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Received: 17 September 2021

Accepted: 3 October 2021

Published: 7 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University,
Nanjing 210096, China; junhong@seu.edu.cn (J.H.); wsp@seu.edu.cn (S.W.)
* Correspondence: gyzhang@seu.edu.cn (G.Z.); mi@seu.edu.cn (C.M.)

Abstract: In this paper, a new magneto-electro-elastic functionally graded Timoshenko microbeam
model is developed by using the variational formulation. The new model incorporates the extended
modified couple stress theory in order to describe the microstructure effect. The power-law variation
through the thickness direction of the two-phase microbeams is considered. By the direct application
of the derived general formulation, the static bending and free vibration behavior of the newly
developed functionally graded material microbeams are analytically determined. Parametric studies
qualitatively demonstrate the microstructural effect as well as the magneto-electro-elastic multi-field
coupling effect. The proposed model and its classic counterpart produce significant differences for
thin graded magneto-electro-elastic Timoshenko microbeams. The thinner the microbeam is, the
larger the difference becomes.

Keywords: Timoshenko beam; functionally graded material; magneto-electro-elastic beam;
microstructure effect; modified couple stress theory

1. Introduction

Currently, magneto-electro-elastic (MEE) materials have attracted more and more at-
tention. MEE materials can realize the mutual conversion between magnetic, electrical, and
mechanical energies. Such characteristics have found important applications in stability
controlling, actuating, health monitoring, medical ultrasonic, and some smart structure
technologies [1–3]. In addition, functionally graded materials (FGMs) are characterized by
continuous changes in material properties [4–6]. The mechanical properties of MEE materi-
als synthesized from functionally graded materials are of great significance in both research
and industrial fields [7,8]. In recent years, the research on investigating magneto-electro-
elastic functionally graded materials (MEE-FGMs) on thin beams and plates has become a
major trend. Bhangale and Ganesan [9] studied the free vibration behavior of anisotropic
and linear MEE-FGM plates. Sladek et al. [10] proposed a meshless method for the bend
analysis of circular MEE-FGM plates. Vinyas et al. [11] studied the effectiveness of utilizing
MEE-FGM plates in precise frequency responses control. Mahesh and Harursampath [12]
and Mahesh [13] evaluated nonlinear deflections of MEE-FGM porous flat panels and shells
subjected to mechanical, electrical, and magnetic loads, respectively. However, numerous
experiments [14,15] have proved that thin beams and plates usually exhibit size effects,
(i.e., the thinner, the stiffer). Such size effects arise from non-local interactions of material
particles at a very small scale, which cannot be described by classical theories at the micron
or nanometer level due to a lack of any material length scale parameters. Therefore, it is
necessary to develop thin MEE-FGM structure models based on non-classical theories.

In order to predict the size effects, numerous theories have been proposed with addi-
tional material parameters, such as non-local theories [16], couple stress theories [17–19],
strain gradient theories [20–22], and a series of simpler versions [23–28]. These theories
were successfully applied to develop size-dependent structure models for very small scales.
For example, based on nonlocal theories, a number of MEE/MEE-FGM beam and plate
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models have been developed to capture non-local size effects [29–32], in which a non-local
medium, including long-range material interactions, is adopted. Lim et al. [33] proposed a
non-local strain gradient theory to include both non-local and strain gradient effects, and
the bending, buckling, and free variation problems of FGM beams have been solved [34,35].
In addition, the modified couple stress theory (MCST) [24,25] contains only one additional
parameter for isotropic materials. This MCST and its extended versions only consider the
symmetrical part of the curvature tensor, which leads to fewer material parameters than
their classical counterparts. In view of the great difficulties for determining additional
parameters and interpreting the relevant microstructures, these modified theories have
been applied to build micro/nano-beam and periodic composite pipe models [36–41],
from which a microstructure-dependent stiffness is revealed. Recently, three such models
have been proposed for MEE Timoshenko homogeneous beams [39] and MEE homoge-
neous plates [42,43] based on the extended modified couple stress theory. However, to the
best of our knowledge, the extended modified couple stress theory is not applicable to
MEE-FGM microbeams, which are inhomogeneous and might be helpful for smart devices
miniaturization [44–48]. This motivated the present work.

The present work uses the extended modified couple stress theory to develop a MEE-
FGM Timoshenko microbeam model for the first time and analytically solves the static
bending and free vibration problems of the new model.

2. Materials and Methods

Consider a two-phase FGM microbeam with length L, width b and thickness h under
the combined electric, magnetic, and mechanical loadings, as shown in Figure 1. The
effective material properties P(z) (i.e., elastic stiffness, couple stress stiffness, piezoelectric
constant, piezomagnetic constant, dielectric constant, magnetic permeability constant,
magneto-dielectric constant and density) of the current microbeam change continuously in
the thickness direction based on a power-law distribution [36], where P1 and P2 are the
material properties of material I and II, respectively. The functionally graded power-law
index n determines the material distribution across the thickness.

P(z) = (P1 − P2)

(
z
h
+

1
2

)n
+ P2, (1)
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Based on the extended modified couple stress theory [42,49], the constitutive equations
for transversely isotropic magneto-electro-elastic materials are given by [39,42,50,51].

