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Abstract: Urea glutaric acid (UGA), an organic crystal, was synthesized and grown using a low
temperature solution technique. Single crystal XRD revealed a monoclinic structure with a C2/C

space group. The various cell data were identified. The optical parameters were calculated from UV-
visible spectrum. The transmittance spectra showed the cutoff wavelength as 240 nm (low) and the
energy gap determined from the spectra was compared with the theoretical energy gap. The transition
number revealed the electron transition, which corresponded to direct allowed transition. The diverse
optical parameters like reflectance, extinction coefficient, refractive index and optical susceptibility
were determined. The least value of Urbach energy caused less defects and a good crystalline nature.
The steepness value and electron phonon interaction were calculated. The positions of lower and
higher band energy levels were identified. Electronic polarizability was found using the Clausius–
Mossoti relation and tabulated. The mechanical fitness was measured from Vickers hardness analysis.
The nonlinear optical property was measured from Z-scan analysis. Thus, the optical results support
the material suitability and fitness for optical and electronic domain applications.

Keywords: nonlinear optical material; optical studies; energy band gap; urbach energy; solid state
parameters; Z-scan technique

1. Introduction

Organic crystals with superior characteristics capture the attention of many young
researchers because of their wide optical applications in device fabrication, recent advances
in laser imaging systems, photonics, information storage, etc. [1]. Most of the interesting
organic materials with good NLO properties have motivated a great deal of research
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and have wide transparency windows for easy fabrication of devices and integrated
systems [2]. Moreover, for better performance of electronic devices, such as FETs, LEDs and
photo cells, these optical characteristics are essential. Large-sized crystals with good NLO
efficiency and better structural perfections are quite necessary for practical applications
and performance in photonic and optoelectronic devices [3,4]. With all this in view, a single
crystal was grown with good organic materials. At the time of crystal incorporation during
the growth period, some defects were identified due to a non-equilibrium process. The
defect analysis was very important because defect-free single crystals are more applicable
for optical applications and device fabrications [5]. More investigations on urea-based
organic materials such as urea oxalic acid, urea L-valine, urea thiourea, urea tartaric acid,
and urea sulfamic acid, have been extensively studied to display their excellent nonlinear
optical behavior, which displayed their significant role, especially in the field of optical
communications and frequency conversion applications.

In the present work, the organic molecule glutaric acid (C5H8O4) is preferred as it
has dicarboxylic acid groups, which permit it as an excellent proton donor [6]. In turn,
the proton donor nature of glutaric acid was recommended as a foreign molecule in urea
and melamine [7–9]. Urea is a popular material well suited for NLO property applica-
tions [10,11]. Additionally, the depiction of urea and glutaric acid molecules on discrete
formations in three different combinations (1: 1, 1:2 and 2:1) were explained and connec-
tivity patterns of the 1:1 complex structure of the compound was discussed [12]. Rathika
Thaya Kumari et al. reported the synthesis, growth, and supportive characterizations of
UGA [13]. From the information gathered in this present research work, we have discussed
the optical and mechanical properties of the title compound and revealed its efficiency in
nonlinear optical applications.

2. Determination of Material Synthesis

The organic material, UGA, was chosen using the ratio of urea (2) with glutaric acid
(1) in a molar ratio 2:1 and synthesized with double distilled water by a slow evaporation
technique. The homogeneous stirred solution was filtered, covered, and allowed to evapo-
rate. After 30 days, a moderately sized clear and shiny transparent crystal was sediment in
the base of the beaker. This was preserved and photographed. The image was shown in
Figure 1.
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Crystal structure with space group Monoclinic and C2/c 
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a = 14.9230 (9) 

b = 6.5971 (4) 

c = 15.7552 (10) 

Volume in Å 3 1210  
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Density in g/cm3 1.425  

Figure 1. Solubility curve for UGA crystal with grown crystal inside.
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3. Determination of Solubility

The data (solubility) of UGA was determined with double distilled water for diverse
saturation values of temperature by a gravimetric method. The values are noted for
different temperatures and the graph is plotted, which is displayed in Figure 1. From the
graph, the solubility of UGA increases linearly with the rise in temperature. The positive
nature of the linear curve indicates the opportunity of growing bulk crystal through the
evaporation method [14].

