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Abstract: Raman spectra of fluid inclusions in gem rubies from Yuanjiang deposit (China) within the
Ailao Shan-Red River (ASRR) metamorphic belt showed the presence of compounds such as CO2,
COS, CH4, H2S, and elemental sulfur (S8), accompanied by two bands at approximately 2499 and
2570 cm−1. These two frequencies could be assigned to the vibrations of disulfane (H2S2). This is the
second case of the sulfane-bearing fluid inclusions in geological samples reported, followed by the
first in quartzite from Bastar Craton of India. The H2S2 was likely in situ enclosed by the host rubies
rather than a reaction product that formed during the cooling of H2S and S8, suggesting sulfanes
are stable at elevated temperatures (e.g., >600 ◦C). By comparing the lithologies and metamorphic
conditions of these two sulfane-bearing cases (Bastar and Yuanjiang), it is suggested that amphibolite
facies metamorphism of sedimentary sequence that deposited in a continental platform setting might
favor the generation of sulfanes. Sulfanes may play an important role in the mobilization of Cr that is
essential for ruby crystallization.

Keywords: rubies; fluid inclusion; Ailao Shan-Red River metamorphic belt

1. Introduction

Numerous volatile species (e.g., CO2, CO, O2, C3H8, and N2) in fluid inclusions
are well documented in the literature [1]. Sulfur, an element with redox states ranging
from −2 to +6, can be found in fluid inclusions as sulfur compounds of different valence,
e.g., S8, COS, SO2, and H2S in gaseous, and SO4

2−, HSO4
−, and HS− solutes in aqueous

fluids [1,2]. Polysulfanes (H2Sn with n > 1; or hydrogen polysulfides) are generally found
in natural gas and crude sulfane oils [3], but their presence in natural fluid inclusions is rare.
Recently, disulfane (H2S2) was described for the first time in natural CH4–H2S inclusions
in Archaean quartzite from Bastar Craton of India [4]; recognition and assignment of the
H2S2-related Raman bands was accomplished according to quantum chemical calculations
based on the density functional theory. Given that sulfanes have been observed in both
sulfur-bearing fluid inclusions and sulfur-free types, the possibility that disulfane formed
by the post-entrapment reaction between molten sulfur and H2S was ruled out by Hurai
et al. [4]. They accordingly inferred that the disulfane or any other unknown S-H-bearing
species that could dissociate into disulfane along the cooling path should be present before
the fluid was trapped by quartz. This is critical to understanding the fluid process and is
thus of significance to investigate. On the other hand, many aspects regarding H2S2, e.g.,
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the favorable formation condition, thermochemical stability, and its potential roles in the
mobilization of specific elements, remain largely unclear and require further investigation.

For marble-hosted ruby deposits from Central and Southeast Asia, studies on fluid
inclusions show that sulfur-bearing fluids with the composition of CO2–H2S (±COS ± S8)
occurred during corundum growth [2,5]. These complex fluids are metamorphic in ori-
gin and can be explained by decarbonation of limestone (CO2) and reduction in sulfate
(elemental sulfur, hydrogen sulfide, and COS) [2].

Here, we report the second occurrence of H2S2 composition in ruby-hosted fluid
inclusions from the Ailao Shan-Red River (ASRR) metamorphic belt. It corroborates the
presence of sulfanes in high-grade metamorphic fluids. We further discussed its origin,
thermochemical stability, and geochemical implications.

