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Abstract: Graphene twistronics have recently gained significant attention due their superconductive
behavior as a consequence of their tunable electronic properties. Although the electronic properties of
twisted graphene have been extensively studied, the mechanical properties and integrity of twisted
trilayer graphene (tTLG) under loading is still elusive. We investigated the fracture mechanics of
tTLG with a twist angle of +1.53° utilizing molecular dynamics simulation. This twist angle was
chosen because it is known to exhibit highly superconductive behavior. The results indicate that
tTLG does not preserve the excellent mechanical properties typically associated with graphene, with
toughness and fracture strain values much lower in comparison. The Young’s modulus was an
exception with values relatively close to pristine graphene, whereas the tensile strength was found
to be roughly half of the intrinsic strength of graphene. The fracture toughness, fracture strain
and strength converge as the crack length increases, reaching 0.26 J/ m3, 0.0217 and 39.9 GPa at a
crack length of 8 nm, respectively. The Griffth critical strain energy is 19.98 J]/m? and the critical
stress intensity factor K, is 4.47 MPa M!/2, in good agreement with that of monolayer graphene
in the experiment. Our atomic insights might be helpful in the material design of twisted trilayer
graphene-based electronics.

Keywords: graphene twistronics; twisted trilayer graphene; molecular dynamics; fracture toughness;
critical stress intensity factor

1. Introduction

Graphene is a carbon allotrope made up of single layer co-planar atoms arranged in a
hexagonal lattice. Graphene is mainly known for its excellent mechanical properties cou-
pled with its extraordinary thermal and electrical conductivity. Monolayer graphene was
designated as the strongest material ever tested, with a Young’s modulus of 1 TPa [1]. More-
over, graphene has great potential in the electronics industry. Twisted layered graphene,
or the field of “twistronics”, consists of layers of graphene that have been rotated relative
to each other, as illustrated in Figure 1 [2]. The emergence of Moiré patterns at specific
angles known as “magic angles” changes the material’s electronic properties [3,4] due to
the lower energy requirements for free electron tunneling between the graphene layers [5].
Jarillo-Herrero et al. discovered that at 1.1°, the band of the electronic structure became
flat near zero Fermi energy, causing unconventional superconductive behavior [6]. This
discovery could open the possibility of superconducting transistors to be constructed where
the level of superconductivity could be varied by manipulating the intensity of the applied
electric field.

Crystals 2021, 11, 1202. https:/ /doi.org/10.3390/ cryst11101202

https:/ /www.mdpi.com/journal/crystals


https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-5890-8669
https://orcid.org/0000-0002-8281-8636
https://doi.org/10.3390/cryst11101202
https://doi.org/10.3390/cryst11101202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11101202
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst11101202?type=check_update&version=3

Crystals 2021, 11, 1202

20f12

-6

S)

Figure 1. A schematic plot of the twisted tri-layer graphene (tTLG) structure with a twist angle 6.

The discovery of superconductivity in twisted bilayer graphene was groundbreaking
in the field of material science and was followed by a sudden rise in research concerning
twistronic materials [7-11]. The scope of this discovery also extended to other Moiré-
patterned 2D materials that exhibit superconductivity, such as twisted bilayer tungsten
diselenide (WSey) and boron nitride (BN) between layers of graphene [12,13].

In 2019, Ashvin Vishwanath of Harvard university predicted that multilayer graphene
with alternating twist angles would also exhibit superconductivity. This was very recently
confirmed, and it was found that at an average angle of +1.56°, twisted trilayer graphene
exhibited extraordinary superconductive properties and considering its low charge density,
it had the strongest electron pairing ever observed [14]. tTLG was noted As superior to
bilayer graphene because it was superconductive at a higher temperature and had better
tunability in terms of its electronic structure and superconducting characteristics than bi-
layer graphene [15]. The electrical properties of tTLG are already well established, however,
there is a research gap concerning the mechanical behavior of this material [16-18].

