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Abstract: Induction time and metastable-zone-width (MSZW) data for aqueous L-glycine solutions
in the presence of L-arginine impurity were experimentally measured using a turbidity probe in
this study. The nucleation parameters, including the interfacial free energy and pre-exponential
nucleation factor, obtained from induction time data, were compared with those obtained from MSZW
data. The influences of lag time on the nucleation parameters were examined for the induction time
data. The effects of L-arginine impurity concentration on the nucleation parameters based on both
the induction time and MSZW data were investigated in detail.
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1. Introduction

In crystal growth, the induction time is defined as the time interval between the
establishment of the supersaturated state and the formation of detectable nuclei. The
metastable-zone-width (MSZW) limit is defined as the time taken at a given cooling rate be-
tween the establishment of the supersaturated state and the formation of detectable nuclei.
Nucleation is the initial process for the formation of crystals in liquid solutions. Thus, both
the induction time and MSZW data are related to the nucleation rate of the crystallized
substance in solutions. In classical nucleation theory (CNT) [1–3], the nucleation rate is
expressed in the Arrhenius form, governed by two nucleation parameters, including the
interfacial free energy and pre-exponential nucleation factor. The interfacial free energy
is the energy required to create a new solid/liquid interface for the formation of crystals
in liquid solutions, while the pre-exponential factor is related to the attachment rate of
solute molecules to a cluster in the formation of crystals. The influences of impurities on
the nucleation parameters have long been investigated using induction time or MSZW data
with the addition of different impurities in solutions for a variety of compounds [4–14].

The nucleation parameters of a crystallized substance have been traditionally de-
termined from induction time data by assuming ti

−1 ∝ J, where J is nucleation rate [1].
Recently, various methods have been proposed to calculate the nucleation parameters
from MSZW data [15–21]. Although the induction time and MSZW processes are two
different temperature-controlling methods for determination of the nucleation parameters
in a crystallization system, a model should be available to relate the induction time and
MSZW data with the nucleation parameters. Furthermore, as a cooling process is applied
first to reach the desired operating temperature and then a constant temperature is adopted
in the induction time measurements, there always exists a lag time between the prepared
supersaturated solution being at a higher temperature and it being cooled to the desired
lower constant temperature. For simplicity, the lag time is usually neglected in determining
the nucleation parameters from the induction time data.

The nucleation process can behave differently. For certain systems, induction time
cannot even be considered due to sharp phase transition, while for some cases there is
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induction time governed by different material properties. For example, by evaporating a
cellulose nanocrystal-based cholesteric drop, the drop edges are pinned to the substrate,
which leads to nonequilibrium sliding of the individual cholesteric fragment with active
ordering [22]; following the induction period of cholesteric collagen tactoids, phase separa-
tion goes through the nucleation process during which multiple chiral nuclei spontaneously
emerge and grow throughout the continuous isotropic phase [23]. In the present work, a
model was proposed based on CNT to relate the induction time and MSZW data with the
nucleation parameters for the systems with an experimentally measurable nucleation point.
The proposed model was then applied to determine the nucleation parameters for the
aqueous L-glycine solutions in the presence of L-arginine impurity from the induction time
and MSZW data. The effects of lag time on the nucleation parameters within the induction
time data were investigated. L-glycine was adopted in this work as it is the simplest amino
acid and is often used as a model compound in the study of solution nucleation [24–30].
L-arginine is another amino acid which was randomly chosen as impurity in the aqueous
L-glycine solutions.

2. Theory

The nucleation rate according to CNT is expressed as [1–3]

J = A exp
[
− 16πv2γ3

3kB3T3 ln2 S

]
, (1)

where A is the nucleation pre-exponential factor, γ is the interfacial free energy, kB is the
Boltzmann constant, v = Mw/ρcNA is the molecular volume, T is the temperature, and S
is the supersaturation.

