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Abstract: Two newly halogenated chalcones, derivatives of C15H10ClFO (CH-ClF) and C15H10F2O
(CH-FF), were synthesized using the Claisen–Schmidt condensation method. Both compounds were
crystallized using a slow evaporation method, forming a monoclinic crystal system with a space group
of P21 and P21/c, respectively. The compounds were further analyzed using spectroscopic techniques
such as Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (NMR), and Ultraviolet–
Visible (UV–vis) analyses. The single crystal X-ray diffraction method revealed the existence of
C−H· · ·O and C−H· · · F intermolecular interactions in CH-FF. Hirshfeld surface analysis was
performed to confirm the existence of intermolecular interactions in the compounds. The molecular
geometries obtained from the X-ray structure determination were further used to optimize the
structures using density functional theory (DFT), with the B3LYP/6-311G++(d,p) basis set in the
ground state. The TD-DFT/B3LYP method was used to obtain the electronic properties and the
HOMO–LUMO energy gap. Both compounds exhibited A-π-A architecture with different halogen
substituents in which the CH-FF, containing -fluoro substituents, possessed good electron injection
ability due to its electronegative properties. This increased the flow of the charge transfer for the dye
regeneration process and enhanced the efficiency of the dye-sensitized solar cell (DSSC).

Keywords: halogenated chalcone; single crystal; DFT; A-π-A organic dye; DSSC

1. Introduction

There has been much research into organic material due to its variety of design
selections, which can be used with suitable reactants through simple procedures and low
synthesis cost [1,2]. Chalcones are organic materials from the flavonoid family with a
molecular structure that can be modified and synthesized using assorted heterocyclic
compounds [3]. Chalcones are constructed by planar π-conjugated systems connected with
aromatic rings at both ends of the enone bridge [4]. As the substituent components of
chalcone can be varied, this leads to spectroscopic and characterization analysis regarding
structural planarity, the involvement of intermolecular interaction, and the intramolecular
charge transfer (ICT) of the compounds [5]. Additionally, the existence of a donor (D)
and acceptor (A) linked via the α, β- unsaturated keto group as D–A–D, A–D–A, D–π–A,
D–π–D and A–π–A construct a chalcone with a good charge transfer configuration for use
as a dye-sensitizer in solar cell applications [6–8].

Many researchers have employed chalcone derivatives as sensitizers [9–14] due to
their properties and performance. The ability of various substituents to be anchored at
different positions in chalcone derivatives enables studies on their light harvesting potential
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for DSSC applications [15]. The DSSC is a third-generation solar cell that is economical and
environmentally friendly, with excellent cell flexibility compared to the silicon-based solar
cell [16]. As a newly developed photovoltaic technology, the invention of the DSSC was
inspired by the photosynthesis process that converts sunlight into valuable products, in our
case, electrical energy [16,17]. The DSSC has become an increasingly popular alternative
energy source since its development in the 1970s by Gerischer and Tributsch [18].

In order to contribute to this work, two chalcone derivatives, namely (E)-3-(3-chlorophenyl)-
1-(4-fluorophenyl)prop-2-en-1-one, C15H10ClFO (CH-ClF) and (E)-3-(3-fluorophenyl)-1-(4-
fluorophenyl)prop-2-en-1-one, C15H10F2O (CH-FF) were synthesized in order to study their
chemical properties and potency as dye-sensitizers in DSSCs. CH-ClF and CH-FF represent
similar structural designs, with -chloro and -fluoro attachments on the corresponding
compounds, respectively. Electronegativity is defined as the ability of the atom to attract
electron density when forming the chemical bond. The fluorine atom is more negative than
chlorine [19]. A compound with a higher electronegativity increases the ability of electron
transfer within the molecule [20–22], thus influencing the low gap between HOMO and
LUMO energy levels [10]. From this perspective, we successfully proved that CH-FF, with
the substitution of -fluoro on both aromatic rings of the chalcone derivative, contributed to
a higher DSSC efficiency than CH-ClF. Additionally, the presence of hydrogen bonds in
CH-FF provided good electronic communication between the molecules, resulting in an
excellent DSSC power conversion.

