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Abstract: High-quality, all-inorganic CsPbBr3/Cs4PbBr6 composite perovskite nanocrystals (NCs)
were obtained with all-solution-processing at room temperature, and a photodetector (PD) with high
detectivity was realized based on CsPbBr3/Cs4PbBr6 NCs. The detectivity (D*) of the proposed PD
is 4.24 × 1012 Jones under 532 nm illumination, which is among the highest levels for PDs based on
all-inorganic perovskite NCs. In addition, a high linear dynamic range (LDR) of 115 dB under 1 V
bias was also realized. Furthermore, the underlying mechanism for the enhanced performance of the
proposed PD was discussed. Our work might promote the preparation of high-performance PDs
based on dual-phase all-inorganic perovskite nanocrystals.

Keywords: all-inorganic lead halide perovskite; CsPbBr3; Cs4PbBr6; perovskite nanocrystals;
photodetector

1. Introduction

All-inorganic lead halide perovskites have shown excellent photoelectrical properties
with high absorption coefficients, wide spectra, high carrier mobility values, and long
charge diffusion lengths. Because of these advantages, they are widely used in PDs [1–4],
solar cells [5–8], lasers [9–11], light-emitting diodes [12–14], and so on. In addition, com-
pared with the organic–inorganic hybrid perovskite, all-inorganic lead halide perovskites
have higher chemical stability to the environment because there are no organic ions in them.
Among many kinds of all-inorganic lead halide perovskites, CsPbBr3 NCs demonstrate
strong competitiveness for their excellent photoelectric characteristics, such as adjustable
photoluminescence (PL) with narrow full-width at half maximum (FWHM) in visible light,
an easy preparation process for their devices, and small size which causes a quantum
size effect. Moreover, the CsPbBr3 NCs can be stored in air for 30 days with no obvious
decrease in their photoelectric performance [15]. Some research on optoelectronic devices
based on CsPbBr3 NCs has been conducted. For example, Li et al. reported an interesting
recyclable dissolution–recrystallization phenomenon of CsPbBr3 NCs and its application on
the room temperature self-healing of compact and smooth carrier channels for PDs with D*
of 6.1 × 1010 Jones [16]. Zeng et al. demonstrated a high-performance self-actuation PD, for
which CsPbBr3 NCs were synthesized using room temperature saturation recrystallization,
and the NC films were prepared by a centrifugal casting method. Compared with the drip-
coating method, the photocurrent of the device increased three-fold, and the optimized
device had a high on/off ratio (>105) [15]. However, the D* of these all-inorganic perovskite
NC PDs is not high enough. Generally, the detectivity can be improved by increasing the
bright current and suppressing the dark current. Additionally, improving the quality of
nanocrystalline films to reduce defect states is vital for the suppression of the dark current.
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Quan et al. have found that embedding CsPbBr3 NCs in the Cs4PbBr6 matrix can prevent
the agglomeration of CsPbBr3 NCs [17]. This means that the presence of Cs4PbBr6 NCs
could improve the quality of NC films. Thus, we prepared CsPbBr3/Cs4PbBr6 composite
NCs by controlling the proportion of PbBr2 in the synthesis process. Cs4PbBr6 is an indirect
band gap semiconductor with a wide band gap (3.8 eV) [18], and Cs4PbBr6 NC is a zero-
dimensional material, which absorbs light yet does not emit it [19]. This non-luminous
property can effectively reduce radiation recombination. In addition, it has been proved
that the presence of Cs4PbBr6 will enhance the absorption of the dual-phase perovskite
NCs in the UV spectrum [17,20,21]. This is helpful for improving the detection performance
of the PD in the UV spectrum.

Taking the above-mentioned issues into account, the saturation recrystallization
method was utilized to synthesize the dual-phase NCs at room temperature. The dual-
phase NC film was spin-coated on the customized substrate and Au electrode. Moreover,
the planar metal-semiconductor-metal (MSM) PDs based on CsPbBr3/Cs4PbBr6 composite
NCs were realized. The proposed PD exhibited a high D* of 4.24 × 1012 Jones, with an
LDR of 115 dB under 1 V bias. To explain the improvement of D*, the role of Cs4PbBr6 NCs
was investigated. Our work might provide a guidance for developing a high-performance
PD based on CsPbBr3/Cs4PbBr6 perovskite NCs.