A model is derived based on CNT to determine γ and A by relating the induction
time and MSZW data with J as follows. If a solution saturated at T0 is cooled to Tm at
a constant cooling rate b within the time period t = 0 to tm and then the temperature is
kept at Tm within the time period tm to tm + ti, the nucleation event for this combined
process is assumed to be detected at t = tm + ti. If tm is small compared to ti, this combined
process can be regard as the induction time process with consideration of the lag time tm,
which is the time required for the solution saturated at T0 to cool to Tm at cooling rate b.
Thus, ∆Tm = T0 − Tm and the lag time is given by tm = ∆Tm/b. This combined process for
tm = 0 corresponds to the induction time process without consideration of the lag time.
On the other hand, this combined process for ti = 0 corresponds to the MSZW process.

Figure 1 depicts the MSZW process for a saturated solution of C0 cooled at a constant
cooling rate b, where T0 is the initial saturated temperature at t = 0, Tm is the nucleation
temperature at tm, C0 is the saturated concentration at T0, Cm is the saturated concentration
at Tm, Ceq(T) is the solubility, and S(T) = C0/Ceq(T) is the supersaturation. As Ceq(T)
generally decreases with decreasing temperature, S(T) increases and subsequently J in-
creases with time. For the nucleation point at tm, Sm is the supersaturation at Tm defined as
Sm = C0/Ceq(Tm) = C0/Cm. The nucleation rate at Tm is given by

Jm = A exp
[
− 16πv2γ3

3kB3Tm3 ln2 Sm

]
. (2)
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Figure 1. A schematic diagram showing the increasing of supersaturation during the cooling process 

reproduced from Shiau [31], where 𝐶𝑒𝑞(𝑇) is the temperature-dependent solubility (○ represents 

the starting point and ● represents the nucleation point). 
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Figure 1. A schematic diagram showing the increasing of supersaturation during the cooling process
reproduced from Shiau [31], where Ceq(T) is the temperature-dependent solubility (# represents the
starting point and • represents the nucleation point).

Note that both Sm and ∆Tm are measures of the MSZW.
As the first appearance of nuclei can be regarded as a random process, the stochastic

process of nucleation can be described by the Poisson’s law [32–34]. For the combined
process described above, as the temperature is cooled from T0 to Tm within the time period
t = 0 to tm, S(T) increases and J increases with time; and as the temperature is kept at
Tm within the time period tm to tm + ti, the supersaturation remains the same at Sm and J
remains the same at Jm. Based on the given reasoning, the average number of expected
nuclei N in a solution volume V within the time period t = 0 to tm + ti is proposed in this
study as

N =

 tm∫
0

JVdt

+ JmVti . (3)

where the first term on the right-hand side represents the average number of expected
nuclei generated within the time period t = 0 to tm and the second term on the right-hand
side represents the average number of expected nuclei generated within the time period tm
to tm + ti.

Based on the two-point trapezoidal rule for computing the value of a definite integral,
one can derive [35]

tm∫
0

JVdt =
1
2
(J0 + Jm)Vtm =

JmV∆Tm

2b
, (4)

where J0 and Jm represent the nucleation rate at t = 0 and t = tm, respectively. Note that
J0 = 0 at t = 0 when S(T0) = 1 and tm = ∆Tm/b.

According to the single nucleus mechanism (SNM) proposed by some researchers
through experimental validation [32–34], a single primary nucleus is formed in a supersatu-
rated solution, which grows out to a particular size and undergoes secondary nucleation by
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crystal-stirring-impeller or crystal-wall collision. Based on the assumptions that the growth
time between the formation of nucleus and growth to the minimum size for secondary
nucleation is negligible, and one secondary nucleation is enough to generate detectable
crystal volume increase in a negligible amount of time, the nucleation event is detected
after the secondary nucleation of the single primary nucleus. Thus, the nucleation event for
the combined process occurs at t = tm + ti when the first nucleus is formed. By substituting
N = 1 in Equation (3), combining Equations (2)–(4) leads to

ln
(

∆Tm

2b
+ ti

)
= − ln(AV) +

16πv2γ3

3kB3Tm3 ln2 Sm
. (5)

Thus, Equation (5) can be applied to determine the nucleation parameters from the in-
duction time data, ti, with consideration of the lag time, ∆Tm/b. A plot of ln(∆Tm/2b + ti)
versus ln2 Sm should give a straight line, the slope and intercept of which permit determi-
nation of γ and A, respectively.