σxx
σyy
σzz
σyz
σzx
σxy


=



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11−C12

2





εxx
εyy
εzz

2εyz
2εzx
2εxy


−



0 0 q31
0 0 q31
0 0 q33
0 q15 0

q15 0 0
0 0 0




Hx
Hy
Hz

−


0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0
0 0 0




Ex
Ey
Ez

, (2)
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

mxx
myy
mzz
myz
mzx
mxy


=



A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A44 0
0 0 0 0 0 A11−A12

2





χxx
χyy
χzz

2χyz
2χzx
2χxy


, (3)


Dx
Dy
Dz

 =

 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0




εxx
εyy
εzz

2εyz
2εzx
2εxy


+

 s11 0 0
0 s11 0
0 0 s33


Ex
Ey
Ez



+

 d11 0 0
0 d11 0
0 0 d33


Hx
Hy
Hz

,

(4)


Bx
By
Bz

 =

 0 0 0 0 q15 0
0 0 0 q15 0 0

q31 q31 q33 0 0 0




εxx
εyy
εzz

2εyz
2εzx
2εxy


+

 µ11 0 0
0 µ11 0
0 0 µ33


Hx
Hy
Hz



+

 d11 0 0
0 d11 0
0 0 d33


Ex
Ey
Ez

.

(5)

where σij, mij, Di, Bi are the Cauchy stress tensor, the deviatoric part of the couple stress
tensor, the electric displacements, and the magnetic fluxes, respectively. Cαβ (α, β = 1, 2, . . . ,
6) is the elastic stiffness tensor, Aαβ (α, β = 1, 2, . . . , 6) is the couple stress stiffness tensor,
eiα and qiα are the piezoelectric and piezomagnetic tensors, sij and µij are the dielectric
and magnetic permeability tensors, dij is the magneto-dielectric tensor, and εij and χij
are, respectively, the infinitesimal strain and the symmetric curvature tensors, which are
defined by

εij =
1
2
(
ui,j + uj,i

)
, (6)

χij =
1
4
(
εipquq,pj + ε jpquq,pi

)
, (7)

with ui being the displacement, and εijk is the Levi-Civita symbol. In addition, Ek and Hk
are, respectively, the electric field intensity and magnetic field intensity read

Ek = −Φ,k, Hk = −M,k, (8)

where Φ and M are the electric and magnetic potentials.
For a MEE Timoshenko beam with a uniform cross-section shown in Figure 1, the

displacement field and electric and magnetic potentials can be given by [52–55]

u1 = u(x, t)− zϕ(x, t), u2 = 0, u3 = w(x, t), (9)

Φ = − cos
(π

h
z
)

γ(x, t) +
2z
h

γ0, M = − cos
(π

h
z
)

ζ(x, t) +
2z
h

ζ0, (10)

where u and w are the beam extension and deflection, ϕ represents the rotation angle, γ
and ζ are the spatial variations of the electric and magnetic potentials along the x-direction,
respectively. γ0 and ζ0 are, respectively, the external electric and magnetic potentials.

By substituting Equations (9) and (10) into Equations (6)–(8) yields

εxx =
∂u
∂x
− z

∂ϕ

∂x
, εxz =

1
2

(
∂w
∂x
− ϕ

)
, others = 0, (11)

χxy = −1
4

(
∂2w
∂x2 +

∂ϕ

∂x

)
, others = 0, (12)
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Ex = cos
(π

h
z
)∂γ

∂x
, Ez = −

π

h
sin
(π

h
z
)

γ− 2
h

γ0, Ey = 0, (13)

Hx = cos
(π

h
z
) ∂ζ

∂x
, Hz = −

π

h
sin
(π

h
z
)

ζ − 2
h

ζ0, Hy = 0. (14)

Based on Equations (11)–(14), the constitutive equations in Equations (2)–(5) can be
obtained as

σxx = C11εxx − e31Ez − q31Hz, σxz = 2C44εxz − e15Ex − q15Hx, (15)

mxy = (A11 − A12)χxy, (16)

Dx = 2e15εxz + s11Ex + d11Hx, Dz = e31εxx + s33Ez + d33Hz, (17)

Bx = 2q15εxz + µ11Hx + d11Ex, Bz = q31εxx + µ33Hz + d33Ez. (18)

From Equations (11)–(18), the first variation of the total strain energy in the current
beam satisfying the extended modified couple stress theory over the time span [0, T] takes
the form [39,42]

δ
∫ T

0 Udt =
∫ T

0

∫ L
0

∫
A
(
σxxδεxx + 2σxzδεxz + 2mxyδχxy

−DxδEx − DzδEz − BxδHx − BzδHz)dAdxdt,
(19)

where A is the cross-sectional area.
The first variation of the kinetic energy of the Timoshenko beam over the time interval

[0, T] is given by [53]

δ
∫ T

0
Kdt =

∫ T

0

∫ L

0

∫
A

ρ

(
∂u1

∂t
∂δu1

∂t
+

∂u3

∂t
∂δu3

∂t

)
dAdxdt, (20)

where ρ is the mass density.
Furthermore, the virtual work performed by the applied forces acting on the current

Timoshenko beam over the time span [0, T] can be written as [55,56]

δ
∫ T

0
Wdt =

∫ T

0

∫ L

0
[ f δu + qδw]dxdt, (21)

where f and q are, respectively, the x- and z-components of the body force per unit length
along the x-axis.

