U-
and LU-models can provide the fulfillment of the conservative conditions for elastic defor-
mation. On the other hand, for the study of technological processes of thermomechanical
treatment with an a priori unknown configuration of the computational domain (including
contact with the tool), the formulations in terms of the actual configuration in the rate form
offer the most promise. Another advantage of such formulations is the possibility of an
additive decomposition of the inelastic deformation rate into the contributions of different
deformation mechanisms. This explains why the T-model is also popular.

The formulation based on the decomposition of motion with an explicit separation of
the motion of the moving coordinate system (LU-model) makes possible a theoretically
substantiated transition to a similar formulation in the rate form in terms of the actual
configuration (LR-model). As will be illustrated below, this helps to easily show that all the
models considered here give a similar response under equal influences.

4. Results and Discussion

In this section, the issue regarding a comparison of the formulations for crystal plastic-
ity models described above is considered.



Crystals 2021, 11, 1392 11 of 19

4.1. Analytical Comparison

Based on the Equation of motion (14), constitutive law (3) for the U-model can be
written as:

JrT · (fe
)
−1 · σ · (fe

)
−T · r = πijmnki ⊗ kj ⊗ km ⊗ kn : 1/2(rT · (fe

)
T · fe · r− I), (25)

where ki is the reference basis of the MCS related to the lattice symmetry.
The rearranged form of Relation (25) is:

J(fe
)
−1 · σ · (fe

)
−T

= πijmn(r · ki)⊗ (r · kj)⊗ (r · km)⊗ (r · kn) : 1/2((fe
)

T · fe − I). (26)

Relation (26) can be represented as:

J(fe
)
−1 · σ · (fe

)
−T

= πijmnk̂i ⊗ k̂j ⊗ k̂m ⊗ k̂n : 1/2((fe
)

T · fe − I). (27)

Relation (27) corresponds to the constitutive law of the LU-model (15). Thus, the
stresses in the U- and LU-models are equally determined. As shown in Section 3.1, the
determined stresses are independent of the portion of the MCS motion in the deformation
gradient. When we use models of this kind, it is important to keep in mind this distinction
and verify separately texture description.

If, by analogy with the transition from the LU-model to the rate LR-model described in
Section 3.2, we take for the U-model an MCS that moves with spin (2), then we get the rate
formulation of the LR-model type, but with a corotational derivative of the Green–Naghdi
type (the GN-model used, for instance, in [75,83,84]). In line with this assumption, the
proposed model will give stresses close to those determined in the U-model.

In [75], the following relation between spins (2) and (9) is given:

ωre = ωT − (B : σ) · dp + dp · (B : σ), (28)

where B is the four rank elastic compliance tensor, dp is defined using Formula (8). Ac-
cording to (28), by virtue of the smallness of elastic deformations (B : σ), the use of spin
Relations (2) and (9) in the mesolevel model will cause slightly different stresses to occur
(in other words, the proximity of the T-model and the GN-model is their characteristic
feature).

Hence, we can suggest that at small elastic distortions, all the models examined should
give a close response (stresses). Table 1 presents information obtained when performing
the analytical comparison of determination of stresses within the framework of different
models.

In order to confirm the analytical results summarized in Table 1, we performed
numerical calculations.
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Table 1. Comparison of determination of stresses within the framework of different models (notation used here: «=»—
precise coincidence of stresse obtained in the indicated models, «≈»—stresses are close; by “described” is meant the
description of the essence of calculations with references to publications).

U T LU LR1 LR2 GN

U ≈
(described in Section 4.1,

follows from
U ≈ GN ≈ T)

=
(shown in Section 4.1)

≈
(shown in Section 4.1,

described in Section 3.2,
follows from

U = LU ≈ LR1)

≈
(shown in Section 4.1,

described in
Section 3.2,

follows from
U = LU ≈ LR2)

≈
(described in Section 4.1,

S by analogy with
LU ≈ LR1)

T ≈
(described in Section 4.1,

follows from
LU = U ≈ GN ≈ T)

≈
(described in Section 4.1,

follows from
LR1 ≈ LU = U ≈
≈ GN ≈ T)