4. Detailed Report on Characterizations
4.1. Determination of Single Crystal XRD

The UGA crystal undergoes single crystal XRD analysis by NONIUS–(CAD4-F) diffrac-
tometer with MoKα (Å) ray. The result for UGA shows a monoclinic (structure) with the
space group of C2/c. Cell data are a = 12.07 Å, b = 11.05 Å, c = 9.17 Å when the volume
V = 1210 Å3 was determined. In addition, four-unit cell molecules were reported. The
crystal structure data and the molecular structure of UGA are presented in Figure 2 and
tabulated in Table 1. These determined data agrees clearly with the literature already
reported [12].
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Figure 2. Molecular structure for UGA (2/1).

Table 1. Determined crystal data of UGA [12].

Empirical Formula C7H16N4O6

Formula weight 253.233
Temperature 24 ◦C

Crystal structure with space group Monoclinic and C2/c

Cell data (dimensions) in Å
a = 14.9230 (9)
b = 6.5971 (4)

c = 15.7552 (10)
Volume in Å3 1210

Formula (units) per unit cell 4
Density in g/cm3 1.425
2θ (max) in deg 50◦

Total reflections 2184
Reflections (Rind = 0.03) 1095

Peak (Maximum)e. Å−3 0.16
Peak(Minimum) e. Å−3 −0.13

The experimental density value of UGA was determined and correlated with the theo-
retical density value of UGA. These theoretical data were estimated using the formula [15],
Density = MZ/NV where M, V and Z represents molar mass, volume and number of
molecules in a one-unit cell respectively.

Experimental density was identified to be 1.425 g/cm3 and theoretically calculated to
be 1.407 g/cm3. This close value shows the purified nature of the grown material.

4.2. Determination of Transmission in Visible Region

The optical transmittance range was determined from the UV-visible spectra and was
conceded out in the wavelength range between 100 nm and 800 nm using a Perkin –Elmer
(lambda 35) spectrometer. The wavelength range between 200 nm and 400 nm is preferred
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for effective NLO material [16]. If the wavelength cutoff region occurs within this range,
then the material suggests good transmittance in the visible region. Figure 3 portrays
transmission spectra for the UGA crystal with the lowest cutoff wavelength identified to be
240 nm as no further absorption occurs from 240 nm to 800 nm. Hence, the grown material
is well suited for nonlinear optical applications.

Crystals 2021, 11, x FOR PEER REVIEW 4 of 18 
 

 

2θ (max) in deg 50° 

Total reflections  2184 

Reflections (Rind = 0.03) 1095 

Peak (Maximum)e. Å −3 0.16 

Peak(Minimum) e. Å −3 −0.13 

The experimental density value of UGA was determined and correlated with the the-

oretical density value of UGA. These theoretical data were estimated using the formula 

[15], Density = MZ/NV where M, V and Z represents molar mass, volume and number of 

molecules in a one-unit cell respectively. 

Experimental density was identified to be 1.425 g/cm3 and theoretically calculated to 

be 1.407 g/cm3. This close value shows the purified nature of the grown material. 

4.2. Determination of Transmission in Visible Region 

The optical transmittance range was determined from the UV-visible spectra and was 

conceded out in the wavelength range between 100 nm and 800 nm using a Perkin –Elmer 

(lambda 35) spectrometer. The wavelength range between 200 nm and 400 nm is preferred 

for effective NLO material [16]. If the wavelength cutoff region occurs within this range, 

then the material suggests good transmittance in the visible region. Figure 3 portrays 

transmission spectra for the UGA crystal with the lowest cutoff wavelength identified to 

be 240 nm as no further absorption occurs from 240 nm to 800 nm. Hence, the grown 

material is well suited for nonlinear optical applications. 

