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Abstract: We develop a real space cluster extension of the typical medium theory (cluster-TMT)
to study Anderson localization. By construction, the cluster-TMT approach is formally equivalent
to the real space cluster extension of the dynamical mean field theory. Applying the developed
method to the 3D Anderson model with a box disorder distribution, we demonstrate that cluster-TMT
successfully captures the localization phenomena in all disorder regimes. As a function of the cluster
size, our method obtains the correct critical disorder strength for the Anderson localization in 3D, and
systematically recovers the re-entrance behavior of the mobility edge. From a general perspective,
our developed methodology offers the potential to study Anderson localization at surfaces within
quantum embedding theory. This opens the door to studying the interplay between topology and
Anderson localization from first principles.

Keywords: metal insulator transition; Anderson localization; random disorder; typical medium
theory; dynamical mean field theory; coherent potential approximation; dynamical cluster approxi-
mation; cellular dynamical mean field theory; cluster mean field theory

1. Introduction

The localization problem in disordered electronic systems was introduced in Ander-
son’s seminal paper [1] in the late fifties, and it still remains in the forefront of research in
materials science and condensed matter physics [2–5].

In disordered media, the scattering of charge carriers off random impurities may
inhibit their propagation across the sample leading to a spatial confinement of carriers, a
phenomenon known as Anderson localization [1]. Weak localization and strong Anderson
localization have been conjectured and subsequently observed in experiments [6–10]. As a
wave phenomenon, Anderson localization has been demonstrated for electrons [11–16],
sound [17], photons [18–25], and ultra cold atoms [26].

To model disorder, Anderson proposed a simplified model of electrons hopping
between lattice sites being subject to static scattering processes on locally disordered centers.
The stochastic character of the problem is encoded into the on-site energies (disordered
scattering centers) considered as random variables distributed according to a chosen
probability distribution. The Green’s function imaginary part, the local density of states
(LDOS), turns out to be an important quantity which characterizes the disordered system.
For example, the LDOS is finite for extended states, while the spectrum of localized states
is discrete. A decade later, an approach based on the distribution of the site and energy
dependent self-energies was formulated [27]. This approach leads to a self-consistent
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equation for the self-energy, which can be solved on a Cayley tree (Bethe lattice). However,
for general lattices, only an approximate solution can be provided.

Computations for substitutionally disordered three-dimensional materials with or-
dinary lattice structures are therefore difficult to perform within the framework of tight-
binding models [1,27]. Suitable modeling in such cases can be constructed based on
effective medium theories. Among them, single site effective medium methods, such as the
coherent potential approximation (CPA) [28–35] and the typical medium theory (TMT) [36],
proved to be simple and transparent theories that are able to capture important features of
the disorder effects in electron systems. Common to these two methods is the mapping
of the lattice problem into the impurity placed in a self-consistently determined effective
medium. In both methods, the measured quantity is the disorder averaged Green’s func-
tion; however, in CPA, the Green’s function is linearly (algebraically) averaged, while, in
the TMT, the geometric average of the LDOS is used. This difference in disorder averaging
defines the average and the typical effective media, respectively.

Unlike the algebraically averaged Green’s function of the CPA effective medium, the
geometric averaged LDOS, called the typical density of states (TDOS), drops to zero [36–47],
at the Anderson transition. The geometrically averaged TDOS is an approximation to the
most probable value in the distribution of the LDOS. At the Anderson transition, the
system is not self-averaged, hence the distribution of the LDOS is highly skewed with
long tails [37,48]. Therefore, the average and most probable values of the LDOS will be
very different close to the transition [37,49–51]. Dobrosavljevic et al. [36] incorporated such
statistical properties of the LDOS within an effective medium approach, called the TMT.
They showed that the TDOS successfully captures the main signatures of the Anderson
localization transition, with the TDOS being an order parameter to detect the localized
states. In Refs. [52–54], the momentum-space cluster extension of the TMT [54], the typical
medium dynamical cluster approximation (TMDCA) has been developed. The TMDCA is
the typical medium extension of the Dynamical Cluster Approximation (DCA) [55,56], a
momentum-space cluster extension of the CPA. The TMDCA overcomes the shortcomings
of the local single site TMT and accurately predicts the critical disorder strength of the
Anderson localization transition in a single-band Anderson model. For model Hamiltonian
systems, the TMDCA has been applied to non-interacting and weakly interacting disor-
dered three-dimensional systems [52,53,57,58], systems with off-diagonal disorder [59],
phonon localization [60,61], and multi-orbital models [62]. Some of the methods inspired by
the typical medium theories have been combined with first-principles calculations [63–65].