≈
(described in
Section 4.1,

follows from
LR2 ≈ LU = U ≈
≈ GN ≈ T)

≈
described in Section 4.1)

LU ≈
(described in Section 3.2)

≈
(described in
Section 3.2)

≈
(described in Section 4.1,

follows from
LU = U ≈ GN)

LR1 ≈
(described in
Section 3.2)

≈
(described in Section 4.1,

follows from
LR1 ≈ LU =
= U ≈ GN)

LR2 ≈
(described in Section 4.1,

follows from
LR2 ≈ LU =
= U ≈ GN)

4.2. Illustrative Numerical Examples

We now turn to the consideration of the results obtained via the analysis of the
application of kinematic relations and constitutive laws in the statistical constitutive model
for simulating some kinematic loads imposed on the fcc polycrystal.

The representative volume included a sample of 343 crystallites, the initial orientations
of which were distributed randomly according to a uniform law. The nominal properties
of the polycrystal corresponded to those of copper. The mesolevel elastic property tensor
contained the following independent components (constant for the observer in a rigid
moving coordinate system linked with the lattice): π1111 = 168.4 GPa, π1122 = 121.4 GPa,
π1212 = 75.4 GPa [85]; the viscoplastic relations included

.
γ0 = 0.001 s–1, 1/m = 0.012;

the hardening law parameters were h0 = 180 MPa, a = 2.25, τsat = 148 MPa, and
the initial values of critical stresses for all slip systems were τ

(k)
c (0) = τc0 = 16 MPa

(k = 1, . . . , K) [46,47]. Due to the significant nonlinearity of the systems of equations for
all considered models, in particular, because of the presence of the Heaviside function
in the viscoplastic law (5), which led to the necessity of discretization with a small time
step to trace the activity of slip systems in crystallites, these equations were integrated
using an explicit Euler method (in the calculations, the time step was 0.002 s). The results
obtained with the aid of the LR1 model correspond satisfactorily to the experimental data
for uniaxial compression and shear; the comparison of the results is given in [63].

We consider the affine deformations of the sample (corresponding to the representative
volume of a polycrystal) subjected to uniformly distributed kinematic loads. Due to the
uniform deformation, the radius vector of the material point at an arbitrary instant of time
t is determined according to r(t) = f(t) · qipi, where f(t) is the deformation gradient, qi

stands for the Lagrangian coordinates of the considered point, and pi is the basis of the
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fixed laboratory coordinate system. The motion is determined by the deformation gradient
(the choice of motion can be arbitrary):

f(t) = 1
1+4h sin(ωt)p1p1 + (1 + 4h sin(ωt))p2p2 + p3p3+

+3h(1− cos(0.7ωt))p1p2,
(29)

where ω = 0.001π, h = 0.1 is the constant parameter (deformation is considered within
the time interval t = [0, T], T = 1000 s). For illustration, the trajectory of the point with
Lagrangian coordinates (0, L, 0) m is given in Figure 1.
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Figure 1. Trajectory of the point with Lagrangian coordinates (0, L, 0) for Motion (29) (in the plane
OX1X2); the position of the point at the initial instant of time is defined by the coordinates X1/L = 0,
X2/L = 1, X3 = 0.

Figure 2 presents the time dependence of the Cauchy stress tensor components at
a macrolevel (in the laboratory coordinate system) for the LU-model (Figure 2a, precise
coincidence with the results of the U-model) and for LR1-model (Figure 2b).
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We note the proximity of the results obtained (the curves plotted for the varying
macrostress components are visually almost indistinguishable for all models examined in
this study). For numerical assessment of the deviation in the results, we take the U-model
as a base model and introduce the norm for comparing the results obtained using other
models:

∆G = ‖Σt∈[0,T]
(U) − Σt∈[0,T]

(G)‖
Cn

L2
, (30)

where Σt∈[0,T]
(U) is the history of changes in stresses at t = [0, 1000 s], obtained via the

use of the U-model, Σt∈[0,T]
(G) is the history of changes in stresses at t = [0, 1000 s] in

case of the G-model (one of the models from Table 1). The norm is given based on the
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Riemann integral ‖Yt∈[0,T]‖Cn
L2

=

(
1
T

T∫
0

Y(t) : YT(t)dt

)1/2

in the space Cn
L2 continuous at

t ∈ [0, T] on the vector-function dimension n; in the calculations n = 9 (the number of the
macrostress tensor component Σ that is equal to averaged mesostresses in crystallites).