 

Figure 3. Transmittance spectrum of UGA. 

4.2.1. Determination of m (Transition Number) 

When EM radiation is allowed to pass through grown material, the radiation will 

absorb if its energy is almost equal to the band gap energy. At this time, the transition of 

electrons occurs, which may be either direct or indirect allowed transitions or forbidden 

transitions based on the transition number m. This transition number is identified from 

the spectra drawn with ln(αhυ) and ln(hυ-Eg) and is depicted in Figure 4. The transition 

numbers should be 1/2, 2, 3/2 and 3 for the transition direct, indirect allowed, direct for-

bidden, and indirect forbidden, respectively [17]. 

UGA compound m value was determined to be 0.462, which was near to 0.5 and 

corresponds to direct allowed transition. 

Figure 3. Transmittance spectrum of UGA.

4.2.1. Determination of m (Transition Number)

When EM radiation is allowed to pass through grown material, the radiation will
absorb if its energy is almost equal to the band gap energy. At this time, the transition of
electrons occurs, which may be either direct or indirect allowed transitions or forbidden
transitions based on the transition number m. This transition number is identified from
the spectra drawn with ln(αhυ) and ln(hυ-Eg) and is depicted in Figure 4. The transition
numbers should be 1/2, 2, 3/2 and 3 for the transition direct, indirect allowed, direct
forbidden, and indirect forbidden, respectively [17].

UGA compound m value was determined to be 0.462, which was near to 0.5 and
corresponds to direct allowed transition.

4.2.2. Determination of Energy (Band) Gap

As per Tauc’s relation, the absorption coefficient value can be used to estimate band
gap of the material [18,19]. Thus:

(αhυ) = A
(
hυ− Eg

)
(1)

ln(αhυ) = ln A + m ln
(
hυ − Eg

)
(2)

Hence, Eg can be calculated with the reference of Tauc’s plot, which is the graph
plotted against (αhυ)2 and hυ and depicted in Figure 5. From the graph, Eg for UGA
was identified to be 5.46 eV experimentally and was calculated theoretically as 5.175 eV.
This was estimated from the formula, Eg = hc/λ (eV). Both experimentally observed and
theoretically calculated data were well correlated to show less depth in the absorption edge,
which confirms a wide transmission lane in the visible region. Thus, the occurrence of wide
band gap of the UGA single crystal is expected to possess enhanced damage threshold
values and larger transmittance in the visible spectrum [13].



Crystals 2021, 11, 1239 5 of 16Crystals 2021, 11, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 4. Plot of ln(hυ −  Eg) versus ln (αhυ). 

4.2.2. Determination of Energy (Band) Gap 

As per Tauc’s relation, the absorption coefficient value can be used to estimate band 

gap of the material [18,19]. Thus: 

(αhυ) = 𝐴(hυ − Eg) (1) 

ln(αhυ) =  ln A + m ln(hυ − Eg) (2) 

Hence, Eg can be calculated with the reference of Tauc’s plot, which is the graph plot-

ted against (αhυ)2 and hυ and depicted in Figure 5. From the graph, Eg for UGA was iden-

tified to be 5.46 eV experimentally and was calculated theoretically as 5.175 eV. This was 

estimated from the formula, Eg = hc/λ (eV). Both experimentally observed and theoretically 

calculated data were well correlated to show less depth in the absorption edge, which 

confirms a wide transmission lane in the visible region. Thus, the occurrence of wide band 

gap of the UGA single crystal is expected to possess enhanced damage threshold values 

and larger transmittance in the visible spectrum [13]. 

Figure 4. Plot of ln
(
hυ − Eg

)
versus ln (αhυ).

Crystals 2021, 11, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 5. Band gap Spectra—Tauc’s Plot. 

