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Abstract: Water pollution caused by dye wastewater is a potential threat to human health. Using
photocatalysis technology to deal with dye wastewater has the advantages of strong purification and
no secondary pollution, so it is greatly significant to look for new visible-light photocatalysts with high
photocatalytic ability for dye wastewater degradation. Semiconductor photocatalyst silver phosphate
(Ag3PO4) has high quantum efficiency and photocatalytic degradation activity. However, Ag3PO4 is
prone to photoelectron corrosion and becomes unstable during photocatalysis, which severely limits
its application in this field. In this study, a tubelike g-C3N4/Ag3PO4 heterojunction was constructed
by the chemical precipitation method. An Ag3PO4 nanoparticle was loaded onto the surface of
the tubelike g-C3N4, forming close contact. The photocatalytic activity of the photocatalyst was
evaluated by the degradation of RhB under visible-light irradiation. The tubelike g-C3N4/Ag3PO4-5%
heterojunction exhibited optimal photocatalytic performance. In an optimal process, the degradation
rate of the RhB is 90% under visible-light irradiation for 40 min. The recycling experiment showed
that there was no apparent decrease in the activity of tubelike g-C3N4/Ag3PO4-5% heterojunction
after five consecutive runs. A possible Z-type mechanism is proposed to explain the high activity
and stability of the heterojunction.

Keywords: photocatalysis; Ag3PO4; g-C3N4; heterojunction; degradation

1. Introduction

With the rapid development of modern industry, the problem of water pollution is
becoming increasingly serious, as it could harm human health [1–4]. Dye wastewater
has large discharge, biological toxicity, complex composition, high content of organic
matter, and poor biodegradability, which is a difficult problem in wastewater treatment.
Semiconductor photocatalysis technology can transform solar into chemical energy and
completely decompose organic matter under mild conditions. It shows great potential and
good application prospects in solving environmental pollution and energy shortage [5,6].
The development of highly active photocatalysts is key to the application of photocatalysis
technology. Various semiconductor photocatalysts, including TiO2, ZnO, and SnO2, were
studied [7–10]. However, these conventional photocatalytic materials still have many
problems, such as photocatalytic activity only under ultraviolet light, electron-hole recom-
bination, and potential toxicity, which are primary obstacles to further application. Thereby,
it is greatly significant to explore photocatalysts with high visible-light activity for the
application of semiconductor photocatalysis.

In 2010, Ye et al. [11] reported a novel visible light photocatalyst, Ag3PO4, which
showed very strong oxidation capacity and high visible-light catalytic activity. In addition,
its quantum efficiency reached 90%, far higher than that of other metal oxide semiconductor
photocatalysts [12–15]. However, Ag3PO4 is prone to photoelectron corrosion and becomes
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unstable during photocatalytic reaction, which severely limits the application of Ag3PO4
in the field of photocatalysis. Therefore, the photocatalytic performance of Ag3PO4 was
improved by adjusting the morphology [16,17], combining it with carbon materials [18,19],
and constructing a heterojunction [20,21]. Among them, the Ag3PO4-based heterojunction
can effectively separate electrons and holes according to energy band theory, which is
regarded as the most effective method to improve the photocatalytic performance of
Ag3PO4. For example, many semiconductor photocatalysts, including TiO2, SnO2, g-C3N4,
SrTiO3 were used to couple with Ag3PO4 to fabricate heterojunction photocatalysts [22–25].
These heterojunctions showed excellent catalytic performance and stability. g-C3N4 is of
great interest to researchers due to its matching potentials of the conduction and valence
bands with Ag3PO4. The interfacial contact of heterojunction catalysts greatly affects
electron and hole transport. Most of the reported g-C3N4/Ag3PO4 heterojunction catalysts,
however, are bulk g-C3N4. The small specific surface area of bulk g-C3N4 is not conducive
to the formation of heterojunctions with Ag3PO4 [26,27].