2. Materials and Methods

Materials: Cesium bromide (CsBr, 99.5%), lead bromide (PbBr2, 99.0%), Oleic acid
(OA, 85%) and oleylamine (OAm, 80–90%) were purchased from Aladdin. Toluene (AR)
was purchased from Beijing Chemical Works. All these chemicals were used as received.

Synthesis of CsPbBr3/Cs4PbBr6 NCs: The saturation recrystallization method was
utilized to synthesize the NCs at room temperature without any noble gases, and the
specific synthesis steps are shown in Figure 1. Firstly, the beaker and the small glass bottle
were each cleaned with deionized water, isopropanol, and absolute ethanol for 15 min,
and then dried with high-purity nitrogen. After that, they were placed on a hot table at
80 ◦C to accelerate solvent evaporation and ensure no residual water. Then, 0.4 mmol of
CsBr and 0.4 mmol of PbBr2 were dissolved in 10 mL of DMSO. A clear and transparent
solution was obtained by ultrasonic cleaning, and no water entered the solution in this
process. Then, 0.5 mL of OAm and 1 mL of OA were added as ligands of NCs to prepare a
precursor solution. After that, 1 mL of the above precursor solution was dribbled into the
10 mL of toluene solution with a fast speed of 800 r/min. In this way, various inorganic
ions were transferred from the benign solvent to the undesirable solvent, and the NCs
were deposited due to the much higher solubility of NCs in DMSO than in DMSO mixed
with toluene.
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Fabrication of PD: The fabrication of the device was mainly based on the gold in-
terdigital electrode and the inorganic perovskite NCs. The schematic diagram of the
fabrication process is illustrated in Figure 1. The interdigital space of the gold interdigital
electrode is 3 µm and the thickness of the Au electrode is about 100 ± 10 nm. The substrate
is made up of silicon (Si) wafer, SiO2, and chromium (Cr) plating. A 300 nm-thick SiO2
layer covers the surface of the silicon wafer. Additionally, there is a Cr plating layer with
a thickness of 10 nm between the SiO2 layer and the Au electrode. The planar PD was
fabricated in a glove box by spin-coating. The NC solution was spin-coated on the substrate
with the rotational speed of 2000 r/min. The device was then placed on a hot platform at
90 ◦C to vaporize the methylbenzene and DMSO.

Characteristics of nanocrystals: The photoelectric property of NCs was tested by a
light-emitting diode (LED) light source (375 nm, Thorlabs, Shanghai, China). The optical
image of NCs was characterized using an optical microscope (Nikon, LV150, Shanghai,
China). The high-resolution transmission electron microscopy (HRTEM) images of NCs
were collected using a JEOL JEM-2100 microscope (Nippon Electronics Corporation, Shang-
hai, China) at an accelerating voltage of 100 kV. The X-ray diffraction (XRD) spectrum of
the NCs was measured by a diffractometer (Haoyuan Instrument Co., Ltd., DX-2700, Dan-
dong, China). The absorption spectrum of NCs was determined by an ultraviolet-visible
absorption spectrometer (Shimadzu, UV-2600, Shimadzu, Japan). The photoluminescence
spectrum at room temperature was carried out by a home-built fluorescence spectropho-
tometer system using a 343 nm femtosecond laser (Light Conversion, Carbide 5W, Vilnius,
Lithuania) as the excitation light source.

Photoelectric characteristics: The PD was placed on the probe table (Prcbe, Mini),
and the external shielding box was used to isolate the external optical signals throughout
the test. The current–voltage (I–V) curves and the transient photo responses of the PD
based on inorganic perovskite NCs were tested using a semiconductor analyzer (Agilent,
B1500, Shanghai, China). For completing the I–V measurements, the light intensity was
tuned by adjusting the LED light source (375 nm, Thorlabs, Shanghai, China) at a fixed
driving voltage. The transient photo responses were acquired with an LED lamp, which
emitted light faster than the response of the measured PDs.