Equation (5) for ∆Tm/b = 0 reduces to

ln ti = − ln(AV) +
16πv2γ3

3kB3Tm3 ln2 Sm
, (6)

Which corresponds to the conventional method adopted in determination of γ and A
from the induction time data without consideration of the lag time. Equation (5) for ti = 0
reduces to

ln
(

∆Tm

2b

)
= − ln(AV) +

16πv2γ3

3kB3Tm3 ln2 Sm
, (7)

Which can be applied to determine γ and A from the MSZW measurements, where a
solution saturated at T0 is cooled at a constant rate b from t = 0 to tm and the nucleation
event is detected at Tm.

If the temperature-dependent solubility is described in terms of the van’t Hoff
Equation (1), one obtains

ln Sm = ln
(

C0

Cm

)
=

−∆Hd
RG

(
1
T0

− 1
Tm

)
=

(
∆Hd
RGT0

)(
∆Tm

Tm

)
, (8)

where ∆Hd is the heat of dissolution and RG is the gas constant. Substituting ln Sm in
Equation (8) into Equation (7) yields(

T0

∆Tm

)2
=

3
16π

(
kBT0

v2/3γ

)3( ∆Hd
RGT0

)2[
ln
(

∆Tm

b

)
+ ln

(
AV
2

)]
. (9)

A plot of (T0/∆Tm)
2 versus ln(∆Tm/b) based on the MSZW data should give a straight

line, the slope and intercept of which permit determination of γ and A, respectively.
Equation (9) is consistent with the result developed by Shiau and Wu [21] in determination
of γ and A from the MSZW data.

3. Experimental Methods

Deionized water, L-glycine (>99%, Alfa Aesar) and L-arginine (>98%, ACROS) were
used to prepare the desired supersaturated solution for the specified impurity concentration.
The experimental apparatus adopted by Shiau and Lu [18] was used in the study of
nucleation, which consists of a 250 mL crystallizer equipped with a magnetic stirrer at
a constant stirring rate of 350 rpm, immersed in programmable thermostatic water. A
turbidity probe with a near-infrared source (Crystal Eyes manufactured by HEL limited,
Hertford, UK) was used to detect the nucleation event.

The solubility of L-glycine in water from 303 K to 318 K was measured in this work. The
solubility measurements indicated that the solubility of L-glycine in water was nearly not
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influenced by the presence of L-arginine ranging from Cim = 0–10 kg arginine/m3 solution,
which corresponds to 0–0.02 mol arginine/mol glycine. The measured solubility of L-
glycine in water was consistent with the solubility data reported by Park et al. [36]. In
terms of the van’t Hoff equation for the measured solubility, one obtains ∆Hd = 10.2 kJ/mol
with Ceq(303 K) = 215 kg/m3 and Ceq(318 K) = 261 kg/m3 in this work.

For the induction time and MSZW experiments, a 200 mL aqueous L-glycine solution(
V = 2 × 10−4 m3) at the desired concentration was held at 5 K above the saturated tem-

perature for 20 min to ensure a complete dissolution at the beginning of the experiments,
which was also confirmed by the turbidity measurement. In the induction time experiments,
the induction time and lag time data were measured by rapidly cooling the supersaturated
solution at various supersaturations to 303 K. In the MSZW experiments, MSZW data
were measured by cooling the solution saturated at 318 K with different constant cooling
rates. Each run was carried out at least three times at each condition for the solubility, the
induction time, and the MSZW measurements.