According to Hamilton’s principle [53,56],

δ
∫ T

0
[K− (U −W)]dt = 0. (22)

Substituting Equations (19)–(21) into Equation (22), applying the fundamental lemma
of the calculus of variations [57], and considering the arbitrariness of δu, δw, and δϕ yield

∂Nxx

∂x
+ f = m0

∂2u
∂t2 −m1

∂2 ϕ

∂t2 , (23)

− ∂Mxx

∂x
+ Nxz −

1
2

∂Yxy

∂x
= m2

∂2 ϕ

∂t2 −m1
∂2u
∂t2 , (24)

∂Nxz

∂x
+

1
2

∂2Yxy

∂x2 + q = m0
∂2w
∂t2 , (25)

∂Λx

∂x
+ Λz = 0, (26)

∂Σx

∂x
+ Σz = 0. (27)
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as the equation of motion, and

Nxx = 0 or u = u at x = 0 and x = L, (28)

Mxx +
1
2

Yxy = 0 or ϕ = ϕ at x = 0 and x = L, (29)

−Nxz −
1
2

∂Yxy

∂x
= 0 or w = w at x = 0 and x = L, (30)

1
2

Yxy = 0 or
∂w
∂x

=
∂w
∂x

at x = 0 and x = L, (31)

Λx = 0 or γ = γ at x = 0 and x = L, (32)

Σx = 0 or ζ = ζ at x = 0 and x = L (33)

as boundary conditions, where the overbar denotes the prescribed value. Note that the
stress, electric, magnetic resultants, and mass inertias can be expressed as

Nxx =
∫

A
σxxdA = Axx

∂u
∂x
− Bxx

∂ϕ

∂x
+ Ae

31γ + Aq
31ζ + NE

x + NH
x , (34)

Mxx =
∫

A
zσxxdA = Bxx

∂u
∂x
− Dxx

∂ϕ

∂x
+ Be

31γ + Bq
31ζ + ME

x + MH
x , (35)

Nxz =
∫

A
ksσxzdA = k2

s Axz

(
∂w
∂x
− ϕ

)
− ks Ae

15
∂γ

∂x
− ks Aq

15
∂ζ

∂x
, (36)

Yxy =
∫

A
mxydA = Fxy

(
∂2w
∂x2 +

∂ϕ

∂x

)
, (37)

Λx =
∫

A
Dx cos

(π

h
z
)

dA = ks Ae
15

(
∂w
∂x
− ϕ

)
+ As

11
∂γ

∂x
+ Ad

11
∂ζ

∂x
, (38)

Λz =
∫

A
Dz

π

h
sin
(π

h
z
)

dA = Ae
31

∂u
∂x
− Be

31
∂ϕ

∂x
− As

33γ− Ad
33ζ − NEs

33 − NHd
33 , (39)

Σx =
∫

A
Bx cos

(π

h
z
)

dA = ks Aq
15

(
∂w
∂x
− ϕ

)
+ Aµ

11
∂ζ

∂x
+ Ad

11
∂γ

∂x
, (40)

Σz =
∫

A
Bz

π

h
sin
(π

h
z
)

dA = Aq
31

∂u
∂x
− Bq

31
∂ϕ

∂x
− Aµ

33ζ − Ad
33γ− NHµ

33 − NEd
33 , (41)

(m0, m1, m2) =
∫

A
ρ(z)

(
1, z, z2

)
dA (42)

where ks denotes the shape correction factor [58,59], and

(Axx, Bxx, Dxx) =
∫

A
C11(z)(1, z, z2)dA, (43)

Axz =
∫

A
C44(z)dA, (44)

Fxy =
1
4

∫
A
(A12(z)− A11(z))dA, (45)

(Ae
31, Be

31) =
∫

A
e31(z)

π

h
sin
(π

h
z
)
(1, z)dA, (46)(

Aq
31, Bq

31

)
=
∫

A
q31(z)

π

h
sin
(π

h
z
)
(1, z)dA, (47)(

NE
x , ME

x

)
=
∫

A
e31(z)

2γ0

h
(1, z)dA, (48)
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(
NH

x , MH
x

)
=
∫

A
q31(z)

2ζ0

h
(1, z)dA, (49)(

Ae
15, Aq

15

)
=
∫

A

{
e15(z) cos

(π

h
z
)

, q15(z) cos
(π

h
z
)}

dA, (50)

(As
11, As

33) =
∫

A

{
s11(z) cos2

(π

h
z
)

, s33(z)
(π

h

)2
sin2

(π

h
z
)}

dA, (51)

(
Ad

11, Ad
33

)
=
∫

A

{
d11(z) cos2

(π

h
z
)

, d33(z)
(π

h

)2
sin2

(π

h
z
)}

dA, (52)

(
NEs

33 , NHd
33

)
=
∫

A

{
s33(z)

2γ0

h
π

h
sin
(π

h
z
)

, d33(z)
2ζ0

h
π

h
sin
(π

h
z
)}

dA, (53)

(
Aµ

11, Aµ
33

)
=
∫

A

{
µ11(z) cos2

(π

h
z
)

, µ33(z)
(π

h

)2
sin2

(π

h
z
)}

dA, (54)

(
NHµ

33 , NEd
33

)
=
∫

A

{
µ33(z)

2ζ0

h
π

h
sin
(π

h
z
)

, d33(z)
2γ0

h
π

h
sin
(π

h
z
)}

dA. (55)

Based on Equations (23)–(55), it is found that the current MEE-FGM beam model can
additionally capture the effects of couple stress, piezomagnetism, piezoelectricity, and MEE
coupling, when compared to the classical FGM Timoshenko beam model.

3. Analytical Solution

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

In order to illustrate the newly developed model in Section 2, the static bending and
free vibration problems of the current beam are solved in this section.

According to Equations (28)–(33), the relevant boundary conditions of a simply sup-
ported beam can be identified as

Nxx = 0, (56)

w|x=0 = w|x=L = 0, (57)

Mxx|x=0 = Mxx|x=L = 0, (58)

Yxy
∣∣
x=0 = Yxy

∣∣
x=L = 0, (59)

γ|x=0 = γ|x=L = 0, (60)

ζ|x=0 = ζ|x=L = 0. (61)

It should be noted that the boundary of the electric and magnetic conditions given in
Equations (60) and (61) are for an open circuit.

