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Abstract: We have performed an ab initio study of vacancy-induced changes in thermodynamic,
structural and magnetic properties of single-phase ferromagnetic Fe2CoAl with a chemically disor-
dered (i) two-sublattice B2 phase or (ii) single-sublattice A2 phase. The two polymorphs of slightly
non-stoichiometric Fe2CoAl (Fe27Co14Al13) were modeled by two different 54-atom supercells with
atoms distributed according to the special quasi-random structure (SQS) concept. Both the lower-
energy B2 phase and a higher-energy A2 phase possess elastic constants that correspond to an auxetic
material that is mechanically stable. The properties of vacancies were computed by systematically
removing different atoms (one at a time) from the supercells and quite wide ranges of values of
vacancy-related characteristics were obtained. The increase in the level of disorder (when changing
from the B2 to the A2 phase) results in an increase in the scatter of calculated values. The Fe and Co
vacancies have lower vacancy formation energies than the Al ones. The total magnetic moment of the
supercell decreases when introducing Fe and Co vacancies but it increases due to Al ones. The latter
findings can be partly explained by an increase of the local magnetic moment of Fe atoms when the
number of Al atoms in the first neighbor shell of Fe atoms is reduced, such as due to Al vacancies.

Keywords: Fe2CoAl; disorder; vacancies; magnetism; ab initio; defects; auxetic

1. Introduction

Our study is focused on the Fe2CoAl intermetallic compound belonging to a very
large class of ternary X2YZ materials with Heusler-type crystal lattice [1]. This family of
compounds covers numerous combinations of different chemical elements, see, e.g., high-
throughput theoretical studies in refs. [2,3]. This compositional variability provides a
wide range of properties [4,5], including magnetic ones [6–8], half-metallic properties
that are interesting for spintronic applications [9–13], magneto-optical functionalities [14],
topological quantum features [15,16] or, e.g., shape-memory behavior [17–19].

The studied Fe2CoAl can also be categorized as a material based on iron and alu-
minium. The very promising class of Fe-Al-based materials [20–27] has been studied
very intensively including experimental research [28–40] motivated by (i) possible appli-
cations of these materials in high-temperature coatings [41–47] and composites [48–52] or
(ii) their preparation by newly emerging techniques [53–56]. Theoretical studies of iron-
aluminides cover first-principles calculations of single-phase materials [57–71], combined
methodological approaches [72–75], or calculations of properties of defects [76–81].

In our current study, we focus on the properties of vacancies in the disordered Fe2CoAl
with the impact of disorder being illustrated by comparing two structural models with
different level of disorder. First, we use a structural model that is based on the experimental
work of Grover et al. [82] where a single-phase Fe2CoAl has effectively a chemically
disordered B2 lattice with two sublattices: one containing equal amounts of Fe and Co
atoms and the second exhibiting equal amounts of Fe and Al.
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We further compare vacancy-related characteristics in the B2 phase with those obtained
for a single-sublattice more-disordered A2 phase of Fe2CoAl. We use quantum-mechanical
calculations to determine vacancy-induced changes in (i) thermodynamic properties by
evaluating the vacancy formation energy, (ii) total magnetic moment, and (iii) structural
properties by analyzing the volumetric changes.

2. Methods

When modeling a partially disordered B2 phase (with two compositionally different
sublattices) and a single-sublattice disordered A2 phase of Fe2CoAl, we have utilized
two different 54-atom supercells, see Figure 1a,b, respectively. The atoms on the two
B2-phase sublattices and one A2-phase sublattice were distributed according to the special
quasi-random structure (SQS) concept [83] as generated by the USPEX software [84–86].
The actual stoichiometry of our supercells, Fe27Co14Al13 or Fe2Co1.037Al0.963, slightly de-
viates from the exact Fe2CoAl stoichiometry as 54 is not divisible by 4. The cube-shaped
54-atom supercells, 3 × 3 × 3 multiples of a 2-atom B2 cell, are convenient for modeling of
elasticity of disordered systems. Single-crystal elastic constants were determined using
the stress-strain method [87]. It should be mentioned that our computational supercells,
that are used as models for partly-disordered B2 and disordered A2 phase of Fe2CoAl, do
not have their anisotropic elastic properties equal along crystallographic directions that
would be equivalent in the case of cubic-symmetry systems, such as along the [100], [010]
and [001] directions. The computed differences are small (a few percent), nevertheless, we
have used a proper mathematical approach [88] to determine the closest cubic-symmetry
elastic tensor and its C11, C12 and C44 components are reported below.