In this paper, a tubelike g-C3N4 was prepared by the molten salt method. A new type
of Ag3PO4-based heterojunction was formed by chemical precipitation with the tubelike
g-C3N4. The structure, morphology, and spectral properties of the g-C3N4/Ag3PO4 hetero-
junction were characterized by X-ray diffraction patterns, scanning electron microscopy,
transmission electron microscopy, UV–vis diffuse reflectance spectra, and photolumi-
nescence spectra. The photocatalytic activity of the photocatalyst was evaluated by the
degradation of RhB under visible light irradiation. The effect of g-C3N4 content on the pho-
tocatalytic performance of the tubelike g-C3N4/Ag3PO4 heterojunction was investigated.
Moreover, the electron transfer mechanism of the tubelike g-C3N4/Ag3PO4 heterojunction
in the degradation of RhB under visible-light irradiation was studied.

2. Materials and Methods
2.1. Synthesis of Tubelike g-C3N4

The molten salt method was used to synthesize the tubelike g-C3N4 [28,29]. First,
4.5 g of lithium chloride, 5.5 g of potassium chloride, and 1 g of melamine were ground
together. The mixture in the crucible was heated in a muffle furnace at 550 ◦C for 4 h.
After the reaction, lithium chloride and potassium chloride were removed by washing with
deionized water. Lastly, the tubelike g-C3N4 was collected and dried at 80 ◦C for 24 h. The
sample was labeled as TCN.

2.2. Synthesis of Tubelike g-C3N4/Ag3PO4 Heterojunction

The tubelike g-C3N4/ Ag3PO4 heterojunction was prepared by chemical precipitation.
First, 0.17 g AgNO3 was dissolved in deionized water, and a certain amount of tubelike g-
C3N4 was dispersed in the above solution. Then, 0.15 g Na3PO4 was dissolved in deionized
water and slowly dropped into the AgNO3 solution. After magnetic stirring for 30 min, the
solution was filtered, washed, and dried at 60 ◦C for 10 h. The tubelike g-C3N4/Ag3PO4
heterojunctions with different tubelike g-C3N4 mass contents of about 1, 3, 5, and 7% were
labeled as TCN/Ag3PO4-1%, TCN/Ag3PO4-3%, TCN/Ag3PO4-5%, and TCN/Ag3PO4-7%,
respectively. For comparison, the pure Ag3PO4 nanoparticle was prepared by the chemical
precipitation method without tubelike g-C3N4.

2.3. Characterization

The crystal structure was determined by Philips X ‘pert MPD (Almelo, The Nether-
lands). Cu target Kα was used as the radiation source (wavelength, 0.15418 nm), working
voltage was 40 kV, working current was 20 mA, scanning range was 10–70◦, and scanning
speed was 4◦ min−1. The surface morphology of the sample was observed by scanning
electron microscope (S-4800; working voltage, 5 kV, Kyoto, Japan) and transmission elec-
tron microscopy (FEI Tecnai G20; working voltage, 200 kV, Hillsboro, OR, USA). X-ray
photoelectron spectroscopy (XPS) measurements were performed by using a Kratos Axis
Ultra DLD detector (Manchester, UK). The photoluminescence (PL) spectra of the sample
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at room temperature were measured with a HORIBA Fluorolog-3(Paris, France). The UV–
visible diffuse reflectance spectra of the sample were measured with a Shimadzu UV-3600
spectrophotometer (UV-3600, Shimadzu, Kyoto, Japan).

2.4. Photocatalytic Activity Evaluation

We added 0.01 g of the catalyst to a 100 mL RhB solution with an initial concentration
of 10 mg/L. In order to achieve adsorption–desorption equilibrium, the RhB solution (with
the photocatalyst) was magnetically stirred in the dark for 30 min. Then, the solution
was placed under a 300 W xenon lamp (filtering out ultraviolet light) for photocatalytic
reaction. The RhB solution was taken every 5 min. After 30 min of centrifugation, the
supernatant was removed, and the concentration of RhB solution was measured with a
UV-vis spectrophotometer (721 G, Shanghai, China) at 664 nm absorbance value.