2. Geological Setting

The geology of the ASRR metamorphic belt has been documented in some detail
by Tapponnier et al. [6] and Leloup et al. [7]. The ASRR metamorphic belt, a Tertiary
left-lateral strike-slip fault zone, is traditionally interpreted to play an important role in the
accommodation of the extrusion of the Indochina block during the India–Eurasia collision
(Figure 1) [6,7]. The elongate Ailao Shan metamorphic massif is composed of mylonitic
gneisses, migmatites, granitic pods, amphibole-bearing alkaline intrusions, and marble
boudins [8,9]. U–Pb ages of zircon, xenotime, titanite from syntectonic leucogranites com-
bined with Ar–Ar radiometric dating of biotite, muscovite, and K-feldspar within the
Ailao Shan set the timing of left-lateral shearing activity from 35 Ma to 17 Ma [7–9]. In
addition, 23.4 ± 0.3 Ma U–Pb ages of titanite syngenetic with rubies in marbles from Yuan-
jiang, which recorded the age of ruby mineralization, are also within this range [10]. Peak
metamorphism occurred at 4.5 ± 1.5 kbar and 710 ± 70 ◦C, as revealed by a petrographic
investigation on Ailao Shan massif [11]. Greenschist facies retrograde metamorphism
occurred at pressures (P) of <3.8 kbar and temperatures (T) around 500 ◦C [11].
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within meta-sedimentary hosts including gneiss, amphibolite, and leptynite. The marbles 
are medium- to coarse-grained in size and white and light gray in color. Most marble 
mainly comprises calcite with small amounts of micas, feldspars. Other minerals identi-
fied in marbles include ruby, rutile, spinel, sphene, graphite, pyrrhotite, and pyrite. 

Figure 1. Simplified tectonic sketch of SE Asia showing the ASRR metamorphic terranes (modified
after Leloup et al. [7]) with marked study area. The ASRR strike-slip metamorphic zone is comprised
of four metamorphic terranes: Ailao Shan, Xuelong Shan (XLS), Diancang Shan (DCS), and Day Nui
Con Voi (DNCV).
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3. Materials and Methods

Corundum-bearing marbles in this investigation are from the Yuanjiang region in
the central segment of the Ailao Shan mountain (Figure 2). They are exposed as boudins
within meta-sedimentary hosts including gneiss, amphibolite, and leptynite. The marbles
are medium- to coarse-grained in size and white and light gray in color. Most marble
mainly comprises calcite with small amounts of micas, feldspars. Other minerals identified
in marbles include ruby, rutile, spinel, sphene, graphite, pyrrhotite, and pyrite.
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Figure 2. Structural map of Ailao Shan metamorphic range (modified after Leloup et al. [7]): MVF–mid-valley fault; RFF—
range front fault. 

We conducted fluid inclusion studies on both primary rubies in the marble matrix 
and secondary rubies (Figure 3) recovered from the sediments around the village of Shaku 

Figure 2. Structural map of Ailao Shan metamorphic range (modified after Leloup et al. [7]):
MVF—mid-valley fault; RFF—range front fault.

We conducted fluid inclusion studies on both primary rubies in the marble matrix
and secondary rubies (Figure 3) recovered from the sediments around the village of Shaku
in Yuanjiang County. These ruby fragments were cut and doubly polished to a thickness
of 150–200 µm. An optical microscope was used for petrographic observation of fluid
inclusions. In addition, four pieces of ruby-bearing marbles were doubly polished for fluid
inclusions investigations.
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Figure 3. (a) Ruby-bearing marble and (b) secondary rubies (0.50–5 ct) from Yuanjiang, China.

Raman analyses on fluid inclusions were completed at HORIBA Instrument (Shanghai)
Co., Ltd., employing a confocal LabRAM HR Evolution Raman microspectrometer (Horiba,
Ltd., Kyoto, Japan) coupled to an Olympus BX-51 microscope. Raman spectra were
collected with a 100× objective lens. To suppress fluorescence from the host ruby, a 473 nm
excitation wavelength of 25 mW, air-cooled solid-state Nd-YAG laser was selected, allowing
detection of bands above 1500 cm–1. The analytical settings included 600 grooves/mm
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gratings, 10–20 s acquisition time, and 2–3 times accumulations. Spectra processing was
performed with baseline correction unless otherwise specified. Daily calibration of the
spectrometer was completed with a monocrystalline silicon wafer (520.7 cm–1).