Figure 1. Schematic visualizations of our computational supercells representing the B2 phase (a) and
A2 phase (b) of Fe2CoAl (some atoms, such as those in the vertices, are shown with their periodic
images). The B2 phase exhibits two sublattices–one occupied by an equal amount of Fe and Co, while
the other by equal amounts of Fe and Al.

Regarding our quantum-mechanical calculations, we have used the Vienna Ab initio
Simulation Package (VASP) [89,90] based on the density functional theory [91,92]. The
Projector-Augmented-Wave (PAW) pseudopotentials [93,94] and the Generalized Gradient
Approximation (GGA) in the parametrization by Perdew and Wang [95] (PW91) with the
Vosko-Wilk-Nusair correction [96] were utilized for the exchange and correlation energy.
The plane-wave energy cut-off was equal to 400 eV and a 6 × 6 × 6 Monkhorst-Pack [97]
k-point mesh was used in the case of 54-atom supercells in Figure 1 (or their 53-atom
variants with a vacancy). We have fully relaxed all studied supercells, i.e., the energy and
forces were minimized with respect to atomic positions, cell shape and the volume (forces
acting upon atoms were reduced under 0.01 eV/Å). All local magnetic moments were
initially set up as parallel.
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3. Results

A primary aim of our study consists in properties of vacancies but we will report
their characteristics with respect to those of vacancy-free states. Therefore, we start with
summarizing thermodynamic, structural and magnetic properties of both the B2 and A2
phases without defects. As the properties of the B2 phase can be found in our previous
study [98], we will focus on the A2 phase. First, we analyze the thermodynamic stability
by evaluating formation energies. The formation energy Ef per atom is defined as the
difference between the energy of the studied phase, in our case, the energy E(Fe27Co14Al13)
of the 54-atom supercell, and the sum of energies of constituting atoms in their elemental
phases, i.e., ferromagnetic (FM) body-centered cubic (bcc) Fe, E(Fe), ferromagnetic hexag-
onal close-packed (hcp) Co, E(Co), and nonmagnetic (NM) face-centered cubic (fcc) Al,
E(Al), weighted by their amount, i.e.,

Ef =
(

E(Fe27Co14Al13) − 27 · E(Fe) - 14 · E(Co) − 13 · E(Al)
)

/(27 + 14 + 13).
The formation energies of the B2 and A2 phases are equal to −0.243 eV/atom and

−0.157 eV/atom, respectively. The disordered A2 phase has a significantly less negative
energy and, therefore, a lower thermodynamic stability. It is an excited state with respect
to the B2 phase that is supposed to be the ground state as proposed by Grover et al. [82].
The A2 phase has also a higher configurational entropy but the difference is quite small,
0.03 meV/(K·atom), see the Appendix A, and it is only of minor importance. We further
check the mechanical stability of the studied phases by determining a set of single-crystal
elastic constants (C11, C12, C44) corresponding to a cubic-symmetry system. The A2 phase
has them (203 GPa, 140 GPa, 123 GPa) different from those for the more ordered B2 phase
(244 GPa, 141 GPa, 131 GPa) [98] but both systems are mechanically stable (fulfill the
stability conditions [99]). We visualize the elastic properties of both phases in the form of a
directional dependence of Young’s modulus in Figure 2 using the MELASA software [100]
(open access available online: https://melasa.cerit-sc.cz/ (accessed on 6 October 2021)).

Figure 2. Computed directional dependences of Young’s modulus for both the B2 phase (a) and
A2 phase (b) illustrating single-crystal elastic properties. Please mind different ranges of values
corresponding to the same color scale.