2. Methodology
2.1. Synthesis of Halogenated Chalcone Derivatives

Initially, the synthesis of halogenated chalcone derivatives was achieved by the conden-
sation of 4′-fluoroacetophenone (0.01 mol) with corresponding benzaldehydes (0.01 mmol)
comprising 3-chlorobenzaldehyde and 3-fluorobenzaldehyde in 60 mL of ethanol in the
presence of a catalytic amount of sodium hydroxide solution (5 mL, 20%). The solution
was continuously stirred for about 5–6 h at room temperature. The resultant precipitates
were filtered, washed successively with distilled water, and recrystallized from acetone to
obtain the corresponding chalcone (Scheme 1). Figure 1 shows the single crystals of the
compounds, which were suitable for X-ray structural analysis.
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2.2. Spectroscopy Analysis

The infrared spectra were analyzed using a PerkinElmer GX Frontier Spectropho-
tometer in the range of 400–4000 cm−1, with a KBr pellet to transcribe the vibrational
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modes consistent with the functional groups. In addition, 1H NMR and 13C NMR spectra
studies were recorded in DMSO-d6 by a Bruker 500 and a 125 MHz Avance III spectrometer,
respectively. The chemical shifts (δ) were utilized in parts per million (ppm) downfield
from the internal tetramethysilane (TMS) internal reference. UV–vis spectroscopy was
performed in acetonitrile solution using a SHIMADZU UV-1800 Spectrophotometer in the
spectral region of 200–900 nm to study the electronic transition within the compounds.

2.3. X-ray Crystallography Analysis

X-ray analysis was performed on single suitable crystals with an APEXII Duo CCD
area detector using Mo Kα radiation (λ = 0.71073 Å). Good quality crystals were selected
under the microscope and used for data collection. Data collection was performed using
APEX2 software [23], whereas the cell refinement and data reduction were performed
using SAINT software [23]. The crystal structures were solved by the Direct Method using
the program SHELXTL [24] and refined by the full-matrix least squares technique on F2

using anisotropic displacement parameters by SHELXTL [24]. Absorption corrections were
applied to the final crystal data using SADABS software [23]. All geometrical calculations
were carried out using the program PLATON [25]. The molecular graphics were drawn
using SHELXTL [24] and the Mercury program [26]. The non-hydrogen atoms were refined
anisotropically. All the hydrogen atoms were positioned geometrically (C–H = 0.93 Å) and
refined using the riding model Uiso(H) = 1.2 Ueq(C), meaning that the isotropic displace-
ment parameters were set to 1.2(C) times the equivalent isotropic U values of the parent
carbon atoms. Table 1 provides a summary of the crystal data and relevant refinement
parameters of the title compounds.

Table 1. Crystallographic collection and refinement data for compounds CH-ClF and CH-FF.

Parameters CH-ClF CH-FF

CCDC deposition numbers 1521381 1521383
Molecular formula C15H10ClFO C15H10F2O
Molecular weight 260.68 244.23

Crystal system Monoclinic Monoclinic
Space group P21 P21/c

a/Å 11.4052 (10) 11.735 (2)
b/Å 3.9037 (3) 3.9383 (8)
c/Å 13.8077 (12) 25.862 (4)
β/◦ 95.2670 (18) 100.794 (4)

V/Å3 1386.42 (9) 1174.1 (4)
Z 2 4

Dcalc (Mg m−3) 1.414 1.382
Crystal Dimensions (mm) 0.57 × 0.20 × 0.09 0.68 × 0.22 × 0.20

µ (mm−1) 0.31 0.11
Radiation λ (Å) 0.71073 0.71073

F(000) 268 504
Tmin/Tmax 0.8103/0.8835 0.8068/0.9393

Reflections measured 13,236 12,518

Ranges/indices (h, k, l)
h = −16→16

k = −5→5
l = −19→19

h = −16→16
k = −2→5

l = −36→36
θ limit (◦) 1.5–30.2 2.2–30.0

Unique reflections 3616 3430
Observed reflections (I > 2σ(I)) 2664 1823

Parameters 163 163
R1 [a], wR2 [b] [I ≥ 2σ(I)] 0.038/0.110i 0.048/0.170ii

Goodness of fit [c] on F2 1.05 1.03
Rint 0.029 0.037

Largest diff. peak and hole, e/Å−3 0.21 and −0.13 0.15 and −0.15

[i] w = 1/[σ2(Fo
2) + (0.0525P)2 + 0.0304P], [ii] w = 1/[σ2(Fo

2) + (0.074P)2 + 0.0988P], where P = (Fo
2 + 2Fc

2)/3;
[a] R = Σ||Fo| − |Fc||/Σ|Fo|, [b] wR = {wΣ(|Fo| − |Fc|)2/Σw|Fo|2}1/2, [c] GOF = {Σw(|Fo| − |Fc|)2/(n–p)}1/2, where n is the
number of reflections and p the total number of parameters refined.
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2.4. Hirshfeld Surface Analysis