Complementary to the momentum space cluster methods, described above, techniques
using embedding in real space provide an interesting alternative. This constitutes the aim
of the present work. We have previously formulated the embedding into the effective
typical medium which allows for addressing the Anderson localization transition in the
framework of a locally self-consistent approach [66]. In addition, the locally self-consistent
formulation opens up the possibility to formulate linear scaling methods. Unlike the
previous typical medium cluster extensions of TMT, formulated in the momentum space
(TMDCA) [54,67], or in a mixed representation (locally self-consistent approach) [66,68],
here we propose an exclusively real space cluster extension of TMT (cluster-TMT). This
construction is formally equivalent to the real space cluster extension of the dynamical
mean field theory (DMFT) [69–73].

The key accomplishment of the present study is the development of a cluster mean
field theory for the description of Anderson localization. The developed cluster version is
based on a real-space approach, and presents an alternative to the existing momentum space
version of TMDCA. To demonstrate the validity of the method, we apply it to the three-
dimensional Anderson model with box disorder distribution, and reproduce the full phase
diagram and the critical disorder strength, Wc, for the metal-insulator transition. The cluster
mean field theory we designed is an extension of the local single site typical medium theory.
The developed real space cluster extension method incorporates the spatial non-local effects
systemically; therefore, the re-entrance behavior of the 3D Anderson model is recovered.



Crystals 2021, 11, 1282 3 of 16

We find that cluster extensions of TMT are necessary to properly capture the non-local
effects in the Anderson transition. Quantitatively, our results are in good agreement with
the existing data in the literature. In particular, we find that the converged cluster value of
Wc ≈ 17.05 is superior to the value of 13.4 provided by single site TMT calculations. We
demonstrate that non-local spatial correlations are significant in the 3D Anderson model,
and hence going beyond a single site approximation is necessary to properly describe
the metal-insulator transition. Unlike the single site TMT, the present real-space cluster
computation captures the re-entrance behavior driven by non-local multiple scattering
effects which are missing in local approximations [5,36,48,74]. In addition, just like the
TMDCA, the real space cluster-TMT allows for a computationally efficient treatment of
the non-local effects in Anderson localization. In addition, however, the real-space cluster
TMT opens the door to treating problems with open boundary conditions, which offers
the possibility to study the localization of surface states. One potential application of
this capability would be the search for a material realization of the topological Anderson
insulator [75] via first principles calculations. In addition, the presented formalism being a
real space cluster opens venues for an easier embedding with ab initio Green’s function
electronic structure methods, which offer a more natural approach (in contrast to the
momentum space TMDCA) to disordered real materials, including high entropy alloys and
disordered metals [63–65].

It is worth noting that there is a long history of applications of the CPA both as a
tool for model calculations and in computational studies of real materials. We refer the
interested readers to the review of Yonezawa and Morigaki [76]. An extensive review
of the early development of the DMFT method can be found in Georges et al. [77], and
a review of more recent cluster extensions can be found in Maier et al. [78]. A review
of current research on the Anderson localization using cluster methods can be found in
Terletska et al. [54].

This paper is organized as follows: in Section 2, we present the Anderson model.
In Section 3, we first briefly review the algorithm of the single site TMT and discuss the
algorithm for the real-space cluster extension of the TMT. In Section 4, we present the results
obtained with our cluster-TMT for the 3D Anderson model with box disorder distribution.
We conclude in Section 5 and discuss possible future developments.

2. Model

Anderson proposed [1] that non-interacting electrons on site-disordered lattices may
localize because of the destructive interference of wave functions. Subsequent theoretical
and numerical studies [79] support the picture that, in three dimensions and for large
enough disorder strength, single particle wave functions are localized and decay exponen-
tially on the scale of the localization length.

