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Abstract: Dynamics of charged fullerene in a surface layer of fullerite is studied under the influence
of neutral or charged particles of the gas phase surrounding the fullerite material. The translational
displacements of the nodes of the crystal lattice structure are determined by the equations of motion
of the centers of mass of fullerenes. Central fullerene, which is described as a discrete set of sixty
carbon atoms, plays a special role in the presented mathematical model. Angular oscillations and
rotations of the central fullerene are described by the dynamic Euler equations. All other fullerenes
have a centrally symmetric field of the potential of interaction with the surrounding atoms and
molecules. In this regard, we use the hybrid discrete–continuous mathematical model with four
potentials that describe the interactions between the surrounding fullerenes, smoothed fullerene and
an atom, a pair of atoms, and electric charges. The results of a numerical study of influence of the
Coulomb interaction on the rotational and translational motion of the C60 fullerene are presented.

Keywords: molecular crystals; rotating fullerene; incident particle; fullerite; intermolecular interaction;
Coulomb interaction

1. Introduction

Since the discovery of C60 fullerene in 1985 [1], research is being actively carried out
to obtain new fullerene-containing materials. A large number of works on the synthesis
of carbon nanomaterials has led to the emergence of nanoarchitectonics [2,3]. According
to this universal concept, the fabrication of new functional materials from nanoscale
building blocks is achieved through the fusion of nanotechnology with other research
disciplines. Today, in synthesis technologies, the decisive role of regulating the functions
and properties of nanoscale objects and structures is generally recognized. This makes
it possible to produce materials with new properties using the method of self-assembly
of molecules [4,5].

Fullerenes can be viewed as simple and fundamental building blocks of a mono-
element nature. There are many types of fullerenes, with numbers of carbon atoms up to
980. However, the most stable and common form of fullerene is the C60 fullerene, in which
six carbon atoms are located on a spherical structure at the vertices of a truncated icosahe-
dron [6]. The C60 molecule is easier to manufacture, and therefore widely used. Fullerenes
have a number of unique physical, chemical, electrical, and mechanical properties [7–9]. A
wide range of materials obtained by synthesis allow us to set tasks for the design of new
materials with unique physical properties. These materials are already used in physics
research, electronics, and medicine, and have great potential applications in other areas.

Various methods are used to obtain materials based on fullerenes, in particular,
the method of interaction of accelerated ions with fullerite films [10–13], laser sputter-
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ing [1,14,15], the electric arc [16,17], gaseous [18–21], and radiation methods [22,23]. De-
struction of the fullerite crystal structure can occur in the process of ion implantation with
strong fragmentation [24–26] or knocking out individual carbon atoms from the framework
of the C60 molecule [27]. It is known that, due to the action of intermolecular forces through
the weak van der Walls interactions, fullerenes at the nodes of a fullerite crystal behave
like high-frequency gigahertz nano-oscillators rotating with average angular speeds of
1011 rad/s [28,29]. It should be noted that, with the help of intense pulsed laser radia-
tion, it is possible to impart additional rotational motion to fullerenes [30,31], but in this
case, fullerenes are ionized [32]. The rotation frequency of fullerenes filled with magnetic
material can be increased by applying an external magnetic field [33]. An increase in the
chaotic rotation of C60 molecules due to the thermal excitation of the rotational degrees of
freedom paradoxically provides higher stability of the face-centered cubic structure [34].
The rapid rotation of molecules in fullerite changes their energy electronic states without
the presence of a magnetic field [35]. The rotational motion of the C60 molecule can be used
to reduce the external force due to the redistribution of the load on the group of atoms
belonging to the fullerene, as well as due to the gyroscopic effect [36–41], which increases
the stability of the entire molecular system. These factors contribute to the suppression
of possible fragmentation of the crystal structure and an increase in resistance to external
influences on the near-surface layer of the material [42]. The problem of particle penetration
through a potential barrier was solved with the integration of the Schrödinger differential
equation [43].

In this paper, we study the effect of an incident particle on the dynamics of a rotating
C60 molecule, which is located at the node of a crystalline fragment of fullerite. This
problem is solved using molecular dynamics methods [44–48] based on pairwise interaction
potentials and Euler mechanics, which allow describing the rotational and translational
motion of particles through independent force and moment interactions. A comparative
analysis is carried out depending on the charge, speed of the incident particle, and rotational
speed of fullerene.