3. Results and Discussion
3.1. Composition of NCs

To determine the composition of NCs, XRD measurements were carried out, as shown
in Figure 2a. The peaks at 15.185◦, 21.551◦, 30.644◦, 34.371◦ and 37.767◦ can be indexed
to the (100), (110), (200), (210) and (211) lattice planes, respectively, which are the char-
acteristic peaks of the CsPbBr3 phase. On the other hand, the peaks at 12.885◦, 20.079◦,
22.413◦, 25.427◦, 27.510◦, 28.603◦ and 30.268◦ can be identified as the (110), (113), (300),
(024), (131), (214) and (223) reflections, respectively, which are the characteristic peaks
of Cs4PbBr6 [18,21]. In addition, the intensity of the diffraction peaks of Cs4PbBr6 is
much higher than those of CsPbBr3, which means that the main component of the NCs
is Cs4PbBr6. To further investigate the composition of the NCs, the HRTEM images were
obtained and shown in Figure 2b, and the selected area corresponding to Figure 2b is
illustrated in Figure 2c. It can be found that the lattice fringes of 0.68 nm can be indexed
to the (110) lattice planes of orthorhombic Cs4PbBr6, while the lattice fringes of 0.29 nm
can be indexed to the (200) lattice planes of cubic CsPbBr3. Thus, the dual-phase was also
evidenced by the selected area TEM of dual-phase NCs.
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Figure 2. (a) XRD patterns of the dual-phase CsPbBr3/Cs4PbBr6 NCs; (b) HRTEM image of the dual-phase inorganic
perovskite NC film, inset: Fast Fourier transform (FFT) image of the dual-phase inorganic perovskite NC film; (c) HRTEM
corresponding to Figure 2b.

3.2. Optical Property of NCs

In order to investigate the optical property of NCs, its absorption and PL spectrum
were tested, as shown in Figure 3a,b. We found that there were two absorption peaks in
the absorption spectrum. One peak was located at 505 nm, and the other one was located
at 316 nm. According to the existing research on CsPbBr3, we know that the absorption
peak at 505 nm is attributed to CsPbBr3. Thus, it can be inferred that the absorption peak
at 316 nm was caused by Cs4PbBr6. In addition, the absorption band edges of CsPbBr3
and Cs4PbBr6 NCs are 360 nm and 547 nm, respectively. Based on this, the band gaps of
CsPbBr3 and Cs4PbBr6 NCs were calculated, which were 2.3 eV and 3.8 eV, respectively.
This is in agreement with the literature [18]. For the PL spectrum (shown in Figure 3b),
a narrow emission peak was observed at 520 nm with a FWHM of 26 nm, which is 3.1
nm lower that of pure CsPbBr3 NCs (29.1 nm) [22].This suggests that the quality of NC
films was improved by the introduction of Cs4PbBr6 NCs. It is worth noting that there
was only one PL peak that originated from CsPbBr3 NCs, which is consistent with the
previous studies’ finding that Cs4PbBr6 does not emit light [23]. Moreover, the PL peak
was in the green light emission band, which echoes the luminescence of the sample shown
in the inset of Figure 3b. CsPbBr3/Cs4PbBr6 NCs in toluene (illustration) were yellow
under sunlight. However, when exposed to ultraviolet light, the CsPbBr3/Cs4PbBr6 NCs
in toluene emitted bright green light. This is also consistent with the reported emission
band of CsPbBr3/Cs4PbBr6 NCs [21].
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solution illuminated by a fluorescent lamp and a 375 nm LED lamp, respectively.