The Anderson model Hamiltonian has the form:

H = −t ∑
<i,j>,σ

(c†
iσcjσ + H.c.) + ∑

i,σ
Viniσ, (1)

where c†
iσ and ciσ are the creation and annihilation operators for electrons at site i with spin

σ. niσ is the number operator for site i of spin σ; t is the hopping energy between nearest
neighbors. We consider a 3D simple cubic lattice. We set t = 1 to serve as the energy scale.
The local random disorder is given by Vi. Here, we consider a so-called box disorder with
P(Vi) =

1
W Θ(W −Vi). This allows the disorder strength to be characterized by W. Other

distributions are also considered in the literature; some common ones included bi-modal,
Gaussian, and Lorentzian distributions [53,80].

The Anderson model has been the focus of numerous studies of the disorder-induced
electron localization. Highly accurate numerical calculations based on the transfer matrix
method and multifractal analysis have been used to study the model extensively, especially
for zero energy [5,74,81–90].
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Relatively few studies have been devoted to energy away from zero. A prominent
feature at higher energy is the re-entrance from a metal to an insulator to a metal, as the
disorder strength increases [74,82,91,92]. A heuristic argument for the nature of the re-
entrance behavior is based on the tunneling mechanism for energies beyond the bandwidth
of the hopping model. The width of the density of states increases as the disorder increases,
though the states are localized. At sufficiently large disorder, the localized density of
states is large enough to allow tunneling. The tunneling could become sufficiently long
range that the localized states become extended, thus the insulator becomes a metal. This
explains the lower transition in the re-entrance. Further increasing the disorder strength,
the localized state will be more sparse in energy and tunneling becomes less likely to
happen and insulating state resumes.

The above argument depends on the distribution of disorder, and the tunneling
effect is maximised when the localized states are close in energy. A bounded random
distribution is favored as compared to other distributions which are more widely spread
over a range of energies, such as the Lorentzian distribution. The tunneling argument
can only be supported in a system with multiple sites. For example, the TMT, which is a
single site approximation, does not capture the re-entrance behavior. Thus, the capability
of describing the re-entrance can serve as a good test for our real space cluster-TMT.

3. The Real Space Quantum Cluster Extension of TMT
3.1. Typical Medium Theory: TMT

To set the stage for the discussion of the real-space cluster extension of the TMT, here
we briefly review the main steps of the TMT analysis. The TMT can be considered as a
typical medium generalization of the CPA [28–34]. In a similar way to the CPA, the TMT
employs the mapping of the original lattice problem into the impurity placed in a self-
consistently determined effective medium. However, in the TMT, the typical (geometrically
averaged over disorder) local density of states is used to construct the mean field bath for
the effective impurity problem.

The numerical algorithm for the TMT procedure is shown in Figure 1. First, the
guess for the effective medium self-energy Σ(ω) is made, usually zero. Then, the local
(coarse-grained) lattice Green’s function is calculated as Ḡ(ω) = 1

N ∑k
1

ω−εk−Σ(ω)
. Using

the Dyson’s equation, we then obtain the impurity-excluded Green’s function (bath Green’s
function) G−1(ω) = Ḡ−1(ω) + Σ(ω).

The next step is to solve the impurity problem. For each randomly chosen disorder
configuration V, we calculate the impurity Green’s function Gimp(ω, V) = (G−1(ω) −
V)−1. From this quantity, we obtain the typical (geometrically averaged density of states)
ρtyp(ω), which is constructed as ρtyp(ω) = e〈ln(ρ(ω,V))〉. Here, ρ(ω, V) = − 1

π=Gimp(ω, V),
and 〈. . .〉 stands for the disorder averaging. In general, the geometrical average is not
equivalent to the typical value. However, for log-normal distributions, the geometrical
average is the same as the typical value and, since numerical studies have shown that near
the localization transition the local density of states is log-normal distributed [37], this
assumption is appropriate.

The output of the TMT impurity solver is the typical Green’s function which is

obtained using the Hilbert transform: Gtyp(w) = 1
π

∫
dω

′ ρtyp(ω
′
)

ω−ω
′ . This step is the only

difference between the CPA and the TMT self-consistency loop. For example, in the CPA,
instead of the typical, the algebraically average DOS is calculated ρave = 〈ρ(ω, V)〉, with the

average Green’s function Gave(w) = 1
π

∫
dω

′ ρave(ω
′
)

ω−ω
′ being the output of the CPA impurity

solver. Note that, for the CPA case, one can just do the disorder averaging over Green’s
function without the Hilbert transform of the average density.