3.1. Static Bending

Consider Fourier solutions for u(x), ϕ(x), w(x), γ(x), and ζ(x):

u(x) =
∞

∑
k=1

Uk cos
(

kπx
L

)
, (62)

ϕ(x) =
∞

∑
k=1

Φk cos
(

kπx
L

)
, (63)

w(x) =
∞

∑
k=1

Wk sin
(

kπx
L

)
, (64)

γ(x) =
∞

∑
k=1

Γk sin
(

kπx
L

)
, (65)
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ζ(x) =
∞

∑
k=1

Zk sin
(

kπx
L

)
(66)

where Uk, Φk, Wk, Γk, and Zk are the Fourier coefficients to be determined. It can be
shown that the Fourier solutions in Equations (62)–(66) satisfy the boundary conditions in
Equations (56)–(61). In addition, the body force f is equal to zero, and the uniform load q(x)
can also be expanded in Fourier series as:

q(x) =
∞

∑
k=1

Qk sin
kπx

L
, (67)

where Qk is a Fourier coefficient calculated by q(x) = p0 in the current case as

Qk =
2p0

kπ
[1− cos(kπ)] (68)

According to the Equations (23)–(27), (62)–(66) and (67), the equilibrium equations of
static bending problems can be written as

Axx
∂2u
∂x2 − Bxx

∂2 ϕ

∂x2 + Ae
31

∂γ

∂x
+ Aq

31
∂ζ

∂x
= 0, (69)

−Bxx
∂2u
∂x2 + Dxx

∂2 ϕ

∂x2 − Be
31

∂γ
∂x − Bq

31
∂ζ
∂x + k2

s Axz

(
∂w
∂x − ϕ

)
−ks Ae

15
∂γ
∂x − ks Aq

15
∂ζ
∂x −

1
2 Fxy

(
∂3w
∂x3 + ∂2 ϕ

∂x2

)
= 0,

(70)

k2
s Axz

(
∂2w
∂x2 −

∂ϕ

∂x

)
− ks Ae

15
∂2γ

∂x2 − ks Aq
15

∂2ζ

∂x2 +
1
2

Fxy

(
∂4w
∂x4 +

∂3 ϕ

∂x3

)
= −q, (71)

ks Ae
15

(
∂2w
∂x2 −

∂ϕ

∂x

)
+ As

11
∂2γ

∂x2 + Ad
11

∂2ζ

∂x2 + Ae
31

∂u
∂x
− Be

31
∂ϕ

∂x
− As

33γ− Ad
33ζ = 0, (72)

ks Aq
15

(
∂2w
∂x2 −

∂ϕ

∂x

)
+ Aµ

11
∂2ζ

∂x2 + Ad
11

∂2γ

∂x2 + Aq
31

∂u
∂x
− Bq

31
∂ϕ

∂x
− Aµ

33ζ − Ad
33γ = 0. (73)

Substituting Equations (62)–(66) into Equations (69)–(73) results in
S11 S12 0 S14 S15
S12 S22 S23 S24 S25
0 S23 S33 S34 S35

S14 S24 S34 S44 S45
S15 S25 S35 S45 S55




Uk
Φk
Wk
Γk
Zk

 =


0
0
−Qk

0
0

, (74)

where

S11 = −Axx

(
kπ
L

)2
, S12 = Bxx

(
kπ
L

)2
, S13 = 0, S14 = Ae

31

(
kπ
L

)
, S15 = Aq

31

(
kπ
L

)
,

S22 = −Dxx

(
kπ
L

)2
− k2

s Axz +
1
2 Fxy

(
kπ
L

)2
, S23 = k2

s Axz

(
kπ
L

)
+ 1

2 Fxy

(
kπ
L

)3
,

S24 = −Ae
31

(
kπ
L

)
− ks Ae

15

(
kπ
L

)
, S25 = −Aq

31

(
kπ
L

)
− ks Aq

15

(
kπ
L

)
,

S33 = −k2
s Axz

(
kπ
L

)2
+ 1

2 Fxy

(
kπ
L

)4
, S34 = ks Ae

15

(
kπ
L

)2
, S35 = ks Aq

15

(
kπ
L

)2
,

S44 = As
11

(
kπ
L

)2
+ As

33, S45 = Ad
11

(
kπ
L

)2
+ Ad

33, S55 = Aµ
11

(
kπ
L

)2
+ Aµ

33.

(75)

According to Equation (74), the Fourier coefficients Uk, Φk, Wk, Γk, and Zk will be
solved. The solutions of u(x), ϕ(x), w(x), γ(x), and ζ(x) for the current simple supported
beam can also be given by inserting these results into Equations (62)–(66).
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3.2. Free Vibration

In the free vibration problem of the current beam, both the external forces are vanished
(i.e., f = q = 0). Consider the following Fourier series expansions for u(x, t), ϕ(x, t), w(x, t),
γ(x, t), and ζ(x, t):

u(x, t) =
∞

∑
k=1

UV
k cos

(
kπx

L

)
eiωkt, (76)

ϕ(x, t) =
∞

∑
k=1

ΦV
k cos

(
kπx

L

)
eiωkt, (77)

w(x, t) =
∞

∑
k=1

WV
k sin

(
kπx

L

)
eiωkt, (78)

γ(x, t) =
∞

∑
k=1

ΓV
k sin

(
kπx

L

)
eiωkt, (79)

ζ(x, t) =
∞

∑
k=1

ZV
k sin

(
kπx

L

)
eiωkt (80)

where ωk is the kth vibration frequency, UV
k , WV

k ΦV
k , ΓV

k , and ZV
k are Fourier coefficients.