3. Results and Discussion
3.1. XRD and XPS Analysis

The XRD patterns of TCN, Ag3PO4, and the TCN/Ag3PO4 heterojunction are shown
in Figure 1. The diffraction peaks of TCN were at 11.7, 20.6, 24.3, 26.6, 29.1, and 32.4◦, which
reflects different planes from (100), (110), (200), (002), (102), and (210). This is consistent with
literature reports [30]. Ag3PO4 had obvious diffraction peaks at 20.88, 29.70,33.29, 36.59,
42.49, 47.79, 52.70, 55.02, 57.28, and 61.64◦. Compared with the cubic Ag3PO4 standard
card (PDF 06-0505), the (110), (200), (210), (211), (220), (310), (222), (320), (321), (400) crystal
planes corresponded to their crystal phase, respectively. This shows that the pure Ag3PO4
phase was successfully prepared by chemical precipitation. The diffraction peak of the
TCN/Ag3PO4 heterojunction is mainly from Ag3PO4, while the characteristic diffraction
peak of the tubelike g-C3N4 did not appear because of the low content of tubelike g-C3N4
in the heterojunction, which is difficult to be detected by X-ray diffraction.
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Figure 1. XRD patterns of TCN, Ag3PO4, and TCN/Ag3PO4 heterojunction.

The chemical composition of the TCN/Ag3PO4 heterojunction was characterized by
XPS, as shown in Figure 2. Figure 2a is the survey spectrum of the TCN/Ag3PO4-5%
heterojunction, which shows the presence of Ag, P, O, N, and C. The high-resolution XPS
measurements of C 1s, N 1s, Ag 3d, O 1s, and P 2p are shown in Figure 2b–f. There
are three peaks in Figure 2b. The peaks with binding energy at 284.6 and 287.5 eV were
attributed to the C-C bonds and sp2 carbon in the triazine ring, respectively. The peaks
with binding energy at 285.7 eV corresponded to C-O bonds in the hydroxyl state on the
sample surface [31]. Results show that there were many hydrophilic hydroxyl groups
on the surface of the heterojunction catalyst. These oxygen-containing carbons provided
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an active surface to form good contact with the Ag3PO4 nanoparticle. Figure 2c shows
two peaks in the N 1s spectra. The peak with binding energy at 398.2 eV is attributed
to sp2 nitrogen in the triazine ring, and another peak with binding energy at 399.7 eV is
ascribed to the terminal amino groups [32]. Results further confirmed the existence of
g-C3N4 in the TCN/Ag3PO4 heterojunction. Figure 2d shows the high-resolution spectra
of Ag 3d. Peaks with binding energy at 367.8 and 373.8 eV belonged to the 3d5/2 and
3d3/2 characteristic peaks, respectively, with a valence state of Ag+. Ag 3d is a single peak
of splitting, indicating that the Ag element existed only in the form of Ag+ [33]. Figure 2e
shows the high-resolution spectrum of O 1s. The peak of O 1s could be fitted into two
peaks, which were mainly the lattice oxygen of Ag3PO4 with binding energy at 530.6 eV
and the surface hydroxyl oxygen at 532.4 eV [34]. Figure 2f is the high-resolution spectrum
of P 2p. The electron binding energy at the center of the characteristic single peak was
located at 133.2 eV, suggesting that the P element was in a +5 valence state [35]. Results
further confirmed the existence of Ag3PO4 in the TCN/Ag3PO4 heterojunction.
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3.2. SEM Analysis

Figure 3 shows the SEM images of TCN, Ag3PO4, and the TCN/Ag3PO4-5% hetero-
junction, respectively. Figure 3A shows that TCN prepared by the molten salt method had a
hollow tubelike shape, a square tube mouth with a smooth surface, and length distribution
ranging from several microns to more than 10 microns. Figure 3B shows that Ag3PO4
prepared by chemical precipitation was composed of many polycrystalline nanoparticles
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with an average size of 30–50 nm, and particles presented an obvious agglomeration phe-
nomenon. Figure 3C is the SEM image of the TCN/Ag3PO4-5% heterojunction. Results
show that the Ag3PO4 nanoparticle was uniformly loaded onto the surface of tubelike
g-C3N4. Figure 3D is the TEM image of TCN/Ag3PO4-5% heterojunction. The hollow
tubelike g-C3N4 structure and Ag3PO4 nanoparticle were observed more clearly. Results
showed that the tubelike g-C3N4 both dispersed the Ag3PO4 nanoparticle and formed
the heterojunction.
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3.3. UV–vis Diffuse Reflectance Spectra and Photoluminescence Spectra Analysis

The UV–vis DRS of TCN, Ag3PO4, and the TCN/Ag3PO4 heterojunction are shown
in Figure 4a. The Ag3PO4 showed obvious absorption from the ultraviolet to the visible re-
gion, and its band edge absorption was 532 nm [36]. The band edge absorption of TCN was
460 nm, indicating a certain absorption of visible light. With the addition of TCN, the ab-
sorption spectra of TCN/Ag3PO4 heterojunction had a red shift compared to those of TCN
and Ag3PO4. The shift is ascribed to the interaction between TCN and Ag3PO4. This result
implied that more visible light could be harvested by the TCN/Ag3PO4 heterojunction.