Finally, the TMT self-consistency loop is closed by getting a new estimate of the
self-energy Σ(ω) = G−1(ω)− G−1

typ(ω), which is then used to calculate the coarse-grained
local lattice Green’s function. The whole procedure then repeats, until convergence is
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reached at which the impurity and the local lattice Green’s function are equal within the
desired accuracy.

  

Impurity Solver for many realizations 

Figure 1. Numerical algorithm for the typical medium theory.

3.2. Real Space Cluster-TMT

To properly capture the effect of multiple impurities scattering in the disorder-driven
Anderson localization, the cluster extension of the TMT is needed. Here, we present the
real-space cluster extension of the TMT. Such real space variant of the cluster extension of
the TMT is formally equivalent to the cluster DMFT solver, which has been extensively used
in strongly-correlated electron systems to study non-local effects beyond DMFT. Here, we
use the cluster DMFT approach as a tool to capture spacial non-local correlations beyond
the TMT in disordered non interacting systems.

In the real space cluster-TMT, the infinite lattice in real space is tiled with identical
clusters of size Nc [93]. In such construction, the scattering of electrons by impurities within
a cluster is treated exactly, while the effects of impurities outside the cluster are replaced
by the non-disordered effective medium (bath) that is determined self-consistently. There
is no implicit assumption that the translational invariance is obeyed within the cluster.
Therefore, the Green’s function of the cluster is represented by an Nc × Nc matrix, which
we denote as Ĝc(ω). For the same reason, the self-energy and the bath Green’s function are
also represented in terms of matrices.

The self-consistency procedure for our real space cluster-TMT is shown in Figure 2.
First, we start with the guess of the self-energy matrix Σ̂(ω) (usually zero). Then, we calcu-

late the lattice Green’s function projected onto the cluster space ˆ̄G(ω) =
Nc

N ∑
k∈R.B.Z.

[ω−

t̂(k)− Σ̂(ω)]−1, where R.B.Z. stands for the reduced Brillouin Zone of the cluster with
− 2π

Lc
< kx, ky, kz <

2π
Lc

. In addition, t̂(k) is the dispersion of the lattice model expressed as
a partial Fourier transform over the reduced Brillouin zone. Any element of this disper-
sion matrix is given as tr,r′ (k) ≡ ∑R exp(ik · (R + r− r

′
))tr,r′+R, where R is the location

vector of the super-cell, and r and r
′

are the vectors for the location of each site within a
super-cell [93].

Next, using the Dyson’s equation, we calculate the bath Green’s function matrix,
Ĝ−1(ω) = ˆ̄G−1(ω) + Σ̂(ω), which is used to construct the cluster problem. Then, for each
disorder configuration V, we calculate the cluster Green’s function by solving the matrix
equation G−1

c (ω, i, j) = G−1(ω, i, j)−V(i, j)δij.
The key to incorporate the typical medium into the analysis is to connect the Green’s

function matrix to the typical density of states. For this, we generalize the procedure we
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used for the multi-orbital problem of the TMDCA [62], and define the typical density of
states matrix in a similar way:

ρ̂typ(ω) ≡


e〈| ln ρ11(ω)|〉 〈ρ11〉

〈|ρ11|〉
· · · e〈ln |ρ1Nc (ω)|〉 〈ρ1Nc 〉

〈|ρ1Nc |〉
. . .
. . .
. . .

e〈ln |ρNc1(ω)|〉 〈ρNc1〉
〈|ρNc1|〉

· · · e〈ln |ρNc Nc (ω)|〉 〈ρNc Nc 〉
〈|ρNc Nc |〉

, (2)

Here, the diagonal entries will be just equal to e〈ρii(ω)〉 because ρii > 0 is always
positive definite; ρii = − 1

π=[Gii(ω)]; and for the off-diagonal terms ρij =
i

2π [Gij(ω)−
Gji(ω)] [94]. The role of the non-local off-diagonal components in the geometrically aver-
aged cluster Green’s function is explained in the Appendix A.

Notice that the real space cluster extension of the CPA, with the average effective
medium, can be obtained by replacing the typical DOS with the linearly average DOS in
the above Equation (2), i.e.,

ρ̂ave(ω) ≡


〈ρ11(ω)〉 · · · 〈ρ1Nc(ω)〉

. . .

. . .