Hirshfeld surfaces and the associated 2D fingerprint plots were calculated using
Crystal Explorer 3.1 [27]. This approach attempts to present a graphical tool for the
visualization and understanding of intermolecular interactions through the identification
of all close contacts. The Hirshfeld surface provides the close interaction of the crystal
structure, which is summarized in a 2D fingerprint plot. The distances from the Hirshfeld
surface to the nearest atoms outside and inside the surface are represented as di and de,
respectively. The blue refers to the low occurrence of the (di, de) pair and the grey is the
outline of the full fingerprint [28]. The parameters such as di, de and the Van der Waals
radii (rvdW) can be correlated into Equation (1) and act as an identification tool for specific
intermolecular interactions via the color-coding system. In addition, a shape index was
also used as a qualitative measure of molecular shape, explicitly in regions where the total
curvature (or the curvedness) was very low.

dnorm =
di − ri

vdW

ri
vdW +

de − re
vdW

revdW (1)

2.5. Computational Analysis

The geometrical parameters of the compound were analyzed via X-ray refinement
data using the Direct method. The molecular geometries were further optimized using
Gaussian09W application software to obtain all the theoretical calculations [29] by utilizing
the Becke three-parameter hybrid plus combined with the Lee–Yang–Parr correlation
functional studies. The DFT calculations deployed a hybrid density functional B3LYP
with the 6-311++G(d,p) base set. Additionally, the time-dependent density functional
theory (TD-DFT) was used to extract information regarding charge transfer between the
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) using the same base set. The calculation was conducted in an isolated condition
by applying the integral equation formalism polarizable continuum model (IEFPCM) in a
specific acetonitrile solvent environment.

2.6. Dye-Synthesized Solar Cell (DSSC) Fabrication

The preparation of DSSCs was conducted following the previous fabrication method [9,10].
A full set of DSSC kits was purchased from Solaronix for the fabrication process.

2.6.1. Preparation of Halogenated Chalcones as Organic Dye Sensitizers

The preparation of organic dye sensitizer began by dissolving 10−2 M of CH-ClF
and CH-FF precipitate into 5 mL of acetonitrile for each compound. A small amount of
chenodeoxycholic acid (ratio 10:1) was added into the dye solution as a coadditive to
enhance the DSSC conversion [30]. All steps were conducted with a minimal presence of
light to preserve the properties of the dye-sensitizers.

2.6.2. Preparation of Ruthenium Standard Dye as a Reference

A reference standard dye, cis-diisothiocyanato-bis(2,20-bipyridyl-4,40-dicarboxylato)
ruthenium(II) bis(tetrabutylammonium), or, N719 was prepared as a reference for the solar
cell efficiency study. The standard dye was dissolved into a 10 mL acetonitrile solvent with
a small amount of chenodeoxycholic acid (10:1 ratio). Due to the light sensitivity of N719
dye, the preparation was conducted in a dark room to avoid any direct contact with light.

2.6.3. Preparation of DSSC Fabrication

A working electrode composed of TiO2 (6 mm × 6 mm area) coated with FTO glass
was sensitized by immersion into the respective dye solution of each compound overnight.
Once ready, the samples were rinsed using the residual acetonitrile to extract the excessive
dye and the remaining dye solution was dropped onto the TiO2 area using the drop casting
method while being dried in the hot airflow. The photoanode and counter electrode were
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attached together by placing a sealing film made from Meltonix 1170 with 60 µm thickness
in between the electrodes to form a sandwich-type cell. The cell was again placed on the
hot plate in order to melt the film via gradual application of pressure. Iodolyte AN-50
electrolyte solution was injected into both sandwich cells through a predrilled hole located
at the surface of the counter electrode. Then, the holes were covered by sealing films
to avoid the electrolyte being leaked and the dyes drying out. The basic components of
the fabricated DSSC are illustrated in Figure 2 ; a picture of the DSSCs assembled by the
CH-ClF and CH-FF sensitizers is shown in Figure S1 in the Supplementary Information.
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The sensitized cells were analyzed by a Keithley 2400 solar simulator in order to deter-
mine the output voltage and the current reading of the tested compounds, under irradiation
of AM 1.5 simulated sunlight (CHF-XM-500 W) with an intensity of 100 ± 3 mW/cm2.

3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy (FTIR) Studies

FTIR study is an analytical method conducted to interpret the existence of various
functional groups and the vibrational frequency within the compound based on the spec-
trum [31]. As in our report, the FTIR spectra of CH-ClF and CH-FF from the experimental
analysis are depicted in Figure 3 and summarized in Table 2.