Hence, the purpose of this research was to study the fracture mechanics of tTLG. As
demonstrated in our earlier work concerning graphene [19-23], this would allow us to
better understand the material’s viability in terms of its potential applications. To gain
atomistic insights, we used molecular dynamics simulations, which are powerful and
insightful for various atomic-level large-scale finite-temperatures applications [24]. The
remainder of this paper is structured as follows: in Section 2, the model and technique
are provided; Section 3 contains the findings and discussions; and Section 4 includes
the conclusions.

2. Model and Method
2.1. Initial Structure

To develop a twisted trilayer structure, we opted to rotate the top and bottom layers
by +1.53°, respectively, to test the material when it exhibits superconductive behavior [25].
The 1 x 1 primitive cell structure contains 8326 atoms equally divided into the three layers,
which is sufficient to map out a complete repeating cell of such a low twist angle. The X
and Y axes had periodic boundary conditions whereas the Z axis was fixed to accurately
model the 2D graphene structure. The size of the primitive cell was 9.05 nm and 7.84 nm
along the X and Y directions, respectively.

The cracked structure was obtained by removing atoms from every layer of pristine
tTLG within a rectangular prism with dimensions of 2ag x 0.5 nm, where 2ay is the crack
length. As mentioned in the literature, the crack length is perpendicular to the X axis which
underwent tensile stress and is denoted by the armchair direction. The pristine and cracked
structures are displayed in Figure 2 with the top and isometric views, respectively.
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Figure 2. (a) Pristine tTLG structure; and (b) cracked tTLG structure (top view).

2.2. Interatomic Potential

The potential that portrays the microscopic interactions between the carbon atoms
in the graphene sheet is the adaptive intermolecular reactive bond order (AIREBO) [26].
This force-field allows breaking and forming carbon—carbon covalent bonds, enabling
the precise visualization of the atomic interactions within severe environments, including
fracture. Therefore, this potential was suitable for investigating the mechanical properties of
monolayer graphene [27,28]. In previous literary work, multilayer graphene was generally
modeled by the adaptive intermolecular reactive bond order potential (AIREBO) [29-31].
However, it is known that while it accurately models covalent bond breaking and forming,
it is not suitable for studying fracture behavior and interlayer van der Waals interactions
at high pressures. The work of Mattsson et al. on Polyethylene demonstrated these
limitations [32]. In order to obtain accurate results, it is critical to consider van der Waals
interactions when modeling layered graphene systems [33,34]. Therefore, we utilized the
modified AIREBO potential (AIREBO-M) where the L] term was replaced with the non-
divergent Morse potential. The inclusion of the Morse potential was shown to be valid for
bilayer graphene over a greater pressure range while preserving performance at ambient
conditions [35]. The potential consists of three terms and is described by the following:

1 REBO |, MORSE TORSION
E= 5 Y. ) |EY+ES + ) Eiin @
oy kst 10, k

where the REBO term has the same functional form as the potential generated by Brenner
et al. [36]. The coefficients in AIREBO are the same as Brenner’s potential. The MORSE
potential covers the long-range interactions and depends on the given cutoff. The TORSION
term refers to a four-body potential that describes the different dihedral angle inclinations
in a hydrocarbon arrangement. We opted to use a cutoff of 3.0 to precisely model the
carbon-carbon interactions. The inner and outer cutoff distances between carbon atoms
were set to 0.192 nm and 0.20 nm, respectively. This parameter was well examined to
prevent artificial strengthening near the fracture [25,37]. The van der Waals interactions
between layers were modeled in the form of Morse potential, which can adequately capture
the characteristics of interlayer interactions of multilayer graphene systems.

2.3. Molecular Dynamics Simulations

The large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS, stable
version of 3-Mar-2020) was used for all the molecular dynamics (MD) simulations. We
first carried out the potential energy minimization via the conjugate gradient algorithm,
followed by the geometry optimization via the NPT ensemble with a temperature of
T =300 K and a pressure of 101,325 Pa (1 atm) for 50 ps. The MD timestep of the projector
integration was 0.001 ps. We carried out the tensile test simulations with a strain rate of
1x107s7.
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3. Results and Discussion
3.1. Equilibrium

The system was first equilibrated by performing an isothermal-isobaric ensemble
(NPT) simulation for 50 ps at a timestep of 0.001 ps with T = 300 K and P = 0.0001 GPa
to mimic ambient conditions on pristine tTLG. Figure 3 reveals that both pressure and
temperature fluctuate over constant values, indicating that equilibrium has been reached.
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Figure 3. A typical process of system equilibration. The temperature and pressure fluctuate to achieve
equilibrium at approximately 10 ps. The target temperature is T = 300 K, and the target pressure is
P =0.0001 GPa. The timestep is 0.001 ps.