4. Results

The fluid inclusions can be subdivided into three types according to their entrapment
sequence relative to ruby growth, i.e., primary, pseudo-secondary, and secondary. A
detailed description of fluid inclusion classification was given in Huang et al. [10] and is
briefly outlined in Table 1. Mostly, these fluid inclusions are approximately 20–60 µm in
diameter (Figure 4). Raman analyses showed complex fluid composition in the primary
and pseudo-secondary fluid inclusions (Figures 4 and 5); they comprise CO2, H2S, COS, S8,
and CH4 (Figure 5). Components such as CO2, H2S, COS, S8, and CH4 were also observed
in the fluid inclusions of secondary origin. Moreover, solids in the fluid inclusions cavities,
identified by Raman spectroscopy, include diaspore, arsenopyrite, dawsonite, gibbsite,
pyrite, and rutile (Figures 4 and 5 and Table 1).
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Figure 4. Photomicrographs of H2S2–bearing fluid inclusions. These fluid inclusions sometimes
contain rutile crystals (a,c) and diaspore crystals (a–d): L—liquid carbonic phase.

Table 1. Summary of occurrences and components of various types of fluid inclusion in Yuanjiang rubies.

Inclusion Types Occurrence Description Fluid Components Solids

Primary

Oriented clusters throughout the host
or small clusters in the core of the host,

sometimes occurred as isolated or
clusters within colored growth zonation

CO2–H2S–COS–S8–H2S2–
CH4

Diaspore, gibbsite,
dawsonite, rutile, and

arsenopyrite

Pseudo-secondary In intragranular fractures that do not
traverse into the rim of the host

CO2–H2S–COS–S8–H2S2–
CH4

Diaspore, arsenopyrite,
and pyrite

Secondary
In sealed fractures present in planar

arrays that traversedThe growth zone
of crystals

CO2–H2S–COS–S8–CH4 Diaspore
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Moreover, two Raman bands at 2499 and 2570 cm−1 were observed in fluid inclusions
of both primary and pseudo-secondary origins (Figure 5).
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Figure 5. Raman spectra of the fluid inclusion as shown in Figure 4a: (a) the Raman spectrum
corresponds to rutile; (b) Raman spectra showed that the transparent crystal was diaspore. Asterisk
denoted the Raman signals from the hosting corundum; (c) the components of the included fluid
included native sulfur (S8), CO2, H2S, and CH4. Two bands centered at 2499 and 2570 cm–1 can be
clearly seen.

5. Discussion
5.1. Identification of Disulfane

The density functional theory method is a useful method for molecular structure
prediction [3]. It is especially suitable for unstable reactive species (e.g., sulfur-rich com-
pounds) whose structures and spectroscopic properties can hardly be obtained experimen-
tally. Hurai et al. [4] employed the B3LYP hybrid functional and the basis set correlation-
consistent polarized valence triple-zeta (cc-pVTZ) for the Raman frequency calculations of
the polysulfanes. Quantum chemical calculations of both pure H2Sn (n = 2–6) compounds
and S8-sulfane interactions had been conducted by these authors. They observed a similar
pattern between the theoretical Raman bands of various systems comprising S8-polysulfane
and the examined sulfur-bearing fluid inclusions. Accordingly, they indicated that the
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2488 cm−1 Raman band corresponds to H-bonded S-H stretch vibrations of the H2S2 · · · S8
· · ·H2S2 complex, whereas the 2503 cm−1 band corresponds to non-H-bonded S-H stretch-
ing vibration of the H2S2 · · · S8 complex. Another band at 2574 cm−1 was interpreted to
reflect S-H stretch vibration in H2S + H2S2 · · · S8 [4].

Fluid inclusion in marble-hosted rubies from Central and Southeast Asia have been
extensively studied [2,5]. However, the 2499 and 2570 cm−1 Raman bands, which have
not been detected in rubies from other deposits, are the most notable features of Raman
bands of the investigated fluid inclusions within Yuanjiang rubies. The pioneering work
of sulfane-bearing fluid inclusions carried out by Hurai et al. [4] enables us to interpret
these two Raman bands. Deconvolution of the broad peak at 2499 cm−1 using PeakFit
software (version 4.12) revealed two bands centered at 2484 and 2499 cm−1 (Figure 6c).
Hurai et al. [4] have shown the broadband around 2497 cm−1 actually comprised two
peaks centered at 2482–2488 cm−1 and 2497–2499 cm−1. Therefore, the two bands of 2484
and 2499 cm−1 observed in Yuanjiang rubies could be ascribed to H2S2-related vibrations
and positively identified the presence of sulfanes.
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Figure 6. Raman spectra of fluid inclusions showing the H2S2-related bands at approximately
2499 and 2570 cm–1: (a) Raman spectrum without baseline correction of the inclusion as shown in
Figure 4a; (b) Raman spectrum without baseline correction of the inclusion as shown in Figure 4b;
(c) deconvolution of the 2499 cm–1 band reveals a hidden band centered at 2484 cm–1. The bands at
2484 and 2499 cm–1 reflect the respective H–bonded and non–H–bonded SH-stretching vibrations of
the H2S2 · · · S8 · · ·H2S2 complex.