Table 2 summarizes the results for deviations in the macrostresses obtained by the
U-model from those determined by other models.

Table 2. Deviation of the history of changes in macrostresses obtained via the use of the U-model from the history of
changes in macrostresses determined in the framework of other models.

Model U T LU LR1 LR2 GN

Norm∆G, MPa 0 2.94 0 2.935 2.752 2.954
∆G

‖Σt∈[0,T]
(U)‖Cn

L2

0 0.013834 0 0.013813 0.012948 0.013903

(Zero deviations from Table 1 suggest that they do not exceed the order of the computer error when working with real numbers.).

Taking into account that the norms are integral over a sufficiently long period of
time (T = 1000 s), the results summarized in Table 2 demonstrate the proximity of stresses
obtained via the use of different formulations of mesolevel models, supporting thus the
efficacy of theoretical statements given above (Table 1). Similar textures are obtained,
which is indirectly confirmed by the proximity of macrostresses for the considered complex
loading path. In [80], the issue of comparing the results of using some different spins (for
other complex loading paths) was considered with an explicit analysis of the simulated
lattice rotations.

Figure 3 shows the time dependence of the mesolevel stress components for a single
crystallite (chosen arbitrarily). The initial orientations of the crystallographic and moving
coordinate systems coincide and can be determined through the sequential rotation of
the crystallographic system initially coincident with the coordinate system for the fcc-
crystal around the Ox1 axis with an angle φ1= 4.078, around the Ox2 axis with an angle
φ2= 0.0739, around the Ox3 axis with an angle φ3= 2.149 for the U-model (Figure 3a) and
the LR1-model (Figure 3b).
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Figure 3. Time dependence of the Cauchy stress tensor components at a mesolevel in the laboratory coordinate system for
crystallite No1: (a) LU-model, U-model, (b) LR2-model.

Analysis of the results shown in Figure 3 demonstrates that the mesostresses for
the crystallite under study, which were obtained within the framework of the models
mentioned above, are similar. Table 3 gives the norms for deviations in the mesostresses
δG = ‖σt∈[0,T]

(U) − σt∈[0,T]
(G)‖

Cn
L2

for the considered models, which are similar to those for

deviations in macrostresses (30).
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Table 3. Deviation of the history of changes in mesostresses obtained via the use of the U-model for crystallite No1 from the
history of changes in macrostresses determined within in the framework of other models.

Model U T LU LR1 LR2 GN

Norm δG, MPa 0 2.854 0 2.775 3.859 2.964
δG

‖σt∈[0,T]
(U)‖Cn

L2

0 0.01145 0 0.011132 0.015481 0.011891

(Zero deviations from Table 1 suggest that they do not exceed the order of the computer error when working with real numbers.).

The results shown in Figure 3 and in Table 3 indicate the proximity of mesostresses.
This is typical for the overwhelming number of crystallites (i.e., for almost all random
orientations). In special cases, deviations of the mesostress components (difference mod-
ulus) may, at a certain instant of time, exceed 50 MPa. This can be attributed to some
specific features in the motion of a representative point in the stress space near the yield
surface [86] in transitions between the neighborhoods of the vertices. After transitions, in a
great number of crystallites, the stresses become similar (there is a separate publication
devoted to the study of these special cases). Due to the small fraction of such crystallites (37
crystallites out of 343) and averaging, the macroscale stresses obtained on the basis of the
statistical constitutive model data using mesolevel models differ insignificantly (Table 2).

The differences in stresses obtained at the macrolevel are significantly lower than
the experimental data scatter for samples from one production batch. Indeed, for each
material, there is no complete identity of samples even from the same batch due to the
presence of many random factors during manufacturing, which leads to differences in the
microstructure (distributions of crystallite orientations, dislocation densities, etc.) and, as
a consequence, to different experimental dependences of stresses on deformations. For
example, such scatters for copper alloy samples are given in [87,88].