The model was then subjected to a tensile load during the simulation with a strain rate
of 1 x 10% s~! to observe the stress-strain characteristics of our model. L(t) = Ly exp (n x t)
is the equation for elongation, where L is the starting length, n is the strain rate, in the
unit of s! and L(t) is the length of the simulation box at time t [38]. The stress-strain curve
plays a major role in characterizing the mechanical properties of a structure and will be
used to validate the model by comparing the Young’s modulus with the experiment.

3.2. System Size Effects

The periodic boundary conditions in our simulations cause replicate image cells to
interact with the simulation cell. This can drastically skew the results if our simulation size
is not large enough relatively to the crack size. To analyze the effects of the simulation size,
we constructed six different structures of varying sizes ranging from 2 x 2 (32,843 atoms) to
10 x 10 (832,133 atoms) while keeping a constant crack size of agp = 4 nm (so the full crack
length is 2ap = 8 nm). Figure 4 illustrates the stress-strain relation in the different cell sizes.
The graph indicates that sizes larger than 2 x 2 exhibit similar fracture behavior with a
linear increase in stress initially followed by plastic behavior until the material fractures.
The 2 x 2 system behaves erratically and we suspect that the structure is not large enough
to accurately depict the tensile fracture of the tTLG structure.

Figure 5 indicates the effects of the system size on Young’s modulus (GPa), strength
(GPa), toughness (J/m?) and fracture strain. The Young’s modulus seems to be converging
as the system size becomes larger, increasing from 584 GPa to 964 GPa, resulting in a 65%
increase over our system size range. The toughness and fracture strain follow a general
linear trend with the system size, increasing from 0.214 (J/ m?) to 0.409 (J/m?3), and 0.021
to 0.027, respectively. This signifies a 91.1% increase in toughness and a 28.6% increase in
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fracture strain for this system size range. The strength also seems to generally increase from
36.0 GPa to 50.1 GPa with a 39.1% increase. However, there is a sharp drop in strength for
the 6 x 6 structure which can be treated as an anomaly. Overall, the mechanical properties
tend to improve as the system size increases, which is expected as the crack size occupies a
smaller space relative to the total simulation size and is projected to be closer to the values
observed under pristine conditions.

50
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Figure 4. Size effects on stress-strain relationships under the condition of temperature T = 300 K,
pressure P = 0.0001 GPa, strain rate 1 x 10° s71, and crack length 2ap = 8 nm.
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Figure 5. Size effects on mechanical properties under the condition of temperature T = 300 K, pressure
P = 0.0001 GPa, strain rate 1 x 10° s71, and crack length 2ap = 8 nm.

3.3. Crack Size Effect

The size of the crack plays an important role in the characteristics of a material [39-42].
In real applications, fracture properties carry great significance as cracks and defects are
common in materials. Cracks also exist in various different sizes and affect mechanical
properties to varying degrees. Therefore, by simulating such features, we will have a better
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understanding of the engineering qualities of this material. We varied the half length ap of
the pre-crack. We generated a pre-crack in the shape of a rectangular prism with dimensions
2ag X 0.5 nm, where the half crack size ag varied from 0.5 nm to 4 nm. To evaluate the
material’s Mode-I stress intensity factor, the length of the crack was perpendicular to the
axis of the strain [43,44]. The tensile test was then performed uni-axially in the zig-zag
direction to assess the stress-strain response of the pre-cracked structures. Our results of
the stress-strain relationships of the eight structures are displayed in Figure 6 to examine
the crack size effect.