3.1.1. C–H Vibrations

The FTIR studies previously reported by Vinaya described that C–H stretching vi-
brations were assigned at a wavenumber of 2800 and 3100 cm−1 [32]. Meanwhile, the
absorption bands of CH-ClF and CH-FF were seen at the frequencies of 3060.5 cm−1 and
3063.5 cm−1, respectively. Both compounds consisted of similar C–H contents, which led to
similar wavenumber values. The C–H in-plane and C–H out-of-plane bending vibrations
appeared at 1474–1167 cm−1 and 1023–715 cm−1, respectively [33]. The C–H in-plane bend-
ing vibrations were observed at 1410, 1357, 1301, and 1226 cm−1 in the CH-ClF spectrum
and 1448, 1410.5, 1301.5, and 1226.5 cm−1 in the CH-FF spectrum. The C–H out-of-plane
bending vibrations were detected at peaks 1000, 939.5, 879, and 758.5 cm−1 for CH-ClF
and 1010.5, 897.5, 845.5, and 705 cm−1 for the CH-FF spectrum. Both C–H planes were
found within the normal wavenumber ranges.

3.1.2. C = O Vibrations

The carbonyl group existed at the enone bridge of the compounds, contributing to
the C = O stretching vibration. The C = O stretching vibration absorbed IR strongly in
the region of 1715–1600 cm−1 [34]. Hence, the wavenumbers of 1684 cm−1 (CH-ClF) and
1683.5 cm−1 (CH-FF) indicated the presence of C = O vibration in the spectral region. The
small difference of 0.5 cm−1 between the vibration of CH-ClF and CH-FF was due to the
similar physical position of the carbonyl group in their respective chemical structures. The
peaks observed for the C = O stretching vibration appeared as a strong band, as a large
dipole moment existed due to the carbonyl carbon and oxygen consisting of a large partial
positive and negative charge, respectively [9].
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Table 2. Summary of the IR vibrational band of CH-ClF and CH-FF.

Functional Groups Wavenumber Frequency (cm−1)
CH-ClF CH-FF

vC = O 1684.0 1683.5

vC = C 1596.0 1683.0

vC–C 1055.5 1055.5

vC–Cl 691.0 506.0

vC–F 1154.5 1155.0
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3.1.3. C = C and C—C Vibrations

For the C = C stretching vibration, the wavenumbers were observed at the 1596 cm−1

and 1683 cm−1 band spectrums of CH-ClF and CH-FF, respectively. The results were
interpreted by referring to previous research, which estimated about 1600 cm−1 for the con-
jugated C = C that was bonded to the carbonyl group [35]. As for the C—C stretching mode,
the electronegativity effect between two carbon atoms caused small peak contributions to
the spectrum, which were mostly insignificant [36]. In our studies, we found the vibrational
frequencies of C—C of CH-ClF and CH-FF at the same wavenumber, 1055.5 cm−1. This
occurred due to the carbon atoms being in the same position in the molecular structure of
both compounds, which contributed to their having the same vibrational frequency values.

3.1.4. C—X Vibrations

C—X vibrations in which X was specifically known as halogen atoms were found to
easily interact with the phenyl ring especially when the halogen atom directly bonded
to the benzene ring [37]. The presence of a C-Cl bond was found in CH-ClF to mark the
observed bands at 691 cm−1 and 506 cm−1. The C-Cl stretching vibrations were expected
to be in the range of 492 and 1234 cm−1 determined by the structure configuration of the
compound [38]. Additionally, another halogenated vibrational frequency, which was C-F
stretching, contributed a high intensity band and was found in both reported compounds.
In CH-ClF, the C-F stretching mode was interpreted at 1154.5 cm−1, meanwhile in CH-FF,
it was observed at 1155 cm−1; both peaks were found to fall in an assumed range between
1155 to 1330 cm−1 in previous research [36]. The vibration wavenumber achieved in C-F
stretching mode was higher than C-Cl due to the presence of the inductive effect between
the C-F bond and fluorine, which triggered an increase in the force constant and higher
wavenumber absorption [39].

3.2. Nuclear Magnetic Resonance (NMR) Analysis

The Nuclear Magnetic Resonance (NMR) of the experimental 1H and 13C was inves-
tigated to confirm the total number of hydrogen and carbon atoms present in CH-ClF
and CH-FF. In CH-ClF, the 1H NMR chemical shift values were observed in the range
of 8.287–7.389 ppm, whereas the 1H NMR chemical shift values of CH-FF were obtained
within 8.287–7.123 ppm. The vinylene group (C = C) hydrogens resonated as two dou-
blets in the ranges of 7.12–7.65 ppm (Hα) and 7.86–8.29 ppm (Hβ), respectively, which
corresponded to the trans double-bond configuration of chalcones [40]. Additionally,
the aromatic protons were located in the range of δH 7.34–7.93 ppm for CH-ClF and
δH 7.41–8.02 ppm CH-FF within the shielded region. The electronic effect of the substituent
content in the ring influenced the chemical shift for aromatic photons, which commonly
appears between δ6.9 and 8.0 ppm in either the downfield or the upfield region [40].