It should be noted that the Fourier series expansions in Equations (76)–(80) satisfy the
boundary conditions in Equations (56)–(61). Based on Equations (76)–(80) and Equations
(23)–(27), the equations of motion can be expressed as

Axx
∂2u
∂x2 − Bxx

∂2 ϕ

∂x2 + Ae
31

∂γ

∂x
+ Aq

31
∂ζ

∂x
= m0

∂2u
∂t2 −m1

∂2 ϕ

∂t2 , (81)

−Bxx
∂2u
∂x2 + Dxx

∂2 ϕ

∂x2 − Be
31

∂γ
∂x − Bq

31
∂ζ
∂x + k2

s Axz

(
∂w
∂x − ϕ

)
−ks Ae

15
∂γ
∂x − ks Aq

15
∂ζ
∂x −

1
2 Fxy

(
∂3w
∂x3 + ∂2 ϕ

∂x2

)
= m2

∂2 ϕ

∂t2 −m1
∂2u
∂t2 ,

(82)

k2
s Axz

(
∂2w
∂x2 −

∂ϕ

∂x

)
− ks Ae

15
∂2γ

∂x2 − ks Aq
15

∂2ζ

∂x2 +
1
2

Fxy

(
∂4w
∂x4 +

∂3 ϕ

∂x3

)
= m0

∂2w
∂t2 , (83)

ks Ae
15

(
∂2w
∂x2 −

∂ϕ

∂x

)
+ As

11
∂2γ

∂x2 + Ad
11

∂2ζ

∂x2 + Ae
31

∂u
∂x
− Be

31
∂ϕ

∂x
− As

33γ− Ad
33ζ = 0, (84)

ks Aq
15

(
∂2w
∂x2 −

∂ϕ

∂x

)
+ Aµ

11
∂2ζ

∂x2 + Ad
11

∂2γ

∂x2 + Aq
31

∂u
∂x
− Bq

31
∂ϕ

∂x
− Aµ

33ζ − Ad
33γ = 0. (85)

Using Equations (76)–(80) in Equations (81)–(85), yields



S11 S12 0 S14 S15

S12 S22 S23 S24 S25

0 S23 S33 S34 S35

S14 S24 S34 S44 S45

S15 S25 S35 S45 S55





UV
k

ΦV
k

WV
k

ΓV
k

ZV
k

+



m0ω2
k −m1ω2

k 0 0 0
−m1ω2

k m2ω2
k 0 0 0

0 0 m0ω2
k 0 0

0 0 0 0 0
0 0 0 0 0





UV
k

ΦV
k

WV
k

ΓV
k

ZV
k

 =



0
0
0
0
0

. (86)

Therefore, the first natural frequencyω1 of the current beam can be solved from the
smallest positive root of ωk

2 (k = 1) of the Equation (86).

4. Numerical Results

The 50%-50% BaTiO3-CoFe2O4 is adopted for material I [39,42,60–62], and the material
II is taken to be epoxy [63], as listed in Table 1. Note that the couple stress constants A11
and A12 are estimates based on the formula provided in [14,39]. The magnitude of the
uniform load p0 is equal to 1/2000h N/m, the shear correction factor ks is 0.81/2, and the
cross-sectional shape is kept at b = 2h and L = 20h.
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Table 1. Material properties of the BaTiO3-CoFe2O4 [39] and epoxy [63].

Physical Parameter Material I Material II

C11 (GPa) 226 4.889
C44 (GPa) 44.15 1.241
e15 (C/m2) 5.8 0
e31 (C/m2) −2.2 0
e33 (C/m2) 9.3 0

s11 (10−9C2/(N·m2)) 5.64 0
s33 (10−9C2/(N·m2)) 6.35 0

q15 (N/(A·m)) 275 0
q31 (N/(A·m)) 290.15 0
q33 (N/(A·m)) 349.85 0

d11 (10−12Ns/(V·C)) 5.38 0
d33 (10−12Ns/(V·C)) 2740 0

µ11 (10−6Ns2/C2) 297.5 0
µ33 (10−6Ns2/C2) 83.5 0

A11 (N) 11.7484 1.4014
A12 (N) 6.4980 0.6903

ρ (kg/m3) 5550 1180

In order to verify the correctness of the current model, a comparative study of the
deflection of a simply supported microbeam subjected to uniform load between the current
model (with Gradient index n = 0) and the model provided by Zhang et al. [39] are plotted
in Figure 2. The beam parameters are adopted from Zhang et al. [39].
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Figure 2. Comparison of the deflection of the simply supported microbeam subjected to a uniform load.

From Figure 2, it is obvious that the results of the classical and current model are the
same as those in Zhang et al. [39]. In addition, this validates the current model and shows
that the microstructure effect will always cause the deflection to decrease, as expected.

4.1. Static Bending

Figure 3 shows the distributions of the deformation, axial normal stress, and the
electric and magnetic potentials of the current beam. In order to facilitate the observation
of the deformation trend of the current beam, the x-component of the displacement vector
u of a point (x, y, z) on the beam cross-section has been enlarged by 10 times. In addition,
the thickness h is 20 µm, and the gradient index n is 5.
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Figure 3. Distribution of (a) deformation, (b) axial normal stress, (c) electric potential, and (d) magnetic potential (Gradient
index n = 5).