Although L-glycine can be crystallized in different polymorphs, including α-form, β-
form and γ-form, α-form is usually obtained from pure aqueous L-glycine solutions [24–30].
In this work, the final dried crystals at the end of the experiments were analyzed using
Raman spectroscopy (P/N LSI-DP2-785 Dimension-P2 System, 785 nm, manufactured by
Lambda Solutions, INC., Seattle, WA, USA) to validate the polymorph of the L-glycine crys-
tals. By comparing with the Raman spectra of α-form crystals reported by Murli et al. [37],
it was found that α-form L-glycine crystals were formed from aqueous L-glycine solutions
in this work for various supersaturations without and with the presence of L-arginine
impurity. Figure 2 shows some Raman spectra of the L-glycine crystals obtained in this
work at S = 1.07 and S = 1.12 for Cim = 0 and Cim = 10 kg/m3, respectively.
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Figure 2. The Raman spectra of the produced L-glycine crystals at S = 1.07 and S = 1.12 for
(a) Cim = 0 and (b) Cim = 10 kg/m3, respectively.

4. Results and Discussion

The induction time data of aqueous L-glycine solutions were measured for various
supersaturations at 303 K in the presence of L-arginine for various impurity concentrations,
Cim. The average induction times are listed in Table 1. The average lag times for the
induction time data are listed in Table 2, which were measured based on b ∼= 0.038 K/s
adopted for cooling the heated supersaturated solution to the desired constant temperature.
The lag time corresponds to the time required for the heated solution to be lowered to
303 K. Thus, as the temperature range ∆Tm increases, the lag time increases. The MSZW
data of aqueous L-glycine solutions saturated at T0 = 318 K were measured for various b in
the presence of L-arginine for Cim = 0–10 kg/m3. The average MSZWs are listed in Table 3.
Note that Mw = 0.075 kg/mol, ρc = 1607 kg/m3, and v = 7.757 × 10−29 m3 for L-glycine.

Table 1. The average induction times, ti, in the induction time measurements for various impurity
concentrations, Cim, and supersaturations, S, at 303 K. The standard deviations in the least significant
digits are given in parentheses.

Cim
(
kg/m3) ti (×102 s)

S = 1.07 S = 1.08 S = 1.10 S = 1.12

0 27 (5.9) 14 (2.8) 8.3 (2.5) 4.4 (2.0)
2 62 (15) 33 (7.3) 16 (4.6) 8.2 (2.5)
5 107 (17) 48 (8.9) 23 (5.1) 12 (3.0)
10 154 (21) 62 (11) 31(8.8) 16(4.7)
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Table 2. The average lag time, ∆Tm/b, based on b ∼= 0.038 K/s in the induction time measurements
for various impurity concentrations, Cim, and supersaturations, S, at 303 K, where ∆Tm corresponds
to the temperature range for a solution with concentration C0 saturated at T0 and cooled to 303 K.
Note that ∆Tm = T0 − 303 K and S = C0/Ceq(303 K). The standard deviations in the least significant
digits are given in parentheses.

Cim(kg/m3)

∆Tm/b (s)

S = 1.07
(∆Tm = 5.1 K)

S = 1.08
(∆Tm = 5.8 K)

S = 1.10
(∆Tm = 7.2 K)

S = 1.12
(∆Tm = 8.7 K)

0 135 (14) 153 (16) 177 (16) 236 (19)
2 127 (12) 144 (13) 195 (17) 221 (17)
5 141 (13) 159 (15) 182 (16) 232 (17)
10 146 (15) 163 (14) 188 (18) 241 (22)

Table 3. The average MSZWs, ∆Tm, in the MSZW measurements for a solution saturated at T0 = 318 K
cooled at various impurity concentrations, Cim, and cooling rates. The standard deviations in the
least significant digits are given in parentheses.