. . .
〈ρNc1(ω)〉 · · · 〈ρNc Nc(ω)〉

. (3)

The ρ̂typ(ω) of Equation (2) possesses the following properties: (1) for Nc = 1, it
reduces to the local TMT with ρtyp(ω) = e〈|lnρ(ω)|〉; (2) At small disorder strength W �Wc,
we observe numerically that < ln ρ(ω) >≈ ln < ρ(ω) >, i.e., the typical density of states
(DOS) reduces to the average DOS calculated using algebraic averaging over disorder:
ρtyp → ρave(ω). Hence, in this regime, the typical DOS obtained with the cluster-TMT
is expected to be close in magnitude to the one obtained with the real-space cluster-CPA
with averaged effective medium. Such real space cluster extension of CPA is different
from other existing cluster extensions, including the DCA [55,56] and non-local CPA [95].
The difference is that, in the real space cluster-CPA, all the quantities are matrices in the
real space, and the coarse-graining step for ˆ̄G uses a projected lattice dispersion which is
constrained to the real space cluster space.

In the next step of the cluster-TMT self-consistency loop, we must calculate the
cluster typical Green’s function Ĝtyp (Ĝave for the cluster-CPA) using the Hilbert transform.
The Hilbert transform is performed for each matrix element individually, Gtyp,ij(w) =

1
π

∫
dω

′ ρtyp,ij(ω
′
)

ω−ω
′ .

Next, using the Dyson’s equation, we get the updated self-energy Σ̂(ω) = Ĝ−1(ω)−
Ĝ−1

typ(ω), which is then used to calculate the coarse-grained lattice Green’s functions

matrix ˆ̄G. The whole procedure then repeats, until convergence is reached with the
desired accuracy.
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Impurity Solver for many realizations 

Figure 2. The self-consistency algorithm for the real space cluster-TMT formalism.

4. Results

We start the discussion of our results for the 3D Anderson model (for a box disorder
distribution) by first focusing in panel a of Figure 3. This panel displays the Nc = 33 cluster
average DOS (ADOS= 1

Nc
Σi(
−1
π )=Ĝc,ii(ω)) obtained using the average effective medium

(constructed from Equation (3)) in the cluster self-consistent loop. These results correspond
to the real-space cluster extension of the CPA. The data show that, as disorder strength
W increases, the ADOS broadens and gets smaller, but does not go through significant
qualitative changes when the metal-insulator transition is approached.
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Figure 3. (a) The ADOS calculated for Nc = 33 at several disorder strengths W = 2, 8, 12, 18; (b) the
probability distribution function of the local density of states ρii for several values of disorder
strengths, W = 2, 8, 12, 18.

To demonstrate why the ADOS fails to describe the Anderson transition, we display
the probability distribution of the local density of states in panel b of Figure 3. At small
disorder W = 2, the distribution of the LDOS is Gaussian-like. However, as disorder
strength increases, the probability distribution becomes skewed with long tails (indicating
that the system is not self-averaging). At even larger disorder strength (W = 18), the
probability distribution peaks at values very close to zero. Such skewness of the distribution
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functions for large disorder strengths implies that the average and the most probable
(typical) values of the DOS will differ significantly, and hence the numerical algorithms
that employ the globally averaged Green’s function in the self-consistency loop (e.g., the
CPA, the DCA) will fail to describe the Anderson transition.

These results clearly demonstrate that the typical medium treatment is required to
capture the non self-averaging behavior through the Anderson transition. To show this, in
Figure 4, we compare the data for the energy resolved ADOS and the TDOS calculated for
a cluster of Nc = 33 sites. The TDOS(ω) = exp( 1

Nc
Σiln((−1

π )=Ḡc,ii(ω))) is obtained from
the present real-space cluster-TMT procedure which employs the geometric averaging
in the self-consistency loop. At weak disorder strength (W = 2.5), as expected from our
analytical arguments, both ADOS and TDOS are practically the same, indicating that, when
W � Wc, the real space cluster-TMT reduces to the cluster-CPA scheme. As disorder
strength increases, the ADOS and TDOS behave very differently. While the ADOS(ω)
broadens and remains finite, the TDOS(ω) gets continuously suppressed (W = 10) and
vanishes at even larger disorder strength (W = 16). Such vanishing of the TDOS at strong
disorder values indicates that geometrically average DOS can be used as an order parameter
for the Anderson localized states.
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Figure 4. Evolution of the ADOS (dash lines) and the TDOS (shaded areas) as function of frequency ω

at different disorder strengths W = 2.5, 10, 16, calculated using a cluster of Nc = 33. The approximate
positions of the mobility edge boundaries are marked by vertical arrows.

