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Abstract: The present work aimed to synthesize 2-methylthio-triazoloquinazoline derivatives and
study their X-ray, NMR, DFT and Hirshfeld characteristics. The cyclocondensation of dimethyl-
N-cyanodithiocarbonate with 2-hydrazinobenzoic acid hydrochloride resulted in an intermediate,
2-methylthio-[1,2,4]triazolo[1,5-a]quinazolin-5-one (A), which upon treatment with phosphorus pen-
tasulfide, transformed into the 2-methylthio-[1,2,4]triazolo[1,5-a]quinazolin-5-thione (B). Reaction
of 2-methylthio-triazoloquinazolines (A&B) with alkyl halides (allyl bromide and ethyl iodide) in
basic medium afforded 4-allyl-2-methylthio-[1,2,4]triazolo[1,5-a]quinazolin-5-one (1; N-alkylated)
and 5-ethylthio-2-methylthio-[1,2,4]triazolo[1,5-a]quinazoline (2; S-alkylated), respectively. Their
molecular and supramolecular structures were presented. Unambiguously, the molecular structures
of 1 and 2 were confirmed via NMR and single-crystal X-ray diffraction. The resulting findings con-
firmed the structures of 1 and 2 and determined their crystalized system (monoclinic system; P21/n
space group). Hirshfeld analysis of 1 revealed the importance of the significantly short O···H (6.7%),
S···S (1.2%) and C···C (2.8%); however, the short H···H (42.6%), S···H (16.3%) and C···C (4.3%) were
showed in 2 by intermolecular interactions in the molecular packing. The 1,2,4-triazoloquinzolines
(1&2) were anticipated to be relatively polar compounds with net dipole moments of 2.9284 and
4.2127 Debye, respectively. The molecular electrostatic potential, atomic charge distribution maps and
reactivity descriptors for 1 and 2 were also determined. The calculated nuclear magnetic resonance
spectra of the targets 1 and 2 were well correlated with the experimental data.

Keywords: triazoloquinazoline; cyclocondensation; thionation; alkylation; X-ray; DFT; Hirshfeld analysis

1. Introduction

In pharmaceutical chemistry, the synthesis of new bioactive agents has recently
achieved notable prominence as a result of the increasing spread of various diseases [1,2].
Nitrogen heterocycles, which are found in various natural and synthetic products, rep-
resent the most important class of biologically active substances and pharmaceutically
relevant molecules. Among them, quinazolines and triazoles have attracted consider-
able attention in synthetic medicinal chemistry and the materials science area. Due to
the significance of these pharmacophore classes as well as their roles in the construc-
tion of pharmacologically active molecules, including antimicrobial, antimalarial, anti-
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inflammatory, antihypertensive, anticonvulsant, antidiabetic and anticancer agents as
well as cholinesterase inhibitors, their synthesis has been a hot topic in organic synthe-
sis [3,4]. Thus, the combination of both quinazoline and triazole moieties results in the
synthesis of a triazoloquinazoline scaffold, which exhibits varied pharmacological ac-
tivities [3]. Indeed, many triazoloquinazolines have been reported to exhibit promising
antihistamine activity [5,6]. Some 1,2,4-triazoloquinazolines have been investigated as
potent adrenoblockers and were found to display good hypotensive activity [7,8]. A series
of 2-alkoxy-triazoloquinazolines were found to act as potent adenosine receptor antago-
nists [9,10]. The presence of lactam and thiolactam in triazoloquinazolines skeleton was
valuable to appear in more pharmacophoric moieties associated with a diversity in biologi-
cal properties. For example, S-alkylated triazoloquinazolines showed significant antimicro-
bial effects [11,12]; however, their N-alkylated compounds demonstrated strong antiviral
activity [13,14]. Furthermore, potential antidiabetic activity was reported for triazoloquina-
zoline, which manifested itself via its ability to inhibit α-glucosidase activity [15]. Addition-
ally, some 1,2,4-triazoloquinazolines have been observed to possess potential antioxidant
properties and promising cytotoxicity [16–21]. Hence, we focus on triazoloquinazoline
chemistry, particularly studying the crystal structure of 1,2,4-triazolo[1,5-a]quinazoline
derivatives [22–27]; herein, we report X-crystal structures, NMR, MS, IR, DFT and Hirshfeld
studies of the synthesized triazoloquinazolines 1 and 2.