2. Physical Statement of the Problem

We consider the effect of an ionized particle (Kr+, 83.8 a.m.) moving towards the
central C60 molecule at a speed of 500–2000 m/s (see Figure 1). The central fullerene is
composed of sixty carbon atoms. The dynamic state of this fullerene is determined by
the nature of the interaction of its atoms with all the surrounding elements of the system.
The group of these elements includes, in particular, 12 fullerenes, which, at the initial
moment of time, are at a distance of 1.002 nm from the center of mass of the rotating C60
molecule. Together, they form the minimum fragment of a face-centered cubic crystal
lattice (see Figure 1). The group of elements surrounding the central fullerene also includes
the krypton cation. The interaction of an ionized krypton atom with carbon atoms of the
central fullerene and surrounding fullerenes is described using the interatomic interaction
potentials and Coulomb’s law. At the initial moment of time, the central molecule was
given an angular velocity in the range from 0 to 2000 rad/ns. Note that the de Broglie
wavelengths for a moving particle and fullerene molecule will be noticeably smaller than
the diameter of a carbon atom in this case. This makes it possible to use the methods
of classical molecular physics to solve this problem, which are widely used to study the
dynamic properties of nanoscale materials [44–48]. In this article, we do not take into
account the influence of intramolecular vibrational modes, as in our early work [49].
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Figure 1. Schema of fullerite consisting of 13 C60 molecules. The green sphere refers to a krypton atom. 

3. Mathematical Statement of the Problem 
We place the global Cartesian coordinate system (xyz) in the initial symmetric posi-

tion of the center of mass of the inner fullerene. The local Cartesian coordinate system 
(ξηζ) is associated with the moving fullerene and its oscillating center of mass C. 
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Neutral surrounding fullerenes have a centrally symmetric potential of interaction 
with carbon atoms of the central C60 and the neutral part of a charged particle [52] 

Figure 1. Schema of fullerite consisting of 13 C60 molecules. The green sphere refers to a krypton atom.

3. Mathematical Statement of the Problem

We place the global Cartesian coordinate system (xyz) in the initial symmetric position
of the center of mass of the inner fullerene. The local Cartesian coordinate system (ξηζ) is
associated with the moving fullerene and its oscillating center of mass C.

The interaction of a specific carbon atom with the neutral part of the particle will be
determined using the attraction–repulsion potential 6–12 of the model of pair interaction
of non-polar particles [47,50].
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where rpk is the distance between the center of the incident particle and the kth carbon atom
of central fullerene.

The charge of the incident particle acts on the charge of the central fullerene with the
Coulomb force:
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where rpC is the vector directed from the center of the incident particle to the center of the
fullerene charge qC; and k is coefficient of proportionality.

The interaction between surrounding fullerenes is based on the potential proposed by
L.A. Girifalco [51]:
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where ρij = rij/2a, rij is the distance between the centers of the ith and jth molecules of
the smoothed C60; α = 74.94 × 10–15 erg; and β = 135.95 × 10–18 erg.
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Neutral surrounding fullerenes have a centrally symmetric potential of interaction
with carbon atoms of the central C60 and the neutral part of a charged particle [52]

Φ(rik) =
4εaπ

rik A

[
σ12

5

(
(rik − a)−10 − (rik + a)−10

)
−σ6

2

(
(rik − a)−4 − (rik + a)−4

)]
(4)

where A is the area per carbon atom; a is the fullerene radius; and rik is the distance between
the center of the ith adjacent fullerene and the kth carbon atom of the central C60 molecule,
i = 1, 12, k = 1, 60. The potential (4) is based on the potential (1), assuming a uniform
distribution of potential energy over the area of the sphere. This approach makes it possible
to exclude high-frequency oscillations from the solution and to simplify its frequency
analysis of the behavior of fullerenes.