3.3. Performance of the Composite NC PD

The dual-phase inorganic perovskite NC film was spin-coated on the gold interdigital
electrodes, and the planar MSM PDs were prepared. The I–V curves of the proposed PD
under 375 nm LED illumination with different light intensities are shown in Figure 4a. It
can be found that the photocurrent increased with the rise in the optical power density.
Moreover, the dark current at 1 V bias was 6.67 pA, which was significantly suppressed
compared with that of the PD based on pure CsPbBr3 NCs (1.5 nA at 2 V bias) [15]. It
suggests that the quality of NC film was improved by the introduction of Cs4PbBr6 NCs,
which could prevent the agglomeration of CsPbBr3 NCs. The light current with a light
intensity of 10.2 mW/cm2 at 1V bias was 19.32 nA and the ratio of light current to dark
current was 2894 at 1 V bias. This value was much lower than that of the PD based on
CsPbBr3 NCs (105 under 4.65 mW/cm2 at 2 V bias), which meant that the bright current
was weakened by the introduction of Cs4PbBr6 NCs. The external quantum efficiency
(ηEQE), responsivity (R), and D* of the proposed PD were calculated and the results are
shown in Figure 4c–e. As the power density of the incident light increased from 13 µW/cm2

to 2689 mW/cm2, the ηEQE decreased continuously. At the lowest detectable illumination
of 13 µW/cm2 at a bias of 1V, the ηEQE was only 22.1%. This value is also lower than
the PDs based on CsPbBr3 NCs (41%) [16]. These phenomena may be due to the fact
that the main component of dual-phase NC film is Cs4PbBr6. Moreover, the wide band
gap of Cs4PbBr6 determines that the absorption wavelength of Cs4PbBr6 must be lower
than 360 nm. However, due to the limitation of the experimental conditions, our test
wavelength could only reach 375 nm. Thus, the light absorption intensity and the amount
of photogenerated carriers of the PD based on CsPbBr3/Cs4PbBr6 composite NCs were
correspondingly reduced under the illumination of 375 nm. This also led to low R, which
was only 0.094 A/W under the optical power of 13 µW/cm2. The expression of R was IL−Id

PinS
(IL is photocurrent, Id is dark current, Pin is incident optical power density, S is effective
area). Although the PD had an ultra-low dark current, the light current was not satisfied,
which led to a small R. However, compared with the previous reported MSM PDs based on
CsPbBr3 NCs (summarized in Table 1), the D* of the proposed PD was among the highest
level, which reached 4.24 × 1012 Jones under the optical power of 13 µW/cm2. Due to the
great improvement of D*, it could be expected that the LDR would also be improved. Here,
the LDR of the proposed PD under 1 V bias with 532 nm continuous laser illumination
were shown in Figure 4b. It can be found that the proposed PD was capable of detecting
incident light as low as 13 µW/cm2 under 1 V bias, and its LDR was 115 dB.



Crystals 2021, 11, 1287 6 of 9

Crystals 2021, 11, x FOR PEER REVIEW 6 of 9 
 

 

could only reach 375 nm. Thus, the light absorption intensity and the amount of photo-

generated carriers of the PD based on CsPbBr3/Cs4PbBr6 composite NCs were correspond-

ingly reduced under the illumination of 375 nm. This also led to low R, which was only 

0.094 A/W under the optical power of 13 W/cm2. The expression of R was 
𝐼𝐿−𝐼𝑑

𝑃𝑖𝑛𝑆
  (IL is 

photocurrent, Id is dark current, Pin is incident optical power density, S is effective area). 

Although the PD had an ultra-low dark current, the light current was not satisfied, which 

led to a small R. However, compared with the previous reported MSM PDs based on CsP-

bBr3 NCs (summarized in Table 1), the D* of the proposed PD was among the highest 

level, which reached 4.24 × 1012 Jones under the optical power of 13 W/cm2. Due to the 

great improvement of D*, it could be expected that the LDR would also be improved. 

Here, the LDR of the proposed PD under 1 V bias with 532 nm continuous laser illumina-

tion were shown in Figure 4b. It can be found that the proposed PD was capable of detect-

ing incident light as low as 13 W/cm2 under 1 V bias, and its LDR was 115 dB. 

 

Figure 4. (a) I–V curves of CsPbBr3/Cs4PbBr6 NC PD with different optical power densities under 

the irradiation of a 375 nm LED lamp; (b–e) LDR, ηEQE, R, and D* measured using a 532 nm laser as 

a light source; (f) Change trend of the dark current after taking the logarithm of the x-axis and y-

axis, the red line is the fitting curve. 