2. Materials and Methods
2.1. General Information

The IR spectrum was determined using a Perkin Elmer FT-IR Spectrum BX system.
The NMR spectra were measured with a Bruker AMX 500-MHz instrument, and the data
were described as ppm values relative to tetramethylsilane at 500 and 125 MHz for 1H and
13C NMR, respectively, and DMSO-d6 used as solvent. Employing a Micromass Quattro
microTM triple-quadruple tandem mass spectrometer to measure ESI-MS spectra.

2.2. Synthesis of the Triazoloquinazolines 1 and 2

According to the reported detailed methodologies in our previous papers [28,29], the
compounds 1 and 2 were prepared.

2.2.1. 4-Allyl-2-methylthio-[1,2,4]triazolo[1,5-a]quinazolin-5-one (1)
1H NMR (DMSO-d6): δ ppm 8.26 (br d, J = 8.0 Hz, 1H), 7.77 (br d, J = 8.0 Hz, 1H), 7.75

(br t, J = 7.5 Hz, 1H), 7.51 (br t, J = 7.50 Hz, 1H), 6.00 (m, 1H), 5.31 (br d, J = 17.50 Hz, 1H), 5.21
(br d, J = 10.50 Hz,1H), 4.80 (d, J = 5.00 Hz, 2H), 2.65 (s, 3H, SCH3); 13C NMR (DMSO-d6):
δ ppm 167.32, 154.43, 145.72, 138.14, 133.17, 131.33, 129.21, 127.60, 117.23, 114.90, 112.25,
45.50, 13.90 ppm; ESI-MS (m/z): 271.1 [M−H]− (negative mode) for MW = 272.

2.2.2. 5-Ethylthio-2-methylthio-[1,2,4]triazolo[1,5-a]quinazoline (2)
1H NMR (DMSO-d6): δ ppm 8.22 (br d, J = 8.2 Hz, 2H), 8.08 (br d, J = 8.05 Hz, 1H),

7.69 (br t, J = 7.68 Hz, 1H), 4.80 (q, J = 7.20 Hz, 2H, SCH2CH3), 2.69 (s, 3H, SCH3), 1.42 (t,
J = 7.00 Hz, 3H, SCH2CH3); 13C NMR (DMSO-d6): δ (ppm) 167.69, 164.61, 152.73, 135.95,
133.73, 126.78, 126.01, 117.50, 115.55, 24.48, 14.44, 13.97; ESI-MS (m/z): 275.3 [M−H]−

(negative mode) for MW = 276.

2.3. X-ray Crystallography Analysis

Crystals of 2-Methylthiotriazoloquinazolines (1&2) were formed from saturated ethano-
lic solution by evaporation over 2 days at room temperature. Data collection was conducted
on a Bruker APEX-II D8 Venture area diffractometer equipped with graphite monochro-
matic Mo Kα radiation at 100 (2) K. By employing Bruker SAINT SHELXT software, the
cell refinement and reduction data were performed [30,31], and the solved structures were
obtained by using SHELXT software. The final refinement was carried out using a full-
matrix least-squares techniques with anisotropic thermal data for non-hydrogen atoms
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on F. Triazoloquinazolines 1 and 2 comprise the crystallographic data supplementary and
can be obtained free of charge from the Cambridge Crystallographic Data Center via
www.ccdc.cam.ac.uk/data_request/cif (2 September 2021).

2.4. Hirshfeld Surface Analysis

Using Crystal Explorer 17.5 program, the topology analyses were carried out [32].

Computational Methods

Employing gaussian 09 software package, B3LYP/6-31G(d,p) method and NBO 3.1 pro-
gram, all DFT calculations were carried out, the optimized obtaining structures revealed no
imaginary frequencies and natural population analysis was completed, respectively [33–37].
The chemical shifts of 1H and 13C NMR spectrometry were computed applying the GIAO
method in DMSO-d6 [38].