From Figure 3b, it can be observed that the axial normal stress in the middle of the
current beam is relatively small, and the axial normal stress at the top of the beam is
relatively large. From Figure 3c,d, it is clear that the distributions of electric and magnetic
potentials in the current beam are center-symmetrical, and the maximum magnitudes both
appear at the center of the beam.

Figures 4 and 5 show the deflections and rotation angles with different thicknesses
predicted by current and classical models. The gradient index n is 5. The numerical results
for the current model (solid lines) incorporating the couple stress effect (with A11 6= 0
and A12 6= 0) are directly calculated from Equations (62), (63) and (74), while those for the
classical model (dashed lines) are obtained using the same equations but with A11 = A12 = 0.
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Figure 5. Rotation of the MEE-FGM simply supported beam (Gradient index n = 5).

From Figures 4 and 5, it can be found that the deflections and rotation angles of
the current model are always smaller than those of the classical model in all cases. The
difference between the results of the current and classical models is obvious when the
beam thickness h is small, as expected.

Figure 6 shows the axial normal stress at the beam center (x = L/2) along the thickness
direction of the current and classical models. From Figure 6, it is clear that the magnitude
of the axial normal stress of the current model is always smaller than that of the classical
model. The differences between the axial normal stress predicted by the two models also
become smaller with the increase in the thickness h.
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Figure 6. Axial normal stress of the MEE-FGM simply supported beam (Gradient index n = 5).

Figures 7 and 8 display the electric and magnetic potentials of the FGM simply
supported beam with different thickness of the current and classical models. From
Figures 7 and 8, it can be observed that the values of electric and magnetic potentials
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of the current model are always smaller than those of the classical model. When the beam
thickness h is small, the differences between the two sets of results are very large. However,
the differences become small when the beam thickness increases. This phenomenon also
indicates that the microstructure effect is significant for very thin beams.
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Figure 8. Magnetic potential of the MEE-FGM simply supported beam (Gradient index n = 5).

To illustrate the material inhomogeneity, Figure 9 shows the variation of the maximum
deflections wmax (x = L/2) of the MEE-FGM beam with the different gradient index n for
h = 20 µm and 20 mm, respectively. From Figure 9a, it can be seen that the maximum
deflections wmax increases with the increase of the gradient index—for both current and
classical models—and the deflection of the classical model is always larger than that of the
current model. From Figure 9b, it is found that when the thickness of the beam is large
enough, there is almost no difference in the prediction results of the maximum deflections
predicted by the two models, which further confirms that the microstructure effect is only
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important for very thin beams. In addition, from Figure 9a,b, it is shown that the gradient
index n does have a significant effect on the static bending response for all length scales.
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Figure 9. Maximum deflections of the MEE-FGM beam for different gradient index with (a) h = 20 µm, (b) h = 20 mm.

Figure 10 shows the variation of the axial normal stress σxx(L/2, z) of the current
MEE-FGM beam through the thickness for different gradient index n. From Figure 10, it
can be found that the axial normal distribution of current MEE-FGM beam is different
from that of a homogeneous beam for both h = 20 µm and 20 mm cases. In addition, the
axial normal stress of homogenous beams on the geometric central axial (z = 0) is zero,
but the zero-valued stresses positions of the current FGM beam are varying with the n.
Furthermore, the axial normal stress of a homogeneous beam is linear, while those of
current MEE-FGM beam are nonlinear at all length scales.
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4.2. Free Vibration

Figure 11 shows the variation of natural frequency (with k = 1) of the MEE-FGM beam
of the current and classical models with different beam thickness. From Figure 11, it is
obvious that the natural frequencies of both the current and classical models decrease with
the thickness increases. The results also show that the current model incorporating the
couple stress effect always increases the value of the natural frequency (and thus increased
the beam stiffness). When the beam thickness is small enough, the couple stress effect
is significant.
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Figure 12 shows the variation of the natural frequency ω1 (k = 1) of the current and
classical models with different gradient index n for h = 20 µm and 20 mm. From Figure 12a,
it is clear that when the thickness of the beam is small (micro scale), the prediction results
of the two models are very different. However, from Figure 12b, when the thickness is
big enough (macro scale), the prediction results of the two models are almost the same. In
addition, the effect of the gradient index is found to be important for all length scales.
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5. Conclusions

Based on the extended modified couple stress theory, a new graded magneto-electro-
elastic Timoshenko microbeam model is developed. The new model considers the effects of
both three-field coupling and couple stress. The equations of motion and complete bound-
ary conditions of the new microbeam model are determined through a variational approach.

As two direct applications of the new model, the static bending and free vibration
properties of a simply supported microbeam subjected to uniformly distributed loads are
analytically obtained. For the static bending problem, parametric studies demonstrate that
the deflections, rotations, axial normal stresses, electric and magnetic potentials predicted
by the current model are all smaller than those of the classical theory. The differences
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decrease with the increase in the microbeam thickness. For the problem of free vibration,
the natural frequency obtained from the current model is found to be higher than that
of the classical model. The difference increases as the thickness of the beam decreases.
Such a behavior also indicates that the microstructure effect tends to make the graded
magneto-electro-elastic microbeam stiffer, and the current model can predict the size
effect for magneto-electro-elastic functionally graded microbeam. In addition, it was
demonstrated that changing the gradient index significantly affects both the static and
vibrational properties of the graded magneto-electro-elastic microbeam at all length scales.
These findings are helpful in guiding the engineering design and optimization of graded
magneto-electro-elastic materials in MEMS and NEMS devices.