The separation efficiency of a photoelectron-hole pair greatly affects the performance
of the photocatalyst [37]. In Ag3PO4 systems, the rapid separation of photogenerated
electrons is beneficial to reduce the photocurrent corrosion of Ag3PO4. Figure 4b shows
the photoluminescence spectra of Ag3PO4 and the TCN/Ag3PO4 heterojunction, with
an excitation wavelength of 365 nm. The emission peak of pure Ag3PO4 was obvious
at 535 nm, indicating that the electron-hole pair in Ag3PO4 had a strong recombination
rate. With the addition of TCN, the peak intensity of the TCN/Ag3PO4 heterojunction
gradually decreased. The peak intensity of the TCN/Ag3PO4-5% heterojunction was the
lowest, indicating a low recombination rate of charges. Therefore, the formation of the
TCN/Ag3PO4 heterojunction is beneficial to the separation of electrons and holes, thus
effectively improving its catalytic performance.
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3.4. Photocatalytic Activities Analyses

The catalytic activity of different catalysts was investigated by using RhB as a sim-
ulated degradation target, as shown in Figure 5a. In the absence of a catalyst, RhB
hardly degraded under visible-light irradiation. The TCN and Ag3PO4 samples exhib-
ited visible-light photocatalytic activity, and the degradation rate of RhB was 25 and
44%, respectively after 40 min visible light irradiation. Compared with the TCN and
Ag3PO4, the TCN/Ag3PO4 heterojunction exhibited enhanced photocatalytic activity. The
TCN/Ag3PO4-5% heterojunction resulted in 90% degradation of RhB within 40 min. It is
an important factor for the formation of heterojunction with the appropriate amount of
TCN. When the amount of TCN is low, Ag3PO4 particles cannot be fully loaded and thus
cannot effectively form the heterojunction. On the other hand, excessive TCN absorbs the
visible light and forms a masking effect on the heterojunction, thus decreasing its catalytic
efficiency. For low-concentration pollutants, the kinetic behaviors for the degradation
reaction can be studied with the following equation:

ln(c/c0) = kt (1)
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Ag3PO4, and TCN/Ag3PO4 heterojunction.

The kinetic constants (k) of different samples were calculated and are shown in Figure 5b.
The kinetic constant of RhB degradation with TCN/Ag3PO4-5% (0.0077 min−1) was about 5.9
and 3.8 times as high as that of TCN (0.0013 min−1) and Ag3PO4 (0.0020 min−1), respectively.
This result shows that the formation of the TCN/Ag3PO4 heterojunction could efficiently
enhance the photocatalytic performances of Ag3PO4.

To investigate the stability of Ag3PO4 and the TCN/Ag3PO4 heterojunction, the
photocatalyst was recovered and dried for the next cycle of degradation. Degradation
conditions remained the same as before, and there were 5 cycles. Experimental results are
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shown in Figure 6a. In the cyclic experiment, the photocatalytic performance of Ag3PO4
obviously decreased, and the degradation rate of RhB for the fifth time was only 15%.
The degradation rate of RhB by the TCN/Ag3PO4 heterojunction for the fifth time was
85%. Results showed that the TCN/Ag3PO4 heterojunction exhibited excellent stability.
The samples of Ag3PO4 and the TCN/Ag3PO4 heterojunction after the cycle experiment
were analyzed by X-ray diffraction, and results are shown in Figure 6b. In the XRD of
Ag3PO4, a new diffraction peak appeared at 38.1◦, which is the (111) plane diffraction peak
of Ag [38]. Results showed that Ag3PO4 was prone to photoelectron corrosion and became
unstable during photocatalytic reaction. There was no new diffraction peak in the XRD of
the TCN/Ag3PO4 heterojunction. Results showed that the TCN/Ag3PO4 heterojunction
maintained good stability in the cyclic experiment.
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3.5. Photocatalytic Mechanism of TCN/Ag3PO4 Heterojunction