Cim (kg/m3)
∆Tm(K)

b = 0.00417 K/s b = 0.00833 K/s b = 0.01111 K/s b = 0.01389 K/s

0 6.9 (1.6) 8.5 (1.7) 9.1 (2.1) 9.9 (2.2)
2 8.4 (1.8) 10.3 (2.0) 11.7 (2.3) 12.2 (2.3)
5 9.7 (2.1) 12.2 (2.5) 13.8 (2.9) 14.4 (3.1)
10 11.5 (2.3) 13.9 (2.4) 16.1 (2.7) 18.8 (3.3)

Table 1 indicates that ti increases significantly with increasing Cim for each S and de-
creases with increasing S for each Cim. Thus, L-arginine exerts a nucleation inhibition effect
in aqueous L-glycine solutions, which increases with increasing Cim. Table 2 indicates that
∆Tm/b, increases slightly with increasing S for each Cim and remains nearly independent
of Cim. Note that ∆Tm corresponds to the temperature range for a solution saturated at T0
cooled to 303 K, where T0 increases with increasing S and remains nearly independent of
Cim. For example, ∆Tm/b = 236 s is quite significant compared with ti = 442 s at S = 1.12
(∆Tm = 8.7 K) for Cim = 0. On the other hand, ∆Tm/b = 135 s is negligible compared with
ti = 2672 s at S = 1.07 (∆Tm = 5.1 K) for Cim = 0.

Figure 3 shows plots of ln ti against ln2 Sm for each Cim according to Equation (6)
based on the induction time data without consideration of the lag time. Figure 4 shows
plots of ln(∆Tm/2b + ti) against ln2 Sm for each Cim according to Equation (5) based on the
induction time data with consideration of the lag time. Calculated values of γ and A from
the slope and intercept of the best-fit plots for each Cim are listed in Table 4. Note that the
regression coefficient, R2, with the lag time is generally greater than that without the lag
time for each Cim, which indicates that Equation (5) with the lag time fits the induction
time data better than Equation (6) without the lag time.
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Figure 3. Plots of ln 𝑡𝑖  against ln2𝑆𝑚  for various impurity concentrations, 𝐶𝑖𝑚 , according to 

Equation (6) based on the induction time data without consideration of the lag time. 
Figure 3. Plots of ln ti against ln2 Sm for various impurity concentrations, Cim, according to Equa-
tion (6) based on the induction time data without consideration of the lag time.
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Figure 4. Plots of ln(∆Tm/2b + ti) against ln2 Sm for various impurity concentrations, Cim, according
to Equation (5) based on the induction time data with consideration of the lag time.

Table 4. Calculated values of γ and A with the regression coefficients, R2, based on the induction
time data. The number before the slash represents the value without consideration of the lag time
and the number after the slash represents the value with consideration of the lag time.

Cim (kg/m3) γ (mJ/m2) A
(
m−3s−1) R2

0 2.07/1.99 26.5/19.7 0.981/0.987
2 2.17/2.13 16.9/14.3 0.991/0.994
5 2.22/2.20 12.7/11.6 0.993/0.997
10 2.24/2.22 10.0/9.1 0.989/0.990

As indicated in Table 4, one can note that the value of γ with the lag time, γlag, is
lower by about 2% than that without the lag time, γ, while the value of A with the lag time,
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Alag, is lower by about 15% than that without the lag time, A. These findings are consistent
with γlag < γ and Alag < A derived in Supplementary Materials.

Table 3 indicates that ∆Tm increases with increasing Cim for each b and increases
with increasing b for each Cim. Thus, as similar to the results from the induction time
data, L-arginine exerts a nucleation inhibition effect in aqueous L-glycine solutions, which
increases with increasing Cim. Figure 5 shows plots of (T0/∆Tm)

2 against ln(∆Tm/b) for
various Cim according to Equation (9) based on the MSZW data. Calculated values of γ
and A from the slope and intercept of the best-fit plots for each Cim are listed in Table 5.
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Table 5. Calculated values of γ and A with the regression coefficients, R2, based on the MSZW data.