The eight different structures share the same stress-strain pattern and trend: initially,
the stress values linearly rise with strain, plastically deform and then abruptly fracture
after reaching the maximum tensile strength. The plastic component of the stress-strain
curve reduces in range as the crack length increases and the structure starts behaving in
a more brittle manner. Interestingly, the plastic behavior starts at around the same strain
values across the different systems, irrespectively of the crack length.
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Figure 6. Crack size effect on the stress-strain relationship: A rectangular crack is generated in tTLG
before tensile simulations under the conditions of temperature T = 300 K, pressure P = 0.0001 GPa,
system size 4 x 4, and strain rate 1 x 109 s~ 1.

The relations between the crack length and the toughness J/m?, fracture strain,
strength GPa and Young’s modulus GPa are demonstrated in Figure 7. The results are
compared and benchmarked against pristine monolayer graphene. The toughness, frac-
ture strain and strength appear to be converging as the crack length increases, reaching
0.26 J/m?, 0.0217 and 39.9 GPa at a crack length of 8 nm, respectively. The drop in these
mechanical properties quantifies a reduction of 83.46% in toughness, 35.03% in strain and
84.06% in strength values over the crack length range. The toughness and fracture strain
are quite low compared to pristine monolayer graphene with fracture strain values quite
comparable to the values found in highly brittle materials such as silicate glasses [45].
These findings can potentially limit this material’s applicability in cases where graphene
usually excels. The Young’s modulus decreases in a roughly linear manner as the crack
length increases, from 981 GPa to 857 GPa, representing a 12.64% decrease. These values
are quite comparable to pristine graphene’s Young’s modulus of 1005 GPa.
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Figure 7. Crack length effect on mechanical parameters under conditions of temperature T = 300 K, pressure P = 0.0001 GPa,
strain rate = 1 x 10” s7!1, and size = 4 x 4 (31.35 nm x 36.20 nm).

3.4. Fracture Toughness

We studied the fracture toughness of tTLG in terms of critical stress intensity factor K
under varying crack sizes. The stress intensity factor enabled us to gauge the properties
and trends of tTLG under different conditions. The fracture toughness is described as an
intrinsic property of a material to withstand crack growth under stress. The Griffith theory
of brittle fracture was demonstrated to be applied to graphene, and thus is suitable for
analyzing the fracture in our system [46]. The Griffith criterion is expressed as Equation (2)
and describes the critical stress of the inception of rapid fracture. Previously, we evaluated
the stress-strain response of the different structures containing a pre-crack. The results
from those findings were used in the equations below to determine the critical stress
intensity factor:

2sE

7tagp

oc = @
where 75 is the surface energy density taken as 8.0 J/m? [46], E is the Young’s modulus
found to be approximately 1 TPa from pristine tTLG simulations, and ag = L/2 is the crack
slit’s half-length. The stress intensity factor, which is commonly used to describe fracture
toughness, is represented by the following equation:

K. = oc/Ttag 3)

The theoretical value for K. was calculated as 4 MPa M'/2 while the value ob-
tained from our MD simulations for the longest crack length of 8 nm was found to be
4.47 MPa M'/2, which signifies a difference of 11.75%. The theoretical value was calculated
using Equation (2) and the simulation value using Equation (3). The stress intensity factor
was evaluated under varying crack sizes and the results were compared with the theoretical
value in Figure 8. The results suggest that K, is approaching the theoretical value of \/2yE
as the cracks become longer. This was expected as a longer crack more closely resembles the
ideal Griffith crack which is characterized as long and sharp. These findings demonstrate
that the Griffith theory can be applied to multilayered graphene structures. The correspond-
ing critical strain energy release rate of a fracture, G, = 0’C2 ma, from MD is 19.98 J/m?, which
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is in relative agreement with an experimental study conducted on monolayer graphene,
stating G as 15.9 J/m? [46]. This is caused by the layers comprising of much stronger C-C
covalent bonds than the weak van der Waals interactions observed between the layers.
Hence, the addition of layers causes negligible effects to the fracture response.