Author Contributions: Conceptualization, C.M. and G.Z.; methodology, J.H., S.W.; writing—original
draft preparation, J.H. and S.W. All authors have read and agreed to the published version of
the manuscript.
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Nomenclature

L, b, h Length, width and thickness of beam
P(z), P1, P2 Material properties of the current beam, material I and II
n Functionally graded power-law index
σij The components of Cauchy stress tensor
mij The components of the couple stress tensor
Di Electric displacements
Bi Magnetic fluxes
Cαβ The components of elastic stiffness tensor
Aαβ The components of couple stress stiffness tensor
eiα The components of piezoelectric tensor
qiα The components of piezomagnetic tensor
sij The components of dielectric tensor
µij The components of magnetic permeability tensor
dij The components of magneto-dielectric tensor
εij The components of infinitesimal strain tensor
χij The components of the symmetric curvature tensor
ui Displacement components
εijk Levi-Civita symbol
Ek, Hk Electric field intensity and magnetic field intensity
Φ, M Electric potential and magnetic potential
u, w Beam extension and deflection
ϕ Rotation angle
γ, ζ The electric potential and magnetic potentials
γ0, ζ0 External electric potential, external magnetic potential
A Cross-sectional area
ρ Mass density
f, q The x- and z-components of the body force per unit length
ks Shape correction factor
Uk, Φk, Wk, Γk, Zk, Qk Fourier coefficients
ωk The kth vibration frequency
UV

k , WV
k ΦV

k , ΓV
k , ZV

k Fourier coefficients



Crystals 2021, 11, 1206 16 of 18

References
1. Sahmani, S.; Aghdam, M.M. Nonlocal Strain Gradient Shell Model for Axial Buckling and Postbuckling Analysis of Magneto-

Electro-Elastic Composite Nanoshells. Compos. Part B Eng. 2018, 132, 258–274. [CrossRef]
2. Farajpour, M.R.; Shahidi, A.R.; Hadi, A.; Farajpour, A. Influence of Initial Edge Displacement on the Nonlinear Vibration, Electrical

and Magnetic Instabilities of Magneto-Electro-Elastic Nanofilms. Mech. Adv. Mater. Struct. 2019, 26, 1469–1481. [CrossRef]
3. Yakhno, V.G. An Explicit Formula for Modeling Wave Propagation in Magneto-Electro-Elastic Materials. J. Electromagn. Waves

Appl. 2018, 32, 899–912. [CrossRef]
4. Chen, W.; Yan, Z.; Wang, L. On Mechanics of Functionally Graded Hard-Magnetic Soft Beams. Int. J. Eng. Sci. 2020, 157, 103391.

[CrossRef]
5. Taati, E. On Buckling and Post-Buckling Behavior of Functionally Graded Micro-Beams in Thermal Environment. Int. J. Eng. Sci.

2018, 128, 63–78. [CrossRef]
6. Yang, Z.; Xu, J.; Lu, H.; Lv, J.; Liu, A.; Fu, J. Multiple Equilibria and Buckling of Functionally Graded Graphene Nanoplatelet-

Reinforced Composite Arches with Pinned-Fixed End. Crystals 2020, 10, 1003. [CrossRef]
7. Ghayesh, M.H.; Farokhi, H.; Alici, G. Size-Dependent Performance of Microgyroscopes. Int. J. Eng. Sci. 2016, 100, 99–111.

[CrossRef]
8. Tang, Y.; Ma, Z.S.; Ding, Q.; Wang, T. Dynamic Interaction between Bi-Directional Functionally Graded Materials and Magneto-

Electro-Elastic Fields: A Nano-Structure Analysis. Compos. Struct. 2021, 264, 113746. [CrossRef]
9. Bhangale, R.K.; Ganesan, N. Free Vibration of Simply Supported Functionally Graded and Layered Magneto-Electro-Elastic

Plates by Finite Element Method. J. Sound Vib. 2006, 294, 1016–1038. [CrossRef]
10. Sladek, J.; Sladek, V.; Krahulec, S.; Chen, C.S.; Young, D.L. Analyses of Circular Magnetoelectroelastic Plates with Functionally

Graded Material Properties. Mech. Adv. Mater. Struct. 2015, 22, 479–489. [CrossRef]
11. Vinyas, M.; Harursampath, D.A.; Nguyen-Thoi, T. Influence of Active Constrained Layer Damping on the Coupled Vibration

Response of Functionally Graded Magneto-Electro-Elastic Plates with Skewed Edges. Def. Technol. 2020, 16, 1019–1038. [CrossRef]
12. Mahesh, V.; Harursampath, D. Large Deflection Analysis of Functionally Graded Magneto-Electro-Elastic Porous Flat Panels.

Eng. Comput. 2021, 1–20. [CrossRef]
13. Mahesh, V. Porosity Effect on the Nonlinear Deflection of Functionally Graded Magneto-Electro-Elastic Smart Shells under

Combined Loading. Mech. Adv. Mater. Struct. 2021, 1–27. [CrossRef]
14. Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P. Experiments and Theory in Strain Gradient Elasticity. J. Mech. Phys.

Solids 2003, 51, 1477–1508. [CrossRef]
15. McFarland, A.W.; Colton, J.S. Role of Material Microstructure in Plate Stiffness with Relevance to Microcantilever Sensors.

J. Micromech. Microeng. 2005, 15, 1060. [CrossRef]
16. Eringen, A.C. On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves. J. Appl.