5.2. Origin of Sulfane in Yuanjiang Rubies

The sulfur–sulfur bonds in S8 have rather a high bond enthalpy ((264 kJ mol−1), which
results in sulfur atoms forming as chains, rings, or clusters in numerous compounds [3].
Sulfanes, H2Sn, are among the most basic of such species. However, reports regarding the
natural occurrences of sulfanes are still limited; they typically occur in crude sulfane oils [3].
Moreover, they could be found in hot underground deposits of natural gas where H2S
and elemental sulfur coexist [3] and sulfur-containing hydrothermal environments [12–14].
Both elemental sulfur and H2S are common species coexisting in fluid inclusions [2,5],
and sulfanes can be produced by the interaction of S8 with H2S via the reaction H2Sn +
nSliq→H2Sn+1 [3]; however, their presence in fluid inclusions is still very rare. Thus far, the
sulfane in fluid inclusions has been only reported in Archaean mica-rich quartzite from
near the Saigon village within the Bastar Craton, India [4], to the best of our knowledge.
These authors inferred that the H2S2 (or its precursor sulfur-bearing species) could have
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been present during the quartz crystallization, as the H2S2-related Raman bands could be
detected in sulfur-free CH4−H2S inclusions [4].

The coexistence of hydrogen sulfide and elemental sulfur is also a common character-
istic of marble-hosted rubies from Central and Southeast Asia [5]. However, in addition
to the Yuanjiang rubies, H2S2 has not been identified in any other deposits [2,5]. The
Asian marble-hosted rubies formed under similar geological processes during the Cenozoic
Himalayan orogenesis. Garnier et al. [15] suggested that they formed under amphibolite
facies conditions. Since H2S2 has not been detected in other Asian marble-hosted rubies, it
seems reasonable to infer that H2S2 in sulfur-bearing inclusions within Yuanjiang rubies
does not result from a post-entrapment reaction between the elemental sulfur and the coex-
isting H2S-bearing fluid. On the contrary, a most plausible explanation for its occurrence
could be that H2S2 or its precursor mixed-valence sulfur-bearing species should have been
present during the crystallization of Yuanjiang rubies.

Though the ASRR shear belt probably activated as a lithosphere-scale ductile strike-
slip shear zone in the Tertiary [16], mantle-derived rocks have not been found within the
mylonitic gneisses shear belt thus far [11]. Available evidence obtained from biotite-garnet
and plagioclase-garnet thermobarometers suggests that the exhumed terrane along this belt
corresponds to a paleo-depth of about 18 km [11]. The protoliths of the Ailao Shan high-
grade metamorphic massif are of sedimentary origin [17]. Assuming a crustal thickness
of 35–40 km for the study area [11,18], these observations suggest that rubies have a mid-
crustal origin. As the sulfane composition in fluid inclusions is speculated to be enclosed
during ruby growth (sulfane-bearing fluid inclusions are primary and pseudo-secondary),
it must also have a mid-crustal origin.

5.3. Favorable Geological Condition for the Generation of Sulfanes

At both localities where H2S2 was detected (Bastar Craton in India and Ailao Shan
metamorphic massif in China), rock types and metamorphic grades are comparable. The
first documented sulfane-bearing fluid inclusions from India were found in metasedimen-
tary sequence, which predominates in gneisses and contains minor schists, quartzites,
marbles, and metabasalts. Peak metamorphism in this region occurred at amphibolite
facies [4]. As for the Yuanjiang area, peak P-T conditions also correspond to amphibolite
facies [11] and the exposed rocks are mainly composed of gneisses accompanied with some
migmatites and granitic pods, and interlayers of metapelites, amphibolite, and marble.