The signal observed at δ196.27 ppm and δ198.71 ppm in the 13C NMR spectrum
appeared at the most deshielded area, assigned to the C7 atom of the carbonyl group of
both CH-ClF and CH-FF. The factor environment and rise of electronegativity from the
oxygen atom caused the deshielded area of carbonyl groups compared to other carbon
atoms [10]. The chemical shift of aromatic carbons of the phenyl rings was found between
138.5 and 125.0 ppm for both compounds. At the enone bridge, the signals of carbon atoms
at the enone moiety for CH-ClF (δ127.91–129.53 ppm (Cα) and δ141.23–142.43 ppm (Cβ))
and CH-FF (δ125.63–125.65 ppm (Cα) and δ142.63–142.65 ppm (Cβ)) were attained from
the 13C NMR spectra.

3.3. Molecular and Crystal Structural Analysis

The molecular and optimized structure of the compounds CH-ClF and CH-FF along
with the assigned atom-numbering schema are presented in Figure 4a,b, respectively. The
new halogen chalcones, namely, (E)-3-(3-chlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one
(CH-ClF) and (E)-3-(3-fluorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (CH-FF) contained
a similar fluoro-substituent unit at the para-position of phenyl ring (R1) and different
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substituents at the meta-position of phenyl ring (R2). Both chalcones represented an
acceptor-pi-acceptor (A-π-A) system [36,40], with the halogen substituents at both ends
capped and carbonyls acting as electron-withdrawing groups. Both molecular structures
crystallized in a monoclinic crystal system with P21 (CH-ClF) and P21/c (CH-FF) space
groups. All bond lengths and angles were within the normal ranges [41] and comparable
to the previously reported structures of chalcone [42–44]. The geometrical parameters are
listed in Table 3 , showing small discrepancies, which reveal that calculation was conducted
in the gaseous state while observation was performed in the solution state [45].
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The molecular structure of both compounds showed an s-cis configuration with
respect to the C8 = C9 double bond, with bond distances of 1.334 (3) Å in CH-ClF and 1.312
(2) Å in CH-FF (Table 3). The 4-fluorophenyl moiety (F1/C1-C6) of compound CH-ClF
deviated slightly from the (E)-4-(3-chlorophenyl) but-3-en-2-one planarity (Cl1/O1/C7-
C15; maximum deviation: 0.084 (3) Å at C8) at the C6—C7 bond with the C5—C6—C7—O1
torsion angle being −171.2 (3)◦. Likewise, the fluoro-substituent benzene ring (F1/C1-C6)
was slightly twisted at the C6—C7 bond from the mean plane of the (E)-4-(3-fluorophenyl)
but -3-en-2-one (F1/O1/C7-C15; maximum deviations: 0.1726 (15) Å at atom O1) with the
C5—C6—C7—O1 torsion angle value of 173.13 (17)◦ in compound CH-FF. Interestingly,
compound CH-ClF was found to be almost planar, with the dihedral angles between the
mean plane through the enone moiety (O1/C7-C9; maximum deviation of 0.028 (3) Å
at atom C7) with the fluoro-substituted and chloro-substituted benzene rings (F1/C1-C6
and Cl1/C10-C15) were 9.38 (18)◦ and 6.51 (17)◦, respectively. Meanwhile, the enone
moiety (O1/C7-C9) of compound CH-FF, with a maximum deviation of 0.0295 (16) Å at
atom C7, formed dihedral angles of 8.33 (11)◦ and 12.57 (11)◦ with the fluoro-substituted
benzene rings (F1/C1-C6 and F1/C10-C15), respectively. The dihedral and twisted angles
further confirmed the non-planar molecular structure of the compound, as shown in
Figure 4c. The dihedral angles formed between two C1-C6 (R1) and C10-C15 (R2) phenyl
rings for compound CH-ClF and CH-FF were 6.18◦ and 20.58◦, respectively. It was found
that compound CH-FF possessed a large dihedral angle, diminishing the electronic effect
between the two phenyl rings through the enone moiety [40].
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Table 3. Selected bond lengths and angles.