4.2.3. Determination of Optical Constants 

Optical characteristics are highly imperative for the materials to identify the adopta-

bility in the fabrication of optoelectronics [20]. The relation of optical absorption coeffi-

cient with hυ provides knowledge about the band structure of the electron. The (α) was 

computed using the formula: 

2.3026log(1/ T)
α

t
  (3) 

The various optical parameters namely the reflectance (R), the extinction coefficient 

(K) and the refractive index (n) have been estimated from the formulae (theoretical) [21].  

K is given by: 

αλ
K

4π
  (4) 

The reflectance (R) and refractive index (n) can be written as: 

1 exp( αt) exp(αt)
R 1

1 exp( αt)

  
 

 
  (5) 

2(R 1) 3R 10R 3
n

2(R 1)

    
  

  

 (6) 

Figure 6 shows the variation of reflectance and extinction coefficient dependence on 

hυ (photon energy) [21]. The graph (Figure 7) predicts the tied reflectance and extinction 

coefficient, which enumerates linear values of absorption coefficient and supports its in-

ternal capability and potentiality. The photonic response of refractive index (n) shown in 

Figure 8 illustrates that the refractive index (n) falls with the rise of hυ. The sharp optical 

transparency with a less refractive index of UGA shows its vital property in antireflection 

coating of solar (thermal) devices [21]. 

Figure 5. Band gap Spectra—Tauc’s Plot.

4.2.3. Determination of Optical Constants

Optical characteristics are highly imperative for the materials to identify the adoptabil-
ity in the fabrication of optoelectronics [20]. The relation of optical absorption coefficient
with hυ provides knowledge about the band structure of the electron. The (α) was com-
puted using the formula:

α =
2.3026 log(1/T)

t
(3)

The various optical parameters namely the reflectance (R), the extinction coefficient
(K) and the refractive index (n) have been estimated from the formulae (theoretical) [21].

K is given by:

K =
αλ

4π
(4)
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The reflectance (R) and refractive index (n) can be written as:

R = 1±
√

1− exp(−αt) + exp(αt)
1 + exp(−αt)

(5)

n = −
{

(R + 1)±
√

3R210R− 3
2(R− 1)

}
(6)

Figure 6 shows the variation of reflectance and extinction coefficient dependence on
hυ (photon energy) [21]. The graph (Figure 7) predicts the tied reflectance and extinction
coefficient, which enumerates linear values of absorption coefficient and supports its
internal capability and potentiality. The photonic response of refractive index (n) shown in
Figure 8 illustrates that the refractive index (n) falls with the rise of hυ. The sharp optical
transparency with a less refractive index of UGA shows its vital property in antireflection
coating of solar (thermal) devices [21].
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Moreover, the electric susceptibility (χc) of UGA can be estimated as:

εr = ε0 + 4πχc = nx
2 −K2 (7)

χc =
nx

2 −K2 − ε0

4π
(8)

4.2.4. Determination of Absorption Band Tail

Optical absorption studies play a major part in the domain of material science to
show the aptness of the material in photonics. The presence of impurities shows a weak
absorption band, the disorder system in the crystal structure shows absorption edge and
the optical energy gap shows a strong absorption band. Thus, the presence of absorption
coefficient value in close proximity to the band edge reveals an exponential part called
Urbach tail. This is very low for good crystalline materials having fewer impurities [22].

Close to the band gap edge, the absorption coefficient is:

α = α0 exphυ/Eg (9)

where α0 is the constant and Eu the energy (Urbach) of band tail.
Taking log on both sides of the above expression,

lnα = lnα0 + hυ/EU (10)

Figure 9 clearly illustrates the Urbach or band tail energy from the inverse of the slope
to the linear line [23]. For UGA, the Urbach (Eu) was identified to be 0.5450 eV. Thus, the
variation up to ±0.5 eV is noted for an energy band gap of the grown material. Therefore,
the least value confirms UGA has less observed defects and disorder with better purity
and good crystalline nature.
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Urbach recommended another relation combining (α) and (Eg) as:

α = β exp
⌈
σ(hϑ− Eo)

KT

⌉
(11)

Here, β is the pre-exponential constant and σ is a steepness parameter. Transition
energy Eo should be equal to band gap energy for direct allowed transition.