The dynamic Euler equations are used to describe the rotational motion of the central
fullerene molecule around its own center of mass [46,47]:

J1
dωξ

dt
+ (J3 − J2)ωηωζ = M(e)

ξ , (5)

J2
dωη

dt
+ (J1 − J2)ωζ ωξ = M(e)

η , (6)

J3
dωζ

dt
+ (J2 − J1)ωξ ωη = M(e)

ζ . (7)

where ωξ , ωη ωζ are components of the angular velocity about principal axes; J1, J2, J3 are

the principal moments of inertia of the molecule for its center of mass; and M(e)
ξ , M(e)

η , and

M(e)
ζ are the projections of the moments of forces on the ξ, η and ζ-axis.

Equations (4)–(6) are closed by Euler’s kinematic relations, connecting the components
of the angular velocity with the Euler angles ϕ, ψ, θ:

ωξ =
.
ψ sin θ sin φ +

.
θ cos φ, (8)

ωη =
.
ψ sin θ cos φ−

.
θ sin φ, (9)

ωζ =
.
ψ cos φ +

.
φ, (10)

where the dot is used to signify time derivatives.
Thus, two simple crystallographic models are used to describe fullerenes: a central

fullerene with icosahedral symmetry and spherical surrounding uncharged fullerenes.
Therefore, translational displacements of the surrounding fullerenes will be determined by
the following equations:

M
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The dynamic state of the central fullerene is determined by the nature of the interaction
of sixty carbon atoms with all elements of surroundings. Therefore, the motion of the center
of mass of the central fullerene obeys the following law:

M
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The motion of the center of mass of a charged particle obeys the equation
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. (13)
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In Equations (11)–(13), M is the fullerene mass; mp is the particle mass; ∇ is gradient
operator; S = 60 is the number of carbon atoms in the C60 molecule; N = 12 is the number of
surrounding fullerenes; rfk is the distance between the center of the considered smoothed
fullerene and the center of the kth carbon atom on the inner fullerene; rpk is the distance
from the center of the particle to the center of the kth carbon atom on the central fullerene;
rpi is the distance from the center of the particle to the center of the ith surrounding fullerene;
G is the potential of L.A. Girifalco [51]; and the subscripts p, C, and f refer to the particle,
the central polyatomic fullerene, and the center of the smoothed fullerene, respectively.

The initial conditions for solving the system of differential Equations (5)–(13) are given
in the following form:

t = 0 : ψ = ψ0, θ = θ0, φ = φ0, ωξ = ω0
ξ , ωη = ω0

η , ωζ = ω0
ζ , (14)

vC = 0, rC = 0, v f = 0, r f = r0
f , vp = v0

p, rp = r0
p. (15)

We apply a fourth-order accurate scheme [53] using the idea of recalculating the
sought quantities within a separate time step to solve the system of Equations (5)–(13) with
initial conditions (14) and (15). This allows us to determine the dynamic characteristics of
the incident charged particles and each atom of the central fullerene.

4. Results and Discussion

Consider the C60 fullerene, which is at rest at the initial moment of time. It has a
charge qf = 1 e and an angular velocity ω0 = 0 rad/s (see Figure 1). The x and ζ-axes
coincide at the initial moment of time. Thus, the Euler angles ψ, θ (8)–(10) will determine
the orientation of the ζ-axis in space. At this moment, the incident particle (Kr+, 83.8 a.m.)
is in position (−4, 0, 0) and has a charge qp = 1 e or qp = 0. In the calculations, the initial
velocity of the incident particle varied from 500 to 2000 m/s.

Figure 2 shows the trajectory of the incident particle as function x(t). As can be seen
from the figure, the neutral particle (solid curves) approaches the central fullerene rather
closely (0.65 ± 0.02 nm) for all the considered values of its initial velocity. However, the
position of the deceleration zone strongly depends on its velocity in the case of a charged
particle (dashed curves). At a speed of vp = 500 m/s, a charged particle under the action
of Coulomb forces completely loses its speed at a sufficiently large distance (x = −2.9 nm)
and then begins to move in the opposite direction. At vp = 1000 m/s for a charged particle,
this occurs at x = −1.45 nm. At 2000 m/s, the effect of the charge has little effect on the
nature of the particle motion.