It should be noted here that the U-model and LU-model offer the most promise for
modeling purely elastic behavior (e.g., elastic cyclic loading during exploitation) since
the constitutive law is presented in the finite form, and there is no stress hysteresis in
closed elastic cycles. Moreover, due to the use of energetically conjugate stress and strain
measures, no energy is dissipated during the elastic deformation.

On the other hand, crystal plasticity models are primarily used to describe large
inelastic deformations and material structure evolution. In this regard, formulations in
terms of the actual configuration hold more promise because the physical meaning of the
stress tensor is clearer in this case, and, consequently, the simulation of hardening using
evolutionary equations is facilitated. These arguments lend additional support to using
this formulation in case of the boundary value problem and in some advanced constitutive
models at different deformation mechanisms. The theoretical predictions and the results
of the numerical experiments indicate that the response produced by these models is
similar to that obtained using the U-model. So, it turns out that the formulation in rate
form would be most suitable for constructing advanced constitutive models (e.g., with
complex hardening laws). The point is that the hypotheses adopted for constructing the
evolutionary equations of the model via the use of the internal variables determined in the
unloaded configuration can give more significant errors than the small deviations from
the strict fulfillment of conservative conditions for the formulations written in terms of the
actual configuration.

Geometrically nonlinear crystal plasticity models are applied to anisotropic crystallites,
and therefore the decomposition of motion, used in rate formulations in terms of the
current configuration, must be constructed by taking into account the symmetry of the
material. In other words, the moving coordinate system determining the rigid motion
in motion decomposition must be associated with the elements of material symmetry so
that its symmetry properties can be taken into account correctly. Above, some options for
constructing constitutive models with the introduction of such moving coordinate systems
have been considered.
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5. Conclusions

We have analyzed the most popular relations of crystal plasticity models in the context
of geometric nonlinearity description and fulfillment of thermodynamic constraints in
case of elastic deformation. These models are focused on the description of significant
inelastic deformations and material structure evolution caused by these deformations. That
is why the formulations in the rate form written in terms of the current configuration seem
preferable to constructing advanced constitutive models able to take into account different
deformation mechanisms and their complex interactions. The main advantages of these
formulations over the formulation in the finite form are as follows:

• clear physical meaning of the stress tensor, which simplifies simulations with evolu-
tionary hardening equations;

• use of the clear measure of the strain rate (the stretching tensor) and the possibil-
ity of an additive decomposition of the strain rate into contributions from various
mechanisms;

• ease of their use in the rate formulation of the boundary value problem under varying,
a priori unknown, contact boundary conditions.

The use of a corotational derivative in such a formulation means that the model is
based on the decomposition of motion into the deformation motion and the rigid motion of
a moving coordinate system, the rate of stress change relative to which is associated with
the strain rate.

We have obtained the relations of the mesolevel model with an explicit separation
of the motion of the moving coordinate system and elastic distortion of crystallites with
respect to this system in the deformation gradient. The MCS is related to the elements
of the material symmetry of the anisotropic crystallite. The proposed formalism with an
explicit consideration of the MCS allows us to reasonably pass from the formulation in
terms of the unloaded lattice configuration in the finite form (where the thermodynamic
constraints for purely elastic deformation are strictly fulfilled) to the close formulation in
rate form written in terms of the current configuration.

We have compared these relations with a popular crystal plasticity formulation, which
makes it possible to establish their proximity to one another. The results of the performed
analytical calculations show the equivalence or similarity (in the sense of the response
determined under the same loads) of the formulations under consideration. These conclu-
sions were supported by the results of the numerical calculations. It should be noted that
the proposed approach aimed to determine the spin of the MCS also could include other
physically justified rotation models, e.g., those taking into account the interaction of defects
of neighboring crystallites or the contribution from the mechanism of grain boundary
sliding. Such models cannot be introduced into other known approaches to constructing
constitutive relations via the use of kinematic variables without explicit consideration of
the material symmetric properties.
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