3. Results and Discussion
3.1. Chemistry

The synthetic routes of the target compounds, namely 4-allyl-triazoloquinazolin-
5-one (1) and 5-ethyl-triazoloquinazoline (2), are outlined in Scheme 1. Reaction of
2-hydrazinobenzoic HCl (1.1 mmol) with dimethyl-N-cyanoimidodithiocarbonate (1 mmol)
in ethanolic solution (15 mL) and triethyl amine (3 mmol) yielded an intermediate (A).
Treatment of A (1 mmol) with allyl bromide (1.5 mmol) in the presence of K2CO3 (0.5 mmol)
using DMF (10 mL) as the solvent resulted in the synthesis of the target compound 1 [28].
Thionation of A (1 mmol) with P2S5 (1 mmol) in pyridine (10 mL) under reflux conditions
gave 1,2,4-triazoloquinazolin-5-thione (B, 1 mmol), which was transformed into the target
compound 5-thioethyl-triazoloquinazoline (2) upon treatment with ethyl iodide (1.5 mmol)
in a basic aqueous solution (8 mL) [29]. The final products 1 and 2 were obtained as
plate-like crystals after crystallization.
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3.2. Spectroscopic Data

Confirmation of triazoloquinazolines structures 1 and 2 was achieved by IR, NMR
and MS-spectrometry. Although the chemical structures of the intermediates A and B
have been previously determined [28,29] and the physiochemical properties of 1 have also
been reported, we reiterated the relevant NMR data of 1 for additional explanation in this
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study. The IR spectrum of 1 revealed a strong absorption band due to carbonyl group
at 1679 cm−1. The 1H NMR spectra of 1 and 2 are characterized by the singlet signal of
the S-methyl protons at δ 2.65 and 2.69 ppm, respectively, and their 13C NMR resonances
were recorded at δ 13.90 and 13.97 ppm, respectively. Notably, N-alkylation of substrate
A with an allyl moiety (Scheme 1) was proven by its four 1H characteristic resonances at
about 6.0 (m), 5.31 (br d, J = 17.5 Hz), 5.21 (br d, J = 10.5 Hz) and 4.80 (d, J = 5 Hz), which
are assignable to propene moiety (CH2CHCH2) proton types. However, the S-alkylated
product 2 confirmed by the presence of two characteristic 1H resonances with intrinsic
splitting patterns at approximately 4.80 ppm (q, J = 7.2 Hz) and 1.41 ppm (t, J = 7.0 Hz),
which ascribed to −SCH2CH3 and −SCH2CH3 protons, respectively (Figure 1). Three 13C
resonances at δ ppm 131.33, 112.25 and 45.50 were attributed to the C-12, C-13 and C-11
carbons of the allyl group in 1; whereas, two signals were detected at δ 24.48 and 14.44 ppm
attributable to C11 and C12 of the ethyl group in 2 (Figure 2). In triazoloquinazolines 1
and 2, the protons of the benzofused moiety were inferred to give rise to the resonance
peaks with two broad doublets and two broad triplets with Jortho values ranging between
7.5 and 8.2 Hz. Additionally, further confirmation of 1,2,4-triazoloquinazoline structures
(1&2) was achieved by single X-ray analysis and electrospray ionization mass spectrometry
(ESI-MS). For the molecular weight of 272 (compound 1), the ESI-MS spectrum revealed an
ion band at m/z 271.1 [M−H]− in the negative detection mode and showed an ion band at
m/z 275.3 [M−H]− for the target 2 (MW = 276). In addition to MS data, the single-crystal
X-ray analysis provided an obvious confirmation of the expected structures of 1 and 2.
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Triazoloquinazoline 1 has shown promising antihistaminic effect against his-
tamine induced bronchospasm (IC50 = 0.6528 mM) in comparison with the theophylline
(IC50 = 0.01996 mM) [6]. Furthermore, 1 was evaluated as an α-glucosidase inhibitor
in vitro assay and showed the best inhibition effect (IC50 = 72.28 µM) in regards to acar-
bose (IC50 = 143.54 µM) [14]. Moreover, the triazoloquinazoline 1 was also reported as an
antiviral, antimicrobial and antioxidant active agent (see Introduction).
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3.3. Crystallographic Data

The refinement information and crystallographic data of triazoloquinazolines 1 and 2
(C13H12N4OS and C12H12N4S2) structures are presented in Table 1. As it can be evinced
from Figure 1, the asymmetric units of 1 and 2 contain only one molecule. The length of
all bonds and the angles demonstrated values in the ordinary ranges [39]. In the crystal
packing (Figure 2), the molecules of compounds 1 and 2 are connected to another one via a
single non-classical intermolecular hydrogen bonding interaction (Table 2).

Table 1. Experimental details of X-ray crystallography of triazoloquinazolines 1 and 2.