Further, we have also used the ELATE software [101] (open access at http://progs.
coudert.name/elate, accessed on 6 October 2021) to determine both the minimum (−0.243)
and the maximum (0.857) value of single-crystal Poisson ratio ν. Interestingly, as our
analysis predicts that the Poisson ratio of the A2-phase Fe2CoAl is negative for certain
directions of loading, it is an auxetic material (as was also the case of the B2 phase [98]).
Thorough information is provided in Figure 3 that visualizes a directional dependence of
both maximum and minimum value of Poisson ratio and the values in the x-z plane (for
details, see ref. [101]). The negative values of νmin are marked by red color in Figure 3.

https://melasa.cerit-sc.cz/
http://progs.coudert.name/elate
http://progs.coudert.name/elate
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Figure 3. Calculated directional dependence of the minimum and maximum value of Poisson ratio
of the A2 phase (a) together with a cut in the x-z plane (b). The negative values, indicating auxetic
properties, are visualized using red color and a few examples are pointed at by red arrows.

Regarding the magnetic properties, the computed local magnetic moments in both
the B2 and A2 phase are shown in Figure 4. The total magnetic moment in the case of
the B2 phase amounts to 68.26 µB per 54-atom supercell, while the A2 phase has the total
magnetic moment by 18.7% higher, equal to 81.0 µB per 54-atom supercell. Common
magneto-volumetric correlations can help us to connect this difference in the total magnetic
moment with the fact that the volume of the A2 supercell (641.6 Å3 per 54-atom supercell)
is higher than that of the B2 phase (624.3 Å3 per 54-atom supercell). Figure 4 also neatly
visualizes the differences between the local magnetic moments in the B2 and A2 phases as
an illustration of the impact of the different level of order in the B2 and A2 polymorphs.

Next, we systematically remove each of the 54 atoms in each of the two phases to
determine the properties of vacancies and compare the results for each atom type.

Figure 4. Schematic visualizations of local magnetic moments for the B2 (a) and A2 (b) phase.
The magnitudes of local magnetic moments are indicated by the diameter of the spheres representing
the atoms with an example of the scaling shown for one particular Fe atom (2.5 µB) in part (a).
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The computed results in the case of Fe vacancies are shown in Figure 5. The vacancy
formation energies (E(Fe(27−1)Co14Al13 + E(Fe) − E(Fe27Co14Al13)) in Figure 5a,b are
quite clearly different for the Fe atoms belonging to the two different sublattices in the
B2 phase. The Fe vacancies at the (Fe, Al) sublattice have higher vacancy formation
energies, see full circles in Figure 5a, than those at the (Fe, Co) sublattice, full triangles in
Figure 5a. The Fe vacancy formation energies in the A2 phase cover a broader range of
values, see Figure 5b, including some quite low ones. The difference of the total magnetic
moments, µ(Fe(27−1)Co14Al13) − µ(Fe27Co14Al13), of supercells with and without a vacancy,
respectively, is shown in Figure 5c,d. It is mostly negative (the total magnetic moment is
lower when a Fe atom is removed). The reduction in the B2 (A2) phase is often smaller
(bigger), respectively, than the magnitude of the magnetic moment of FM bcc Fe, 2.2 µB,
that is indicated by the horizontal dashed line.

Figure 5. Computed formation energies of Fe vacancies in the B2 (a) and A2 (b) phase together
with the changes of the total magnetic moment of the whole supercell of the B2 (c) and A2 (d) phase
(compared with a hypothetical reduction by the magnetic moment of one FM bcc Fe atom, 2.2 µB, see
the horizontal dashed line) and the vacancy-induced volumetric change for both the B2 (e) and A2
(f) phase.
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A volume difference V(Fe(27−1)Co14Al13) − V(Fe27Co14Al13) of the supercells with
and without vacancy, respectively, is negative, see Figure 5e,f, i.e., the volume is reduced
due to a missing Fe atom, and the reductions cover a wider range in the A2 phase.

The results for Co vacancies are summarized in Figure 6. There are only 14 Co atoms in
the 54-atom supercell representing the B2 and A2 phase and, therefore, the number of data
points in Figure 6 is about twice lower than in the case of 27 Fe atoms in Figure 5 discussed
above. All the Co atoms are located only in one of the two sublattices in the B2 phase
and their vacancy formation energies cover quite a narrow range of values, see Figure 6a.
Not having this limitation in the case of the A2 phase, the vacancy formation energies are
spread over a wider range, see Figure 6b. Regarding the vacancy-induced change of the
total magnetic moment in Figure 6c,d, its value in the B2 (A2) phase is typically reduced by
less (more) than the magnitude of the magnetic moment of one FM hcp Co atom, 1.5 µB,
see the horizontal dashed line in Figure 6c,d.