 

Figure 4. (a) I–V curves of CsPbBr3/Cs4PbBr6 NC PD with different optical power densities under
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Table 1. Summary of the performance of inorganic perovskite NC PDs.

Nanocrystal R
(mA/W) ηEQE (%) D*

(Jones)
Trise/Tfall

(ms) Ref.

CsPbI3 - - - 24 / 29 [23]
CsPbBr3 0.18 41 6.1 × 1010 1.8 / 1.0 [16]
CsPbCl3 1890 - - 41 / 43 [24]
CsPbBr3 4.71 16.69 4.56×108 0.2 / 1.3 [5]

CsPbBr3/Cs4PbBr6 0.094 22.1 4.24×1012 10.85 / 2.85 Our work

In order to explain the reason for the improvement of D*, the type of contact between
the semiconductor and the metal electrode was analyzed. Due to the high work function
of Au, it can be expected that the interface between the inorganic perovskite NCs and
the Au electrode will form a good ohmic contact [15]. This prediction was proved by the
experiment. The I–V curve at different biases were measured, and Figure 4f shows the
change trend of the dark current after taking the logarithm of the x-axis and y-axis. It is
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clear that the current increased significantly with the increase in bias, and the slope (n1) of
the curve is 1.07, which is almost linear. This means that a good ohmic contact was formed
between the dual-phase NCs and Au electrode, providing a guarantee for the rapid transfer
of the carrier. On the other hand, the band gaps of CsPbBr3 and Cs4PbBr6 were 2.3 eV and
3.8 eV, respectively, and both the VBM and CBM of Cs4PbBr6 were higher than those of
CsPbBr3. Thus, by combining CsPbBr3 NCs with Cs4PbBr6 NCs, the energy band of the
composite NCs would be moved up as a whole relative to the Au electrode. Moreover,
the height difference between the VBM of the composite NCs and the Fermi energy of the
Au electrode would be reduced, which facilitates the transmission of electrons. This is
also helpful for the improvement of D*. In addition, both the strongly suppressed dark
current and the narrowed FWHM of the PL spectrum proved that the quality of the NC
film was indeed greatly improved with the introduction of Cs4PbBr6 NCs. Furthermore,
the radiation recombination could also be suppressed due to the non-luminous property of
Cs4PbBr6 NCs. All these behaviors led to the improvement of D*.

To study the photoresponse of the composite NC PD, the transient response perfor-
mance under 375 nm with a light intensity of 10.2 mW/cm2 at 1 V bias were measured
(shown in Figure 5a), which indicated that the proposed PD could respond stably when
the illumination was turned on and off. Moreover, response speed was another important
index of the photodetector, and the transient photocurrent response relationship (I-T) curve
of the proposed PD under 1 V bias is shown in Figure 5b. According to the definitions of
the rise time (Trise) and fall time (Tfall) for the time when the photocurrent increased from
10% to 90% (declined from 90% to 10%) in the on and off cycles under light, Trise and Tfall
were 10.85 ms and 2.25 ms, respectively. The sum of the rise time and the fall time was
considered the response time of the PD, which was 13.1 ms.
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time of the proposed PD.

4. Conclusions

In summary, we have successfully demonstrated all-solution-processed PDs based
on CsPbBr3/Cs4PbBr6 composite NCs. A good ohmic contact was formed between the
gold electrode and CsPbBr3/Cs4PbBr6 composite NCs, which provided a guarantee for
the rapid transfer of the carrier. In addition, both the strongly suppressed dark cur-
rent and the narrowed FWHM of the PL spectrum proved that the quality of the NC
film was greatly improved with the introduction of Cs4PbBr6 NCs. Moreover, the non-
luminous property of Cs4PbBr6 NCs could inhibit the radiation recombination. Thus,
the D* of the PD based on CsPbBr3/Cs4PbBr6 composite NCs was improved, reaching
4.24 × 1012 Jones. Our work might provide guidance for developing a high-performance
PD based on CsPbBr3/Cs4PbBr6 perovskite NCs.
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