Compound CH-ClF CH-FF
Experimental DFT Experimental DFT

Bond length (Å)
C3—F1 1.360 (3) 1.352 1.357 (18) 1.352
C7—O1 1.212 (3) 1.224 1.219 (17) 1.224
C6—C7 1.494 (3) 1.501 1.484 (2) 1.501
C7—C8 1.477 (3) 1.486 1.478 (2) 1.486
C8—C9 1.334 (3) 1.344 1.312 (2) 1.345

C9—C10 1.458 (3) 1.463 1.458 (2) 1.462
C14—Cl1 1.742 (2) 1.759 - -
C12—F2 - - 1.357 (2) 1.355

Bond angle (◦)
O1—C6—C7 120.50 (2) 119.85 120.26 (14) 119.86
O1—C7—C8 120.90 (2) 121.07 120.06 (14) 121.15
C1—C6—C7 118.47 (19) 117.52 118.67 (13) 117.58
C5—C6—C7 123.54 (19) 123.83 123.19 (13) 123.73
C7—C8—C9 120.60 (2) 120.21 122.41 (14) 120.26

C8—C9—C10 127.50 (2) 127.91 128.04 (15) 127.82
C9—C10—C11 119.00 (2) 118.63 122.19 (14) 122.92
C9—C10—C15 122.28 (19) 122.90 119.89 (15) 118.60

Torsion angle (◦)
C1—C6—C7—O1 7.3 (4) 9.2 −6.0 (3) −11.2
C5—C6—C7—O1 −171.2 (3) 10.8 173.13 (17) 167.61
O1—C7—C8—C9 6.9 (4) 3.3 −7.5 (3) −4.2
C6—C7—C8—C9 −173.8 (2) −177.4 172.78 (16) 176.68
C7—C8—C9—C10 −179.5 (2) −179.3 −179.33 (16) 179.03

C8—C9—C10—C11 170.5 (2) −179.7 −8.9 (3) −1.6
C8—C9—C10—C15 −9.5 (4) 0.3 171.66 (18) 178.47

In the crystal packing of the compound CH-FF (Figure 5b), the molecules were con-
nected by intermolecular C2—H2A· · ·O1 (symmetry code: −x + 1, y + 1/2, −z + 3/2)
and C13—H13A· · · F1 (symmetry code: −x, −y−1/2, z−1/2) hydrogen bonds (Table 4)
to form an infinite two-dimensional sheet parallel along the ac-plane. This parallel sheet
was further linked to the neighboring sheet by intermolecular C2—H2A· · ·O1 hydrogen
bonds propagating along the b-axis direction. In addition, the intermolecular C–H· · ·O and
C–H· · · Fl hydrogen bonds led to the formation of R4

4(26) ring motifs [46]. Notably, there
were no classical hydrogen bonding interactions found in compound CH-ClF (Figure 5a).

3.4. Hirshfeld Surface Calculations

The presence of intermolecular interactions in the compound were verified by perform-
ing the Hirshfeld surface analysis. This provided a three-dimensional visual understanding
of the intermolecular contacts and crystal packing of a compound under different types
of surface properties and displayed the quantitative statistical distribution of specific in-
teractions. The normalized contact distance dnorm and the breakdown of the associated
fingerprint plots of the compounds are depicted in Figures 6 and 7, respectively. The
compound CH-FF is depicted as bright red spots on the Hirshfeld surface mapped over
dnorm, indicating the presence of C2—H2A· · ·O1 and C13—H13A· · · F1 intermolecular
interactions connected with neighboring molecules with a distance of 2.58 Å and 2.55 Å,
respectively. However, no bright red spots were observed in compound CH-ClF, signifying
that intermolecular interactions were not involved in the molecule. Meanwhile, the blue
and white regions represent longer intermolecular contacts and contacts around the Van der
Waals separation, respectively. The 2D fingerprint plots were deconstructed to highlight
particular atom pair contacts in both molecules, delineated into H· · ·H, C· · ·H/H· · ·C,
O· · ·H/H· · ·O, F· · ·H/H· · · F, C· · ·C, Cl· · ·H/H· · ·Cl and C· · · F/F· · ·C. The Hirshfeld
surface analysis of both compounds showed H· · ·H interactions of 28% (CH-ClF) and 33%
(CH-FF), which were thus revealed as the major contributor to intermolecular interactions
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and are represented by the largest region in the fingerprint plot ( Figure 7). Meanwhile,
the second largest contributor in the compound CH-ClF were C· · ·H/H· · ·C contacts,
with 15.8%, whereas F· · ·H/H· · · F in compound CH-FF was the second largest ranking
contribution with 26.2%, depicted by two narrow sharp spikes attributed to the presence
of intermolecular C13—H13A· · · F1 interactions. In addition, the O· · ·H/H· · ·O contact
became the inferior contributor in compound CH-ClF and fourth ranking contribution in
compound CH-FF, with 8.3% and 10.2%, respectively, as observed by two symmetrical nar-
row spikes with di + de ~ 2.4 Å where this value was approximately closer to the separation
distance of the hydrogen bond interaction between the hydrogen atom and oxygen of the
carbonyl group (H2A· · ·O1).
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Table 4. Hydrogen bond geometry (Å, ◦).