The steepness parameter can be determined from the formula [14] as:

σ =
KBT
Eu

(12)

Additionally, the electron–phonon interaction can be determined from the formula [14] as:

Ee−p = 2
3σ

(13)

For the grown UGA, the steepness parameter was calculated as 0.5985 and electron–
phonon interaction was 1.114. The other optical parameters calculated are tabulated below
(Table 2).

Table 2. Calculated optical parameters of UGA.

Optical Parameters—Report Calculated Values of UGA

λCutoff (nm) 240 nm

Eg (Band gap) in eV 5.46 eV

Eu (Urbach energy) in eV 0.545 eV

Steepness parameter (σ) 0.5985

Electron–phonon interaction(Ee-p) 1.114
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4.2.5. Determination of the Point of Valence Band and Conduction Band

Calculated electron affinity along with ionization energy data of the elements of
the compound UGA were determined. UGA has 7 carbon atoms, 16 hydrogen atoms,
4 nitrogen atoms, and 6 oxygen atoms. These numbers of atoms of the elements are shown
as i, j, k and m. The point of conduction band can be estimated using the formula [24,25]:

ECB = Ee − X +
Eg

2
(14)

where ECB is the conduction band position, Ee is the dissociation energy of H2 molecule,
and X is the energy parameter [26]. The calculated positions are tabulated in Table 3 and
are represented in Figure 10.

Table 3. Positions of conduction band, valence band and energy gap.

Electron Affinity
(EA in eV)

Ionisation Energy
(EI in eV) Positions of ECB, EVB and Eg in eV

C—1.262 C—11.2603 −0.86

H—0.754 H—13.5984 4.6

N—−1.4 N—14.5341 5.46

O—1.461 O—13.6181
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Figure 10. Position of conduction band and valence band of UGA.

4.3. Determination of Plasma Energy, Penn Gap Energy, Fermi Energy and Polarizabilty

The electronic polarizability (α) is notable for finding efficiency of nonlinear effects of
materials. The electro-optic polarizability of the material is purely based on the solid state
parameters, which act as an efficient approving method for finding NLO properties [27].
The dielectric permittivity of the material depends on the valence (free) electrons shown in
the material.
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The density (ρ) can be found using the formula:

ρ =
MZ

NAV
(15)

M is the molecular weight (252.23 g mol−1), Z = 4 is the total number of atoms per
unit cell, NA is the Avogadro number (6.023 × 1023) and V (volume). After calculation, the
density was identified to be 1.425 g/cm3.

The valence electron plasma energy hωp is calculated as:

}ω = 28.8
(

Z′ ∗ ρ
M

)1/2

(16)

The sum of valence electrons Z′ is Z′ = [(7 ∗ Z′C) + (16 ∗ Z′H) + (4 ∗ Z′N) + (6 ∗ Z′o)] = 100.
The dielectric permittivity at 1 MHz was calculated to be 10.93.
Penn gap energy:

Ep =
}ω p

(ε− 1) 1/2 (17)

Fermi energy:
EF = 0.2948 }ωp4/3 (18)

Polarizability (αp) can be calculated as:

αp =
3M

4πNρ
∗ ε∞ − 1
ε∞ + 2

(19)

The electronic polarizability due to band gap Eg is given as:

α =

[
1−

√
Eg

4.06

]
∗ M
ρ
∗ 0.396 ∗ 10−24 cm3 (20)

Using the above mentioned relations, solid state parameters were tabulated (Table 4).
This clears the supporting factor for NLO efficiency of the crystal [27].

Table 4. Calculated parameters of UGA.