)
o

—== Theoretical

—O~ Simulation

N W b~ U1 OO N 00 O

Stress intensity factor K (MPa M1/2)

2 3 4
Crack Length a0 (nm)

o
=

Figure 8. Crack length ag effects on fracture toughness. The tensile simulations are per-
formed under the parameters of temperature T = 300 K; pressure P = 0.0001 GPa; strain rate =
1x10%s7 L.

Coupling numerical data with visualization is required for the complete analysis of
a material’s fracture mechanics. Hence, the 8 nm cracked tTLG structure is displayed at
different stages of tensile loading in Figure 9. After equilibrium, the initial structure (a)
comprises of interlayer bonds around the crack boundaries as the carbon atoms reach
a more stable configuration due to the removal of atoms forming the crack. Wrinkle
formation is observed in (c) which coincides with the start of the material’s plastic behavior.
This topological wrinkling phenomenon is well documented to also exist in other graphene
systems [47-51]. The amplitude of the wrinkles increase with strain as the crack propagates
in the direction of the crack length until the material fractures at a strain of 0.022 (d). This
trend of strain-correlated corrugation was also observed in monolayer and bilayer graphene,
and has been demonstrated to influence their electronic and chemical properties [52-55].
The same fracture mechanism is observed in all the other samples tested consisting of
different crack lengths, system sizes and strain rates.

The interlayer interactions play a key role in the characteristics of the material. The
presence of sp® bonding between the layers has been shown to have a minor negative
impact on the Young’s modulus, ultimate tensile strength and the facture strain, while
significantly increasing the interlayer shear modulus and load transfer rate, resulting in
higher axial compression stability [56]. Mirparizi et al. demonstrated that interlayer shear
interactions have also a considerable effect on the vibrational behavior of bilayer graphene
and increase the material’s natural frequencies by restricting lateral displacements [57].
Figure 10 shows carbon atoms near the crack site after equilibrium (a and b) and just before
failure (c and d) from a top-down and side view. Interlayer sp® bonding was observed
near the crack site and increased in spatial density as the structure approached failure.
The ductile fracture behavior identified in our system is similarly connected to a higher
interlayer bonding density [19].
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Figure 9. Fracture mechanics of brittle fracture in twisted trilayer graphene with a pre-crack: (A) structure of 4 nm pre-crack
tTLG; (B) stress-strain response of 4 nm pre-crack tTLG; (C) top-down view of the fracture at different stages; (D) side
view of the fracture at different stages; During the tensile, we have four snapshots of the selected 4 stage: (a) strain = 0; (b)
strain = 0.012; (c) strain = 0.017; (d) strain = 0.022. The tensile simulation is under the following conditions: temperature
T =300 K, pressure P = 0.0001 GPa, strain rate =1 x 10° s71 and crack length (2ag) = 8 nm.

a b

Figure 10. Crack site: (a) top-down view, strain = 0; (b) side view, strain = 0; (c) top-down view,
strain = 0.019; (d) side view, strain = 0.019. The conditions of the tensile simulation are follows:
temperature T = 300 K, pressure P = 0.0001 GPa, strain rate = 1 X 10 s71, crack length (2ap) = 8 nm.
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4. Conclusions

We investigated the mechanical properties of pre-crack twisted trilayer graphene via
molecular dynamics simulations. The pre-crack tTLG graphene systems exhibited a rapid
brittle fracture behavior with toughness and fracture strain values which were orders of
magnitude lower than that of monolayer graphene and on par with those observed in
highly brittle silicate glass materials. Similarly, the fracture stress was found to be roughly
half of that the intrinsic strength of graphene, whereas the Young’s modulus was favor-
able with values relatively close to pristine graphene. The mechanical properties seem
to be converging at longer crack lengths apart from the Young’s modulus. The fracture
toughness described by the critical stress intensity factor K. was consistent with the theo-
retical results with a difference of only 11.75% using the Griffith equations. Interestingly,
the associated critical strain energy release rate of fracture G, was found to be in good
agreement with G, values of monolayer graphene [46]. Overall, this study demonstrated
the applicability of Griffith criteria for multilayer graphene systems and characterized
the fracture response of tTLG, which could be helpful in determining the viability of the
material for various applications.
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