Compound Bond
D—H· · ·A

Bond Length, (Å) Angle
D—H· · ·A (◦)D—H H· · ·A D· · ·A

CH-FF
C2—H2A· · ·O1 (i) 0.93 2.58 3.464 (2) 158

C13—H13A· · · F1 (ii) 0.93 2.55 3.422 (2) 157

Symmetry codes: (i) −x + 1, y + 1/2, −z + 3/2; (ii) −x, −y − 1/2, z − 1/2.
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3.5. Ultraviolet–Visible (UV–Vis) and Frontier Molecular Orbital (FMO) Analysis

The important parameters for studying the reactivity of the molecules were analyzed
using HOMO and LUMO energies, with HOMO playing a crucial part in illustrating the
capability of the compounds as electron donors to unoccupied molecular orbitals [9]. The
electronic transition between HOMO and LUMO of CH-ClF and CH-FF showed a similar
trend movement, as can be seen in Figure 8. The electron distributions in the HOMO
state were localized at the ethylenic bridge and phenyl ring attached to the chlorine and
fluorine atom of CH-ClF and CH-FF, respectively. Additionally, both compounds had a
small molecular orbital localization at the phenyl ring that bonded to the fluorine atom
of each molecule. In the LUMO state, the electron distributions were firmly distributed
through the molecular skeleton of both compounds. The energy shift of frontier orbitals
from HOMO to LUMO was calibrated by using TD-DFT/B3LYP in order to identify the
theoretical absorption maximum values for compounds CH-ClF and CH-FF, which were
336.39 nm and 363.69 eV, respectively.

In the working principle of DSSC, an appropriate energy level is required for deploy-
ment as a sensitizer to ensure the occurrence of the electron injection and dye regeneration
processes [47]. Figure 8 represents the HOMO energy levels of both compounds, which
were lower than the redox potential of I−/I−3 (−4.8 eV), indicating the ability of the
oxidized dye to be restored by obtaining electrons from the electrolyte [10]. Likewise,
the higher LUMO energy levels compared to the TiO2 conduction band energy level
(−4.0 eV) of CH-ClF and CH-FF suggested the presence of electron injection from the
dye to the semiconductor substrate [10]. Hence, the HOMO and LUMO energy levels in
Figure 8 illustrate the potential of the CH-ClF and CH-FF compounds as dye-sensitizers in
DSSC applications.

Meanwhile, the UV–vis absorption spectrum in Figure 9 was conducted in an ace-
tonitrile solution (10−5 M) with a cutoff wavelength of 190 nm. The energy gap values of
CH-ClF (experimental: 4.44 eV; theoretical: 4.17 eV) and CH-FF (experimental: 4.38 eV;
theoretical: 4.10 eV) were successfully attained. The isolated condition while conducting
the theoretical calculations resulted in a slight deviation from the experimental value. The
absorption spectra of CH-ClF and CH-FF depicted similar wavelength regions to previ-
ously reported compounds containing fluorine substituents [48,49]. Wavelength absorption
is influenced by the electron affinity properties of the reported compounds [48].
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Figure 7. Fingerprint plots of intermolecular contacts showing the percentage contributions to the total Hirshfeld
surface area.
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3.6. DSSC Applications and Performance

The photovoltaic performance of DSSC was associated with essential parameters,
which were short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF) and power
efficiency (η), as defined in Table 5 and illustrated in the J-V characteristic curve in Figure 10
for the reported compounds, N719, and the DSSC without sensitizer. The Jsc was controlled
by the ability of dye molecules to absorb light and the flow of charge through the dye
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molecules to the nanocrystalline TiO2 area [10]. The Fill Factor (FF) operated on the quality
of the device’s performance, which was influenced by appropriate TiO2 thickness, suitable
electrolyte solution, and photocurrent conversion by the dye-sensitizer [50]. The ability of
the dye to be coated well on the TiO2 surface during the fabrication process was important
in achieving better DSSC efficiency.

Table 5. Photovoltaic parameters summary of the DSSCs performance.

Compound
Current
Density,

Jsc (mA/cm2)

Open Circuit
Voltage, Voc

(mV)

Fill Factor,
FF (%)

Efficiency, η
(%)

CH-ClF 0.024 492 70.2 0.00832

CH-FF 0.086 580 72.8 0.03632

N719 0.589 609 73.8 0.26470

No Sensitizer 0.002 54 23.9 0.00002
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Figure 10. J-V curves for DSSCs of the reported compounds under irradiance.