Crystal Data Triazoloquinazoline 1 Triazoloquinazoline 2

Chemical formula C13H12N4OS C12H12N4S2
Mr 272.33 276.38

Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 293 293

a, b, c (Å) 10.3567 (12), 5.0392 (5), 25.013 (3) 9.5153 (7), 8.1162 (6), 16.1568 (12)
β (◦) 104.850 (5) 102.852 (3)

V (Å3) 1261.8 (2) 1216.50 (16)
Z 4 4

Type of radiation Mo Kα Mo Kα
µ (mm−1) 0.25 0.42

Size of crystal (mm) 0.42 × 0.21 × 0.04 0.60 × 0.13 × 0.09

Data Collection

Diffractometer Bruker APEX-II D8 venture diffractometer Bruker APEX-II D8 venture diffractometer
Absorption correction Multi-scan SADABS Bruker 2014 Multi-scan SADABS Bruker 2014

Tmin, Tmax 0.810, 0.874 0.806, 0.812
The measured, independent

and observed
[I > 2σ(I)] reflections No.

16671, 2614, 1481 27487, 2796, 1979

Rint 0.176 0.094
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Table 1. Cont.

Crystal Data Triazoloquinazoline 1 Triazoloquinazoline 2

Refinement

R[F2 > 2σ( F2)], wR( F2), S 0.064, 0.155, 1.02 0.054, 0.150, 1.03
Reflections No. 2614 2796
Parameters No. 167 165
Restraints No. 0 0

∆ρmax, ∆ρmin (e Å−3) 0.55, −0.50 0.57, −0.86
CCDC No. 1826859 1827320

Table 2. For triazoloquinazolines 1 and 2.

Triazoloquinazoline 1
D—H···A D—H H···A D···A D—H···A

C5—H5A···O1i 0.9300 2.5900 3.500 (5) 164.00

Symmetry codes: (i) −x + 2, −y − 2, −z + 1.

Triazoloquinazoline 2
D—H···A D—H H···A D···A D—H···A

C5—H5A···S2 0.9500 2.6900 3.072 (3) 105.00
C11—H11B···N4 0.9900 2.4500 2.854 (4) 104.00

3.4. Analysis of Molecular Packing

The intermolecular interactions play an essential role for determining the stability
of the studied crystals. In this regard, various intermolecular interactions in the crystal
structures of both systems are analyzed quantitatively, performing Hirshfeld calculations
(Figures S1 and S2). Their percentages and detected contacts are presented in Figure 3.
The molecular packing of 1 is controlled by significantly short O···H (6.7%), S···S (1.2%)
and C···C (2.8%) (Figure 3). In 2, the packing is controlled by short H···H (42.6%), S···H
(16.3%) and C···C (4.3%) interactions. All such interactions have the characteristic features
of short interactions and contribute significantly to the stability of 1 and 2 crystal structures.
Notably, although the H···H (47.0%), H···C (12.97%), N···H (9.7%) and S···H (5.8%) contacts
make a significant contribution to the overall molecular packing interactions in 1 (Figure 4),
these contacts exhibited the characteristic features of intermolecular interactions between
atoms found at longer mutual distances than the sums of the said atoms Van der Waals
radii. Concerning 2, the contact distances of the most significant H···H, S···H and C···C
interactions are summarized in Table 3, and other key contacts that contributed to the
molecular packing included the N···H (15.1%) and H···C (9.8%) interactions. Indeed, values
for the contact distances of the most important H···H, S···H and C···C interactions were
significant, which are highlighted by the corresponding red spots in the dnorm maps. More-
over, characteristics of short interactions were observed in the fingerprint plots (Figure 5).
These interactions in 2 exhibited considerably longer interaction distances than the sum of
the Van der Waals radii of the interacting atoms as well.

Table 3. Values for the short intermolecular contacts in triazoloquinazolines 1 and 2.

1 2
Contact Distance Contact Distance

O1 H5A 2.448 H2A H10C 2.024
S1 S1 3.448 S2 H10B 2.777
C6 C9 3.382 C1 C8 3.388
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4. DFT Analysis
4.1. Geometric Parameters