Figure 6. Calculated formation energies of Co vacancies in the B2 (a) and A2 (b) phase together with
the changes of the total magnetic moment of the whole supercell of the B2 (c) and A2 (d) phase of
Fe2CoAl (compared with a hypothetical reduction by the magnetic moment of one FM hcp Co atom,
1.5 µB, see the horizontal dashed line) and the vacancy-induced volumetric change for both the B2 (e)
and A2 (f) phase.
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Our findings related to the volumetric reduction of the supercells due to Co vacancies
are very similar to those that we found for Fe vacancies (see above).

Rather different trends are found in the case of Al vacancies, see Figure 7. First,
the corresponding Al-vacancy formation energies in Figure 7a are much higher in the B2
phase than those related to Fe and Co vacancies. The change of the ordering from the
B2 to the A2 phase leads to a reduction of the vacancy formation energy, cf. Figure 7a,b.
Regarding the change of the total magnetic moment due to Al vacancies, it increases
very significantly in the B2 phase, see Figure 7c. This increase can be partly explained
as an opposite to the reduction of local magnetic moment of Fe atoms when increasing
the number of Al atoms in the first nearest neighbor (1NN) shell of Fe atoms. We have
reported this trend in Fe-Al alloys [71] or Fe-Al-Ti alloys [102]. As an Al vacancy in the
(Fe, Al) sublattice lowers the number of Al atoms in the 1NN shell of Fe atoms in the
(Fe, Co) sublattice of the B2 phase, local magnetic moments of Fe atoms from the (Fe, Co)
sublattice next to the Al vacancy increase and so does the total magnetic moment of the
whole supercell. We previously found an increase of the total magnetic moment due to Al
vacancies also in the Fe-Al alloys [77].

Figure 7. Computed formation energies of Al vacancies in the B2 (a) and A2 (b) phase together with
the changes of the total magnetic moment of the whole supercell representing the B2 (c) and A2 (d)
phase and the vacancy-induced volumetric changes for both the B2 (e) and A2 (f) phase.
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The above-discussed mechanism is polymorph-sensitive. In contrast to the results
for the B2 phase, where the Al atoms are limited to only one half of all possible atomic
positions (i.e., one sublattice of the two in the B2 polymorph), the Al atoms are statistically
distributed over all lattice sites in the A2 phase. Consequently, the above-mentioned
increase of the total magnetic moment due to Al vacancies in the B2 polymorph is less
pronounced in the A2 phase and the changes of the total magnetic moment are both positive
and negative covering a significantly narrower range close to the zero value, see Figure 7d.
The computed changes in magnetic moments can be possibly explained in terms of charge
transfer that can be analyzed using, e.g., molecular orbital calculations [103]. Regarding
the vacancy-induced volumetric changes, see Figure 7e,f, they are qualitatively similar to
those in the case of Fe and Co vacancies.

4. Conclusions

We have performed a quantum-mechanical study of vacancy-induced changes in
thermodynamic, structural and magnetic properties of single-phase ferromagnetic slightly
non-stoichiometric Fe2CoAl with a chemically disordered either two-sublattice B2 or single-
sublattice A2 phase. The two polymorphs of Fe2CoAl were modeled by two different 54-
atom supercells with atoms on either two B2 sublattices or a single A2 sublattice distributed
according to the special quasi-random structure (SQS) concept. Both the lower-energy B2
and higher-energy A2 phases were found to possess elastic constants that correspond to
auxetic and mechanically stable systems. Our systematic removal of different atoms (one
at a time) from the supercells resulted in quite wide ranges of values of vacancy-related
characteristics. The increase in the level of disorder (when changing from the B2 phase to
the A2 one) results in a further increase in the scatter of calculated values. In general, the Fe
and Co vacancies have lower vacancy formation energies than the Al ones. The change
from the B2 phase to the A2 phase typically means that the vacancy formation energies
cover a wider range of values, in particular, including some quite low energies in the
case of the A2 phase. The total magnetic moment of the whole supercell decreases when
introducing Fe and Co vacancies but it increases in the B2 phase when an Al vacancy
is introduced. The latter finding can be explained by an increase of the local magnetic
moment of Fe atoms when the number of Al atoms in the first neighbor shell of Fe atoms
is reduced, such as here due to an Al vacancy. In general, it often is easier to form the
vacancies in the A2 structure than in the more stable B2 one. In the A2 structure, vacancies
cause a more significant decrease (or a much lower increase in case of Al vacancy) in the
total magnetic moment of the supercells and a higher decrease in their volume.
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Appendix A