Phys. 1983, 54, 4703–4710. [CrossRef]
17. Toupin, R.A. Elastic Materials with Couple-Stresses. Arch. Ration. Mech. Anal. 1962, 11, 385–414. [CrossRef]
18. Mindlin, R.D. Influence of Couple-Stresses on Stress Concentrations. Exp. Mech. 1963, 3, 1–7. [CrossRef]
19. Kolter, W.T. Couple Stresses in the Theory of Elasticity: I and II. Proc. K. Ned. Akad. Wet. B 1964, 67, 17–44.
20. Mindlin, R.D. Micro-Structure in Linear Elasticity. Arch. Ration. Mech. Anal. 1964, 16, 51–78. [CrossRef]
21. Mindlin, R.D.; Eshel, N.N. On First Strain-Gradient Theories in Linear Elasticity. Int. J. Solids Struct. 1968, 4, 109–124. [CrossRef]
22. Polizzotto, C. A Hierarchy of Simplified Constitutive Models within Isotropic Strain Gradient Elasticity. Eur. J. Mech. A Solids

2017, 61, 92–109. [CrossRef]
23. Altan, B.S.; Aifantis, E.C. On Some Aspects in the Special Theory of Gradient Elasticity. J. Mech. Behav. Mater. 1997, 8, 231–282.

[CrossRef]
24. Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple Stress Based Strain Gradient Theory for Elasticity. Int. J. Solids Struct. 2002,

39, 2731–2743. [CrossRef]
25. Park, S.K.; Gao, X.-L. Variational Formulation of a Modified Couple Stress Theory and Its Application to a Simple Shear Problem.

Z. Angew. Math. Phys. 2008, 59, 904–917. [CrossRef]
26. Zhang, G.Y.; Gao, X.L. A New Bernoulli–Euler Beam Model Based on a Reformulated Strain Gradient Elasticity Theory. Math.

Mech. Solids 2020, 25, 630–643. [CrossRef]
27. Qu, Y.L.; Zhang, G.Y.; Fan, Y.M.; Jin, F. A Non-Classical Theory of Elastic Dielectrics Incorporating Couple Stress and Quadrupole

Effects: Part I—Reconsideration of Curvature-Based Flexoelectricity Theory. Math. Mech. Solids 2021. [CrossRef]
28. Zhang, G.Y.; Gao, X.L.; Zheng, C.Y.; Mi, C.W. A Non-Classical Bernoulli-Euler Beam Model Based on a Simplified Micromorphic

Elasticity Theory. Mech. Mater. 2021, 161, 103967. [CrossRef]
29. Ebrahimi, F.; Barati, M.R. Vibration Analysis of Embedded Biaxially Loaded Magneto-Electrically Actuated Inhomogeneous

Nanoscale Plates. J. Vib. Control 2018, 24, 3587–3607. [CrossRef]
30. Kiani, A.; Sheikhkhoshkar, M.; Jamalpoor, A.; Khanzadi, M. Free Vibration Problem of Embedded Magneto-Electro-Thermo-

Elastic Nanoplate Made of Functionally Graded Materials via Nonlocal Third-Order Shear Deformation Theory. J. Intell. Mater.
Syst. 2018, 29, 741–763. [CrossRef]

31. Liu, H.; Lv, Z. Vibration Performance Evaluation of Smart Magneto-Electro-Elastic Nanobeam with Consideration of Nanomaterial
Uncertainties. J. Intell. Mater. Syst. Struct. 2019, 30, 2932–2952. [CrossRef]

http://doi.org/10.1016/j.compositesb.2017.09.004
http://doi.org/10.1080/15376494.2018.1432820
http://doi.org/10.1080/09205071.2017.1410076
http://doi.org/10.1016/j.ijengsci.2020.103391
http://doi.org/10.1016/j.ijengsci.2018.03.010
http://doi.org/10.3390/cryst10111003
http://doi.org/10.1016/j.ijengsci.2015.11.003
http://doi.org/10.1016/j.compstruct.2021.113746
http://doi.org/10.1016/j.jsv.2005.12.030
http://doi.org/10.1080/15376494.2013.807448
http://doi.org/10.1016/j.dt.2019.11.016
http://doi.org/10.1007/S00366-020-01270-X
http://doi.org/10.1080/15376494.2021.1875086
http://doi.org/10.1016/S0022-5096(03)00053-X
http://doi.org/10.1088/0960-1317/15/5/024
http://doi.org/10.1063/1.332803
http://doi.org/10.1007/BF00253945
http://doi.org/10.1007/BF02327219
http://doi.org/10.1007/BF00248490
http://doi.org/10.1016/0020-7683(68)90036-X
http://doi.org/10.1016/j.euromechsol.2016.09.006
http://doi.org/10.1515/JMBM.1997.8.3.231
http://doi.org/10.1016/S0020-7683(02)00152-X
http://doi.org/10.1007/s00033-006-6073-8
http://doi.org/10.1177/1081286519886003
http://doi.org/10.1177/10812865211001533
http://doi.org/10.1016/j.mechmat.2021.103967
http://doi.org/10.1177/1077546317708105
http://doi.org/10.1177/1045389X17721034
http://doi.org/10.1177/1045389X19873418


Crystals 2021, 11, 1206 17 of 18

32. Xiao, W.S.; Gao, Y.; Zhu, H. Buckling and Post-Buckling of Magneto-Electro-Thermo-Elastic Functionally Graded Porous
Nanobeams. Microsyst. Technol. 2019, 25, 2451–2470. [CrossRef]

33. Lim, C.W.; Zhang, G.; Reddy, J.N. A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave
Propagation. J. Mech. Phys. Solids 2015, 78, 298–313. [CrossRef]
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