Let us consider the central fullerene. Figure 3 illustrates the time dependence of the
x-coordinate of the center of mass of the central fullerene. The y- and z-coordinates are not
shown, since they change slightly. Figure 3 illustrates the damping effect of the Coulomb
interaction. It is seen that the presence of a charge significantly reduces the effect of the
test particle on the central fullerene. An almost complete shielding of the force action of
charged particle occurs at initial velocity up to 1000 m/s. At vp = 2000 m/s, the presence of
a charge reduces the deviation of the central fullerene from the initial position by 30.8%.

The action of a charged or neutral particle leads to a change in the rotational dynamics
of the central fullerene. In the absence of a particle, the angular velocity of rotation of the
inner fullerene varies from 0 to 670 rad/ns. These results are in qualitative agreement with
the experimental data obtained using spectrographic measurements [28,29,54], according
to which the angular speed is the order of 102 rad/ns. At vp = 1000 m/s, the amplitude
of the angular velocity increases by 8.9% after the action of the neutral particle (Figure 4).
However, the impact of a charged particle did not affect the magnitude of the angular
velocity. The change in the amplitude of the angular velocity is caused by the resulting
force, which is not parallel to the axis of rotation and changes its direction due to the
rotation of carbon atoms. This causes the appearance of an external torque, which increases
the angular momentum of the rotating fullerene. Thus, the external force acting on the
fullerene molecule leads to a change in the rotational motion.
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As can be seen from Figure 4, the fullerene changes the direction of its rotation. This
means that the central fullerene performs angular oscillations, which are primarily due to
the influence of the surrounding C60. To overcome the influence causing angular oscillations,
fullerene must be given the initial angular rotation velocityω0 > 1000 rad/ns (see Figure 5).
As can be seen from this figure, a stable rotational motion is observed at ω0 > 1000 in the
direction along the angle θ in the absence of rotation in other angular directions.
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Figure 6a shows that an incident neutral particle with a velocity of vp = 1000 m/s in-
creases the maximum rotation speed of the C60 fullerene by 1.8% and 3.6% for
ω0 = 1500 and 2000 rad/ns, respectively. The charged particle had no effect on the an-
gular velocity.
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At vp = 2000 m/s, a neutral particle increases the maximum rotation speed of fullerene
by 11.5% and 4.8%, and a charged particle increases it by 4.7% and 1.1% for
ω0 = 1500 and 2000 rad/ns, respectively (see Figure 6b). It is seen that a charged par-
ticle has a weaker effect on the fullerene rotation dynamics. Note that the growth of
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the amplitude mainly depends on the value of vp, as well as on the dynamic state of
the fullerene.

As can be seen from Figure 7, the presence of a charge on a particle leads to a smaller
shift of the fullerene center of mass relative to its initial position (22.6–23.6 pm) than
in the absence of a charge (31.7–35.3 pm). However, the trajectories of the neutral and
ionized particles differ little from each other at vp = 2000 m/s (Figure 2). Consequently,
the Coulomb force (Equations (12) and (13)) reduces the effect of an incident particle on
the translational and rotational dynamics of the C60 fullerene. It should be noted that the
damping effect is enhanced by the action of bivalent and trivalent cations on the rotating
fullerene. Along with this, the force effect will be less pronounced for higher fullerenes
(C70, C78, etc.) due to their greater mass compared to the C60 fullerene.
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5. Conclusions

In this article, we have presented the hybrid discrete–continuous mathematical model
of the interaction between a krypton ion and the C60 fullerene in crystalline fullerite. The
molecular dynamics study of the force effect of an incident atom on a rotating fullerene
molecule has been carried out. Analysis of the calculation results shows that fullerene
retains a more stable position when the incoming particle has a charge. An almost complete
shielding of the force action is observed for incident charged particles with a low speed of
movement up to 1000 m/s. The amplitude of the angular velocity of fullerene increases
more strongly under the impact of an incident neutral particle than under a charged particle.
The C60 fullerene in a fullerite crystal is able to obtain additional angular acceleration under
the action of an external force. The calculation results show that the rotational dynamics of
C60 fullerene can be controlled by choosing the velocity and charge of the incident particles.
This makes it possible to change the characteristics of both the initial fullerene material and
the synthesized materials.
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