Comparison of the lithologies and P-T conditions between these two examples sug-
gests amphibolite facies metamorphism of sedimentary sequence that deposited in a
continental platform setting is favorable for the generation of H2S2. Even in similar-facies
metamorphic terranes, the conditions can be very different in terms of fluid compositions,
retrograde paths, and timeframes, etc., which may explain the H2S2 deficiency in fluid
inclusions from other rubies in metasedimentary sequences. This explains the singularity
of the localities where sulfanes have been found. Unfortunately, the specific mechanism for
the generation of sulfanes in the above two occurrences remains unclear.

5.4. Implication for Thermochemical Stability of Sulfanes

If the explanation about H2S2 (or its precursor S-H-bearing species) formation was
plausible, this would imply that the sulfanes or its precursor mixed-valence sulfur-bearing
species could remain stable in metamorphic conditions of Yuanjiang corundum formation.
The P-T estimates for the Yuanjiang ruby crystallization remain unconstrained at present.
At another marble-hosted ruby deposit in the ASRR metamorphic belt, located in the Day
Nui Con Voi range in Vietnam, the ruby mineralization temperature is calculated in the
range of 600 to 625 ◦C by calcite-graphite isotopic thermometry [19]. Here, we assumed
that the Yuanjiang rubies formed at a similar temperature range. This high formation
temperature of Yuanjiang ruby implies that the thermochemical stability of sulfanes or
its precursor S-H-bearing species could be as high as 600 ◦C. Thus far, there are few
experiments and thermodynamic calculations to establish the stability limits of sulfanes in
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natural fluid systems. Migdisov et al. [14] have experimentally shown that sulfanes remain
stable at temperatures of 200–290 ◦C. However, the wider-range P-T stability of sulfanes is
still unavailable. Nevertheless, based on their inference that H2S2 or its precursor sulfur-
bearing compounds could have been present during the quartz crystallization, Hurai
et al. [4] suggested high-temperature stability for mixed-valence sulfur-bearing species
(>400 ◦C as estimated by graphite thermometer using Raman spectrometric method).
If our inference is correct, it considerably expands the temperature stability of H2S2 or
its precursor species. The presence of even traces of water tend to contribute to the
decomposition of H2S2 [3]; though sulfanes and water were simultaneously present during
entrapment in Yuanjiang rubies, water had been exhausted completely by reactions with
the host corundum to produce diaspore along the cooling P-T path [10], making the
preservation of sulfanes possible.

5.5. Geochemical Implications

The geological features at Yuanjiang share some similarities with those observed at the
Bastar Craton region of India, where the sulfane-bearing inclusions were first documented.
For example, they both occur in the high-grade gneissic terrane. Moreover, Cr-rich minerals
were found in both of these locations, as represented by Cr-rich mica (up to 1.8 wt.% Cr2O3)
and Cr-chlorite in Bastar [4], and ruby in Yuanjiang (up to 1.1 wt.% Cr2O3) [20], respectively.

Chromium, a siderophile element essential for the formation of rubies, is commonly
considered as immobile in most geological fluids [21]. Short-distance mobilization of Cr
has been proposed by molten salts during the ruby formation [5]. In other cases, it has been
demonstrated that the polysulfide complexation in hydrothermal fluids plays an important
role in transporting siderophile elements [22]. If our inference that sulfanes or its precursor
S-H-bearing species were present in the course of Yuanjiang ruby precipitation is valid,
then the role of sulfanes (or its precursor) in Cr mobilization could be expected.

6. Conclusions

The identification of H2S2 fluid composition in rubies from Yuanjiang marbles is the
second example of sulfane-bearing fluid inclusions after quartz hosted H2S2-bearing fluids,
confirming the presence of sulfane in geological fluids at elevated P-T conditions. Our
observations suggest that H2S2 or its precursor S-H-bearing species should have been
present during the Yuanjiang ruby precipitation. This further implies that sulfanes can
survive high P-T and probably result from the amphibolite facies metamorphism of the
sedimentary sequence. The presence of reduced volatiles such as H2S2 also provides
robust evidence for corundum crystallization in a reduced condition [13], aligning with the
presence of H2S and CH4 in the fluid phase of Yuanjiang rubies.
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