Notice that, below the Anderson transition, for W � Wc, localization of states starts
at the band tails. This is indicated by the vanishing TDOS(ω) and the finite ADOS(ω)
at higher frequencies ω. The mobility edge (shown by arrows), i.e., the energy which
separates the extended (with a finite TDOS) from the localized states (with zero TDOS)
follows the expected re-entrance trajectory [52]: the mobility edge first expands beyond the
zero disorder edge boundary, and then retracts at larger disorder strengths.

Next, we consider the evolution of the critical disorder strength Wc for the Anderson
transition as a function of the cluster size Nc. The critical disorder Wc is extracted from the
vanishing TDOS at the band center (TDOS(ω = 0)). In Figure 5, we plot TDOS(ω = 0) as
a function of disorder strength W for several cluster sizes Nc = 1, 2, 3, 23, 33, 43. For Nc = 1
(the local TMT case), the critical disorder is Wc ≈ 13.4. Since TMT is a mean field theory, it
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is expected that the critical disorder strength is underestimated and thus it is lower than
the exact value. As the cluster size Nc increases, more spatial fluctuations are taken into
account, which improves the value of Wc. With increasing Nc, the Wc converges quickly to
Wc ≈ 17.05 (see the inset of Figure 5), which is in good agreement with the values of Wc
reported in the literature [90]. In addition, notice that, unlike the TDOS, the ADOS(w = 0)
(shown by the dashed line in Figure 5) remains finite as the disorder strength W increases,
indicating that it can not be used as an order parameter for the Anderson transition, and
hence the typical medium treatment is needed.
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Figure 5. The typical density of states (solid lines) at the band center, TDOS(ω = 0), as a function
of disorder strength W calculated for different cluster sizes Nc = 1, 2, 3, 8, 27, 64. The ADOS(ω = 0)
as a function of disorder strength W is obtained for Nc = 43 (dashed line). Inset: the cluster size Nc

dependence of the critical disorder strength Wc determined from the vanishing TDOS(ω = 0).

Finally, in Figure 6, we present the disorder strength W vs. frequency ω phase diagram.
Here, we plot the cluster size Nc dependence of the mobility edge boundaries at different
disorder strengths W obtained by our real space cluster-TMT formalism. In addition, we
also show the band edges, which are defined by the frequencies at which ADOS(w) = 0.
As we discussed above, a signature of the cluster mean field theory is the re-entrance
at high energy. At Nc > 1, the mobility edge boundaries first expand and then retract
back with increasing W. As Figure 6 displays, such re-entrance behavior is missing in the
single site (Nc = 1) TMT case, and is recovered for Nc > 1 clusters. This indicates that
non-local spacial correlations and multiple-scattering effects in the Anderson transition
are important, and capturing such effects requires the usage of finite cluster methods. To
benchmark our results even further, we also present the mobility edge trajectories obtained
from the highly accurate transfer matrix method (TMM) [54]. For Nc = 43, the cluster-TMT
results are already rather close to those of the TMM. These results demonstrate that our
cluster-TMT method can be used to successfully describe the electron localization in the 3D
Anderson model.
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Figure 6. Disorder strength W vs. frequency ω phase diagram of 3D Anderson model ob-
tained from cluster-TMT calculations. The mobility edge boundaries (solid lines) are obtained
for Nc = 1, 2, 3, 8, 27, 64 cluster sizes. The dashed lines mark the band edges obtained from the
ADOS(ω). The transfer matrix method (TMM) mobility edge boundaries are taken from Ref. [52].

5. Conclusions

We develop a real space quantum cluster theory based on the typical medium theory
for random disorder systems. Unlike the coherent potential approximation with the
algebraically average effective medium, the TMT captures the localization transition by
considering the geometrically averaged local density of states to construct an effective
medium. However, being a single site theory, the TMT underestimates the critical disorder
strength of the transition, and misses the re-entrance behavior, which is due to the combined
effects from multiple scattering sites. Recent studies based on the dynamical cluster
approximation already confirmed that such non-local effects can be captured by considering
momentum-space clusters extension of TMT [54].