In this research, the halogenated chalcone cells were tested along with the standard
dye (N719) and the cell without sensitizer under the same conditions for comparison and
consistency. As can be seen in Figure 10, all plotted curves displayed an almost similar
trend with the increment of Jsc, which caused the Voc to be gradually shifted to the right.
The graph shows higher current density for the N719 than the halogenated chalcones tested.
Meanwhile, the DSSC without any sensitizer shows the smallest Jsc value (0.002 mA/cm2)
in the TiO2 layer, suggesting the presence of CH-ClF and CH-FF as potential sensitizers to
compliment the photovoltaic performance. Furthermore, these results support the fact that
the fluorinated chalcones were anchored on the TiO2 layer.

From Table 5, the open circuit voltages (Voc) achieved by CH-ClF and CH-FF were
higher than the DSSC without sensitizer; however, they were lower than the standard
dye, N719. The Voc results were controlled by the concentration of injected electrons at
the TiO2 layer and the electron recombination process that occurred between the dye
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molecules and the electrolyte [10]. The higher values of Voc were due to efficient electron
injection accumulation at the TiO2 and a low injected electron recombination rate with the
electrolyte [51].

The efficiency of the DSSC performance for both halogenated chalcone, N719, and
the cell without sensitizer were calculated using Equation (2). The results revealed
that the DSSC conversion efficiency of CH-FF (η = 0.03632%) was larger than CH-ClF
(η = 0.00832%) due to the structural configuration of CH-FF with –fluoro attachments on
both aromatic rings, leading to the higher electronegativity properties compared to CH-ClF.
The electronegativity properties acted as the chemical descriptor for the atoms within the
compound to attract the electrons during the chemical reaction [19]. Hence, this led to
the good quality of charge transfer within the CH-FF molecules, which also affected the
HOMO–LUMO energy levels for an excellent band energy [20,21]. The flow of charge
transfer within HOMO–LUMO energy levels is important to ease the electron injection
process in the TiO2 layer [10]. These criteria were well defined for CH-FF, resulting in a
higher Jsc values ( Figure 10) and DSSC conversion efficiency.

η =
Jsc ×Voc × FF

Pin
(2)

Additionally, CH-FF molecules were stabilized by the various hydrogen bond in-
teractions of C−H· · ·O and C−H· · · F. The existence of intermolecular interactions in
DSSC induced the charge transfer between the molecules to facilitate the electron injection
and dye regeneration process for better photovoltaic performance. In addition, the high
percentage of Fill Factor (FF) indicated the possibility of high-energy conversion and good
dye absorption in the TiO2 area [13]. The fill factor, FF achieved by CH-FF (72.8%) in
Table 5 shows its better fabrication and good absorption process compared to CH-ClF
(70.2%). However, the efficiency of CH-ClF and CH-FF, as shown in Figure 10, were lower
than the standard dye. This is due to the -COOH functional group that exists in N719,
which helps to facilitate electron transport compared to the reported compounds without
a -COOH anchoring group. The presence of the -COOH attachment was reported as a
good potential factor for the dye to anchor on the TiO2 area by improving the coupling
effect of electrons [15]. The DSSC efficiency achieved by CH-ClF was comparable with the
previously reported studies [52]; however, CH-FF shows lower power conversion results.

4. Conclusions

In the final analysis, we have discovered that the efficiencies of the DSSC application
contributed well to the electronegativity of the designed compounds. The compound with
the highest electronegative properties (CH-FF) was able to enhance the charge transfer flow
inside the molecules compared to the compound with lower electronegativity (CH-ClF).
The charge movement within the molecules was clearly shown in the energy shift of the
frontier orbitals from HOMO to LUMO, as calibrated at 4.28 eV (CH-ClF) and 4.10 eV
(CH-FF). Apart from this, the strong intermolecular interactions helped to further stabilize
the compound, resulting in better performance of the DSSC due to excellent charge mobility
between the molecules. CH-FF possessed C−H· · ·O and C−H· · · F interactions, while
there were no classical hydrogen bonding interactions found in CH-ClF, as confirmed by
the Hirshfeld analysis. This successfully yielded a DSSC conversion power for CH-FF and
CH-ClF of 0.03632% and 0.00832%, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/cryst11111357/s1, Figure S1: (a) The image of the sensitized TiO2 on the working electrode before
fabrication and (b) after fabrication with electrolyte injected on the CH-ClF and CH-FF cells.
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