Solid State Parameters (eV) Calculated Values (eV) Values of KDP

Plasma Energy 21.6472 17.28

Penn gap energy 6.873 2.37

Fermi Energy 17.77 12.02

Polarizability by Clausius-Mossotti relation 5.3896 × 10−23 cm3 2.10 × 10−23 cm3

4.4. Hardness Studies

The hardness of the material is considered most essential in standardizing the ability of
the crystal in the fabrication of optoelectronics. The mechanical ability (strength) was found
by using the Vickers micro hardness test for cutting and polishing the crystal [28]. In order
to enhance the strength of the grown crystal, the hardness test was estimated by Vickers
micro hardness tester. The extremely transparent crystals are viewed on indentations with
the load ranging from 25 to 100 gm with a time of 10 sec. Surface defects of UGA are
avoided by choosing the gap between successive indentations and placing them higher
than five times the length (diagonally). The Vickers hardness value (Hv) was evaluated
as [28]:

Hv = 1.8544
P
d2

(
kg/mm2

)
(21)
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Here, 1.8544 is a geometrical factor, d indicates the length (diagonal) and P represents
the load (applied). Figure 11a shows that the hardness (Hv) of the crystal increases dras-
tically with an increase of the load (applied), validating high mechanical potency of the
UGA crystal. The correlation between the load (applied) and the indentation range can be
constituted by:

P = KdnCrystals 2021, 11, x FOR PEER REVIEW 13 of 18 
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K (constant) and n the Meyer’s index. The slope value from Figure 11 declares work
hardening coefficient as (n = 4.12) and highlights that the grown UGA belongs to soft
category material [29].

The elastic stiffness constant (C11) is determined using Wooster’s empirical for-
mula [30]:

C11 = (Hv)
7/4 (22)
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C11 predicts an assessment of bonding to the closest atoms. The variation of load P
(applied) versus C11 is represented in Figure 11c. Thus, the graph affirms the stiffness
constant rises rapidly with the increase of the load (applied). The greater value of C11
predicts the strong binding forces to the ions.

The yield strength (σy) can be evaluated as:

σy =
Hv

3
(0.1) n′−2 (23)

Here, Hv is the hardness value and n specifies Meyer’s index value. A graph between
load P (applied) vs. yield strength σy is represented in Figure 11b. The Knoop hardness
test is used to identify the brittleness of the materials.

The Knoop hardness number (Hk) is formulated as [29]:

Hk= 14.229
P
d2

(
kg/mm2

)
(24)

Here, P stands for the load (applied) in gm, while d represents the length (diagonal).
The calculated Knoop number for various loads is presented in Table 5 to identify the
brittleness of the grown crystal. The variation between load P (applied) and Hk is illustrated
in Figure 11d.

Table 5. Mechanical characteristics of UGA.

Load P (g)
Knoop Hardness

Number Hk

Hv (kg mm−2) σy (GPa) C11 (GPa) Hk (kg mm−2)

25 24.8 8.267 2.756 18.90
50 31.7 10.567 4.235 24.90
100 51.7 17.233 9.968 39.26

The calculated mechanical parameters of UGA support the hardness of the material
and the data are presented and tabulated in Table 5.

4.4.1. Knoop Hardness Number

Knoop hardness analysis identifies the brittleness of the material. The Knoop hardness
number is formulated from [29]:

Hk= 14.229
P
d2

(
kg/mm2

)
(25)

Here P represents the load (gm) and d represents length (diagonal mm). The calculated
Knoop hardness number for three applied loads is presented in Table 6 to show the
brittleness of the grown crystal. The variation in P (applied) and Knoop number Hk is
illustrated in Figure 12.

Table 6. Calculated Knoop hardness number for different loads of UGA.

Load P (g) Knoop Hardness Number Hk

25 18.90
50 24.90
100 39.26
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4.4.2. Hays–Kendall (HK) Approach

The indentation size effect (ISE) of materials was proposed by Hays and Kendall [31],
and indicates the strong or weak behavior of indentation for UGA.

P = W + A1 dn (26)

where W is the bare minimum load and A1 is a constant with n = 4.12. The graph (Figure 13)
is plotted between load P and d2, evaluating W and A1. Considering the negative resistance
pressure, the crystal exhibits strong reverse ISE nature for a UGA crystal. The corrected
load, which is not depending on HHK, can be estimated from [32],

HHK = 1854.4 A1 (27)
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The estimated values are specified and tabulated (Table 7).