Cim (kg/m3) γ (mJ/m2) A
(
m−3s−1) R2

0 2.13 30.9 0.990
2 2.36 22.1 0.981
5 2.54 17.2 0.975
10 2.71 12.6 0.953

The values of γ and A obtained from the MSZW data in Table 5 are consistent with
those obtained from the induction time data in Table 4. They all indicate that, as Cim
increases, γ increases slightly while A decreases quite significantly. For example, as Cim
increases from 0 to 10 kg/m3, γ only increases slightly in the range of 10% to 30%, while
A decreases significantly in the range of 50% to 60%. It is speculated that the presence of
L-arginine in the aqueous L-glycine solution leads to some L-arginine molecules adsorbed
on the nucleus surface of L-glycine, which suppresses nucleation and results in a higher
γ compared to that without L-arginine adsorbed on the nucleus surface of L-glycine. On
the other hand, the presence of L-arginine in the aqueous L-glycine solution suppresses
nucleation and results in a lower A compared to that without L-arginine in the aqueous
L-glycine solution. As the effects of L-arginine impurity on γ and A become more profound
at a greater concentration of L-arginine impurity, a greater Cim results in a higher γ and a
lower A. This trend is consistent with the finding reported by Heffernan et al. [8] for the
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nucleation of curcumin in propan-2-ol due to the presence of demethoxycurcumin and
bisdemethoxycurcumin.

5. Conclusions

A model was proposed based on CNT to determine the nucleation parameters from
both the induction and MSZW data. The unique feature is that the derivation of this model
for both the induction and MSZW data is based on the same assumption that the nucleation
point corresponds to the formation of a single primary nucleus in a supersaturated solution.
This model results in two different equations. One is derived for the induction data while
the other is derived for the MESZW data. The proposed model was applied to calculate
the interfacial free energy and pre-exponential nucleation factor from both the induction
time data and the MSZW data for the aqueous L-glycine solutions in the presence of
L-arginine impurity. The results indicated that the values of interfacial free energy and
pre-exponential nucleation factor obtained from the MSZW data are consistent with those
obtained from the induction time data. The induction time data with consideration of the
lag time lead to a lower interfacial free energy and a lower pre-exponential nucleation
factor than those for the induction time data without consideration of the lag time. As the
impurity concentration increases, the interfacial free energy increases slightly while the
pre-exponential nucleation factor decreases quite significantly based on both the induction
time and MSZW data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11101226/s1, The derivation of γlag < γ and Alag < A.
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Notation

A = pre − exponential nucleation factor (m−3s−1)

b = cooling rate (K/s)
C0 = initial saturated concentration at T0

(
kg/m3)

Ceq(T) = saturated concentration at T
(
kg/m3)

Cm = saturated concentration at Tm
(
kg/m3)

Cim = concentration of impurity
(
kg/m3)

J = nucleation rate (m−3s−1)

J0 = nucleation rate at t = 0 (m−3s−1)

Jm = nucleation rate at tm (m−3s−1)

kB = Boltzmann constant
(
= 1.38 × 10−23 J/K

)
MW = molar mass (kg/mol)
N = average number of expected nuclei (−)

NA = Avogadro number
(
= 6.02 × 1023 mol−1

)
RG = gas constant

(
= 8.314 J mol−1K−1

)
S = supersaturation (−)
Sm = supersaturation at tm (−)
T = temperature (K)
T0 = initial saturated temperature (K)
Tm = temperature at tm (K)
t = time (s)

https://www.mdpi.com/article/10.3390/cryst11101226/s1
https://www.mdpi.com/article/10.3390/cryst11101226/s1
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ti = induction time (s)
tm = time at the MSZW limit (s)
V = solution volume (m3)

Greek Letters
ρc = crystal density

(
kg/m3)

v = volume of the solute molecule
(
m3)

γ = interfacial free energy
(
J/m2)

∆Hd = heat of dissolution (J/mole)
∆Tm = MSZW (K)
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