The compounds 1 and 2 optimized geometries are presented in Figure 6. It can be
evinced from this figure that the calculated geometric features of both structures match
very well their counter parts experimentally determined, using X-ray diffraction data.
The calculated and optimized bond distances are in good agreement with each other
(Table S1). Good correlations were also determined to exist between the experimental and
the calculated bond distances for the 1 and 2 structures (Figure 7). Indeed, the correlation
coefficients values are very close to unity, and the maximum absolute errors do not exceed
0.04 Å and 3.8◦ for bond distances and bond angles, respectively.
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orbitals and the corresponding reactivity indices [40–46], such as ionization potential, elec-
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culated (Table 4). Both HOMO levels have almost the same energy in the two compounds. 
However, the energy of LUMO in 1 is higher than 2. From the results, both compounds 
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The calculated natural atomic charges are presented (Table S2). For triazoloquinazoline 1,
the O and N atoms as well as the majority C atoms are negatively charged. The atomic
site with the largest negative charge is the carbonyl oxygen (O2: −0.6098 e). Hydrogen
and carbon atoms attached to N, O or S atoms are all positively charged. The atom with
the largest positive charge is the carbonyl carbon (C20:0.6855 e). In the case of 2, it was
found that N5 (−0.5299 e) and C18 (0.5649 e) were the most negative and positive sites,
respectively. The molecular electrostatic potential maps reported in Figure 8 demonstrated
these results very well. Triazoloquinazolines 1 and 2 are polar compounds characterized
by values for the net dipole moments of 2.9284 and 4.2127 Debye.
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4.2. Analysis of Reactivity

Investigation of the highest occupied and lowest unoccupied molecular orbitals
(HOMO and LUMO) of 1 and 2 indicated beyond doubt the distribution of these molecular
orbitals over the π-system of the studied molecules (Figure 9). The energies of these orbitals
and the corresponding reactivity indices [40–45], such as ionization potential, electron
affinity, chemical potential, hardness and electrophilicity (I, A, µ, η andω) were calculated
(Table 4). Both HOMO levels have almost the same energy in the two compounds. How-
ever, the energy of LUMO in 1 is higher than 2. From the results, both compounds have
similar ionization potentials but different electron affinities. In the case of 1, the η value
(4.3250 eV) is higher than that of 2 (3.8053 eV). In addition, the electrophilicity of 1 is lower
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(1.7852 eV) than that of 2 (2.2087 eV). In Table 4, all the calculated values for I, A,ω, and
the HOMO–LUMO gap for both crystals are listed.
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Table 4. The calculated reactivity indices of 1 and 2.

Parameter 1 2

HOMO −6.0921 −6.0026
LUMO −1.7671 −2.1973

I = −EHOMO 6.0921 6.0026
A = −ELUMO 1.7671 2.1973
η = (I − A)/2 4.3250 3.8053
µ = −(I + A)/2 −3.9296 −4.1000
ω = µ2/2η 1.7852 2.2087

5. NMR Spectra

The chemical shifts of the resonance peaks in the 1H and 13C NMR spectra of tria-
zoloquinazolines 1 and 2 were computed, and the findings are listed in Tables S3 and S4,
alongside the corresponding experimental data. As it can be evinced from Figure 10, a
good relation exists between the calculated and the experimentally determined chemical
shifts. In particular, the correlation coefficients are 0.97 and 0.98 for both 1H and 13C NMR
spectral data.
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6. Conclusions

Triazoloquinazolines 1 and 2 were synthesized and confirmed by NMR and X-ray
diffractometry. The crystal structures of 1 and 2, as determined by X-ray diffractometry,
were characterized by bond lengths and angles that were in the normal ranges; moreover,
molecules of 1 and 2 were observed to be included in a non-classical intermolecular hydro-
gen bonding interaction. The molecules 1 and 2 were anticipated to be polar, with net dipole
moments of 2.9284 and 4.2127 Debye. The practical data were correlated with theoretical
DFT calculations (employing the B3LYP/6-311++G(d,p) basis set). The supramolecular
structures of the investigated compounds were studied performing Hirshfeld calculations.
The calculated geometric features of the studied compounds were appeared to be in good
agreement with those experimentally identified by X-ray. Moreover, good agreement was
detected between the calculated and the experimental NMR data. Different electronic and
reactivity descriptors of 1 and 2 were calculated and discussed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11101195/s1, Figure S1: Hirshfeld analysis of 2, Figure S2: Hirshfeld analysis of 1,
Table S1: The calculated bond distances of 1 and 2, Table S2: Natural charge populations at the
different atomic sites of the studied compounds, Table S3: The calculated and experimental chemical
shifts (ppm) for 1 (according to Figure 6), Table S4: The calculated and experimental chemical shifts
(ppm) for 2 (according to Figure 6).
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