To evaluate the configurational entropy of the B2 and A2 phases, we use a generalized
formula [105] derived for the sublattice model [106] Sconf = −R ∑j aj ∑i f j

i ln f j
i where R is

the universal gas constant, i runs over different chemical species, j is the index of different
sublattices, aj is the number of lattice sites of a sublattice j divided by the total number of all

lattice sites and f j
i is the fraction of a chemical species i on a sublattice j. The configurational

entropy is higher in the A2 phase than in the B2 phase by 0.03 meV/(K·atom). If the total
energy difference of 86 meV per atom between the A2 and B2 phase should be compensated
solely by the difference in the configurational entropy, it would happen at the temperature
of 2880 K.
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79. Friák, M.; Černý, M.; Všianská, M.; Šob, M. Impact of antiphase boundaries on structural, magnetic and vibrational properties of

Fe3Al. Materials 2020, 13, 4884. [CrossRef]
80. Li, Y.; Liu, Y.; Yang, J. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded

steel/aluminum joint. Opt. Laser Technol. 2020, 122, 105875. [CrossRef]

http://dx.doi.org/10.1007/s11106-020-00150-9
http://dx.doi.org/10.1016/j.msea.2020.139369
http://dx.doi.org/10.3390/molecules25092263
http://www.ncbi.nlm.nih.gov/pubmed/32403351
http://dx.doi.org/10.3390/ma13030531
http://www.ncbi.nlm.nih.gov/pubmed/31979020
http://dx.doi.org/10.1103/PhysRevB.58.5981
http://dx.doi.org/10.1016/S0364-5916(02)80009-8
http://dx.doi.org/10.1016/j.intermet.2007.09.011
http://dx.doi.org/10.1002/pssb.200743301
http://dx.doi.org/10.3390/nano8110873
http://www.ncbi.nlm.nih.gov/pubmed/30352963
http://dx.doi.org/10.1103/PhysRevB.69.165116
http://dx.doi.org/10.1016/j.corsci.2010.06.019
http://dx.doi.org/10.1103/PhysRevB.65.132104
http://dx.doi.org/10.3390/ma11091732
http://www.ncbi.nlm.nih.gov/pubmed/30223499
http://dx.doi.org/10.3390/ma11091543
http://www.ncbi.nlm.nih.gov/pubmed/30150535
http://dx.doi.org/10.1016/j.jpcs.2020.109366
http://dx.doi.org/10.3390/nano8121059
http://www.ncbi.nlm.nih.gov/pubmed/30558362
http://dx.doi.org/10.3390/nano8121057
http://www.ncbi.nlm.nih.gov/pubmed/30558300
http://dx.doi.org/10.1103/PhysRevB.59.6824
http://dx.doi.org/10.1016/j.intermet.2010.03.014
http://dx.doi.org/10.1016/S0925-8388(02)00177-9
http://dx.doi.org/10.1002/pssb.200440010
http://dx.doi.org/10.1016/j.actamat.2015.09.016
http://dx.doi.org/10.1016/j.physb.2011.12.122
http://dx.doi.org/10.3390/ma12091430
http://www.ncbi.nlm.nih.gov/pubmed/31052537
http://dx.doi.org/10.1103/PhysRevB.81.174101
http://dx.doi.org/10.3390/ma13214884
http://dx.doi.org/10.1016/j.optlastec.2019.105875


Crystals 2021, 11, 1207 12 of 12
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