In this paper, we construct the real space variant of the cluster-TMT. This method
by construction is similar to the cellular dynamical mean field theory [72], which is a
popular cluster method effectively used for strongly interacting electron systems. Here, we
adopt such a real space cluster approach to disordered systems. Applying our real-space
cluster-TMT approach to the 3D Anderson model with a box distribution, we demonstrate
that the cluster-TMT is a successful self-consistent numerical approach to capture the
Anderson localization transition. Performing Nc cluster-size analysis, we demonstrate
the importance of including non-local spacial effects to properly describe the Anderson
localization physics. Quantitatively, our results are in good agreement with existing data; in
particular, we find that the converged cluster value of Wccluster−TMT ≈ 17.05 is superior to
the value predicted by single-site TMT, WTMT ≈ 13.4. Unlike the single site approach, the
present real-space cluster-TMT captures the re-entrance behavior and correctly reproduces
the phase diagram of the 3D Anderson model. The method, in principle, can also be
used to calculate two particle quantities [96]. Furthermore, while the cluster TMT in this
study has been restricted to periodic boundary conditions, the same methodology can be
used to simulate Anderson localization in surfaces. This will be relevant, for example, to
unraveling the role of disorder in topological materials [75,97]. Another interesting topic
is to combine this approach with the multiple scattering theory [58], and the locally self-
consistent multiple scattering method [66] for the study of materials with random disorder.
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Appendix A

In this section, we discuss the role of the non-local off-diagonal components in the
ansatz for the geometrically averaged cluster Green’s function of Equation (2). For this, we
consider the “local” ansatz given by Equation (A1), where we set all off-diagonal terms in
the typical DOS equal to zero:

ρ̂local
typ (ω) ≡ (A1)

e〈ln ρ11(ω)〉 · · · 0
. . .
. . .
. . .
0 · · · e〈ln ρNc Nc (ω)〉

.

In Figure A1, we then compare the Nc = 8 results for the TDOS(ω) obtained with
the “full” ansatz (Equation (2)) and the “local” ansatz (Equation (A1)) calculated at several
values of the disorder strength: W = 8.0, 10, 12, 14. Our data indicate that the majority of
the contribution to the TDOS(ω) is actually coming from the local terms in Equation (2).
The critical behavior at the Fermi level (ω = 0) is the same for both the “local” and the “full”
ansatz. However, the non-local contribution seems to be important for properly capturing
the mobility edge behavior (marked by vertical arrows in Figure A1). Here, at the mobility
edges, we observe the most pronounced difference between the TDOS(ω) obtained using
the “local” and the “full” ansatz. These results indicate that, while the critical behavior at
the band center is captured properly by the “local” ansatz, the mobility edge trajectories of
the “local" ansatz, however, will converge slower with the cluster size Nc. To demonstrate
this explicitly, in Figure A2 (left panel), we plot the typical density of states as a function
of disorder strength W at the band center (TDOS(ω = 0)). The critical value of disorder
strength (Wc) at which the TDOS(ω = 0) = 0 vanishes at the band center is the same for

http://www.loni.org
http://www.loni.org
http://energy.gov/downloads/doe-public-access-plan
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both local and non-local ansatzes. However, as shown in the right panel of Figure A2, there
is a substantial difference in the phase boundary near the band edges. Specifically, with
the off-diagonal components, the re-entrance effect is much more pronounced even if the
cluster size is relatively small. The off-diagonal components provide the contribution from
the scattering among multiple sites, and hence generate more accurate results which are
much closer to the results from the highly accurate transfer matrix method.
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Figure A1. Nc = 8 results for the TDOS(ω) at increasing disorder strengths W = 8, 10, 12, 14. The
data for the TDOS obtained using the “full” ansatz of Equation (2) (red shaded region), and the TDOS
curves obtained using the simplified “local” ansatz of Equation (A1) (dashed lines), where the off-
diagonal non-local contributions are set to zero. Vertical arrows mark the mobility edge boundaries.
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Figure A2. (Left ): Nc = 8 cluster TDOS(w = 0) vs disorder strength W calculated using the “full”
(Equation (2)) and “local” (Equation (A1)) ansatzes. (Right): Disorder strength W vs. frequency
ω phase diagram for the 3D Anderson model for Nc = 1 and Nc = 8 clusters. The mobility edge
boundaries for Nc = 8 clusters are obtained using the “full” and “local” ansatzes. The transfer matrix
method (TMM) mobility edge boundaries are taken from Ref. [52].
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