Table 7. Calculated HK constant W, A1 and HHK for UGA.

Constant (Hays–Kendell) Calculated Outcomes

Resistance pressure (W) −59.51 (g)
Load independent constant (A1) 0.042 g/µm2

Corrected load independent hardness (HHK) 77.88 g/µm2

4.5. Determination of Non Linear Optical Studies

The NLO is an important parameter for organic, inorganic and semi-organic materials
to show its optical alertness in the domain of photonics, optoelectronics, communications
(optical), laser development, etc. The grown organic material UGA was thoroughly ana-
lyzed to undergo second harmonic generation process by the Kurtz–Perry method [33].
The material was finely powdered and a high beam Nd-YAG laser (1064 nm) made to pass
through the material with sample material as KDP. The SHG output shows no green light
emission. Even though UGA belongs to centrosymmetric crystal, it exhibits the absence of
green light emission and hence second order nonlinearity is absent.

The nonlinear property of the material was proved by extending UGA to third order
harmonic generation studies (Z-scan). This was employed using Nd-YAG laser (Coherent
compass TM215M-50) with 532 nm to show third order nonlinearities. The Z-scan method
is an accurate and simple method for determining nonlinear absorption and refraction
to prove the nonlinearity of the compound. The result verifies better nonlinear optical
characteristics and its nonlinear absorption and refraction are dispensed to the negative
nonlinearity and the two-photon absorption process. The change in the refractive index
with the rise in temperature leads to self-defocusing nature, which shows evidence from
the negative nonlinear variation. The closed aperture configuration is gentler in yielding
nonlinear absorption and refraction. The observed peak followed by the valley configura-
tion in Figure 14 illustrates the negative nonlinearity, which is attributed to self-defocusing
nature [18]. In the open aperture configuration, the transmittance curve shown in Figure 14
is symmetric with respect to focus and shows the two-photon absorption process [21]. This
shows its efficiency over possible recognition of signal processing devices in optics [34].
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Hence, the nonlinear refractive index (n2) and (β) was calculated to be 7.80× 10−8 cm2/W
and 0.02 × 10−4 cm/W respectively. The absolute susceptibility |χ(3)|was identified to
be 8.54 × 10−6esu. This was clearly and elaborately reported in our previous work [13].
The calculated values of n2 showed self-defocusing behavior of the crystal, which exhibits
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nonlinear optical properties. The β value showed its saturable absorption behavior, which
is highly useful in optical limiting applications [21].

5. Conclusions

The optical properties were examined both experimentally and theoretically for the
organic material, urea glutaric acid (UGA), which was synthesized at a low temperature.
Single crystal XRD confirms the monoclinic structure with C2/c space group. The cell
parameters are observed and compared with the reported work. The transmittance graph
shows the low cutoff wavelength as 240 nm, with an energy gap identified to be 5.46 eV.
This is verified theoretically and found to be 5.175 eV. The diverse optical parameters
were calculated and the results support good nonlinearity for optical applications. The
low Urbach energy (0.545 eV) provides support for fewer defects with less impurities and
better crystalline nature. The steepness parameter (0.5985) and electron phonon interaction
(1.114) was calculated. The electron transition from valence band and conduction band is a
direct allowed transition, which is found from transition number (0.462 eV). The position of
lower and higher energy band is also determined from the electron affinity and ionization
energy of the molecules present in UGA. Electronic polarizability was calculated using the
Clausius–Mossoti relation (5.3896 × 10−23 cm3) and tabulated. The mechanical stability
was measured from Vickers hardness analysis. From the Z-scan data nonlinear refractive
index (n2) 7.80× 10−8 cm2/W, absorption coefficient (β) 0.02× 10−4 cm/W was calculated
and the susceptibility was identified to be 8.54 × 10−6 esu. The various optical parameters
from third harmonic generation studies show UGA as an efficient material over device
fabrication in nonlinear optics.
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