To further investigate the photocatalytic reaction mechanism of the TCN/Ag3PO4
heterojunction, the TCN/Ag3PO4-5% heterojunction was used as photocatalyst, and dif-
ferent scavengers were selected to carry out the photodegradation experiment. Among
them, ethylenediaminetetraacetic acid (EDTA) was the electron hole (h+) scavenger [39],
benzoquinone (BQ) was the superoxide radical (•O2

−) scavenger [40], and isopropanol
(IPA) was the hydroxyl radical (•OH) scavenger [41], with a concentration of 1 mmol/L.
The effects of various scavengers on the degradation rate of RhB are shown in Figure 7.
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The photocatalytic efficiency of RhB decreased significantly after the addition of EDTA
and BQ, and the degradation rate of RhB was 39% and 45% after 40 min reaction, respec-
tively. Results showed that h + and •O2

− were captured by EDTA and BQ, respectively, so
the number of h + and •O2

− in the photocatalytic reaction was greatly reduced, resulting
in a lower degradation rate of RhB. When IPA was added, the degradation rate of RhB
was 80% after 40 min reaction. The IPA mainly captured •OH, thus slightly decreasing
the degradation rate of RhB. It is clear that h + and •O2

− were the main active species
for RhB degradation, while •OH only played a minor role. According to previous re-
ports [42,43], the valence band (VB) and conduction band (CB) potentials of Ag3PO4 were
about 2.69 and 0.24 eV, which are both more positive than those of g-C3N4 (−1.15 and
1.60 eV), respectively. According to traditional heterojunction theory, the CB of g-C3N4
is more negative than that of Ag3PO4, and the electrons generated after photoexcitation
migrate from the CB of g-C3N4 to the CB of Ag3PO4. The VB of Ag3PO4 is more positive
than that of g-C3N4, and holes generated after photoexcitation migrate from the VB of
Ag3PO4 to the VB of g-C3N4. •O2

−/O2 potential (–0.33 eV) is more negative than that CB of
Ag3PO4, so electrons migrating to the CB of Ag3PO4 cannot react with oxygen to produce
•O2

−. This is not consistent with the results of photocapture experiments in which •O2
−

is the main active species. A large number of electrons gathering on the crystal surface
of Ag3PO4 lead to the photocurrent corrosion of Ag3PO4. This is inconsistent with the
experimental results of the stability of the TCN/Ag3PO4 heterojunction. Second, because
the potential of the VB of g-C3N4 was more negative than the potential of •OH/H2O (2.27
eV), the holes that migrated to CB of g-C3N4 could not oxidize water to produce •OH. This
is not consistent with the results of photocapture experiments in which •OH is also an
active species. According to the experimental results of the stability and capture of the
TCN/Ag3PO4 heterojunction, a possible Z-type photocatalytic mechanism is proposed,
as shown in Figure 8. The potential position of the VB of g-C3N4 was close to the CB of
Ag3PO4, so it was easy to combine the holes in the VB and the electrons in the CB. There-
fore, the electrons in the VB of g-C3N4 and the holes in the VB of Ag3PO4 were effectively
separated. The electrons in the CB of g-C3N4 would react with the dissolved O2 to produce
•O2

−, which could directly oxidize RhB. Meanwhile, the holes in the VB of Ag3PO4 can
also directly oxidize RhB. Its high valence band potential of +2.69 eV could oxidize water
to produce •OH, and •OH also had a strong oxidation capacity and can oxidize RhB. The
Z-type mechanism is consistent with the experimental results of the photostabilization and
photocapture of the heterojunction catalyst.
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4. Conclusions

A TCN/Ag3PO4 heterojunction was successfully prepared by chemical precipitation.
The TCN/Ag3PO4 heterojunction catalyst exhibited excellent catalytic activity and stability
under visible-light irradiation. A possible Z-type mechanism was proposed in which the
Ag3PO4-excited electrons were directly recombined with holes generated by the tubelike
g-C3N4, thus rapidly separating photogenerated electrons from the Ag3PO4 crystal surface.
The TCN/Ag3PO4 heterojunction structure both reduced the photoelectronic corrosion of
Ag3PO4 and improved the photocatalytic activity of the catalyst. As a photocatalyst with
high activity and stability, the TCN/Ag3PO4 heterojunction has potential for applications
in the field of environmental pollution control.
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