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Abstract: In the construction industry, non–destructive testing (NDT) methods are often used in the
field to inspect the compressive strength of concrete. NDT methods do not cause damage to the
existing structure and are relatively economical. Two popular NDT methods are the rebound hammer
(RH) test and the ultrasonic pulse velocity (UPV) test. One major drawback of the RH test and UPV
test is that the concrete compressive strength estimations are not very accurate when comparing
them to the results obtained from the destructive tests. To improve concrete strength estimation, the
researchers applied artificial intelligence prediction models to explore the relationships between the
input values (results from the two NDT tests) and the output values (concrete strength). In-situ NDT
data from a total of 98 samples were collected in collaboration with a material testing laboratory and
the Professional Civil Engineer Association. In-situ NDT data were used to develop and validate the
prediction models (both traditional statistical models and AI models). The analysis results showed
that AI prediction models provide more accurate estimations when compared to statistical regression
models. The research results show significant improvement when AI techniques (ANNs, SVM and
ANFIS) are applied to estimate concrete compressive strength in RH and UPV tests.

Keywords: adaptive neural fuzzy inference system; artificial intelligence; support vector machine;
artificial neural network; concrete strength; non–destructive testing; rebound hammer test; ultrasonic
pulse velocity

1. Introduction

Nowadays, artificial intelligence (AI) methods such as artificial neural networks
(ANNs), support vector machines (SVM) and adaptive neural fuzzy inference systems
(ANFIS) are commonly applied in various research fields. Several research results have
shown that ANNs, SVM and ANFIS are effective AI prediction methods [1–5]. In the
construction industry, non–destructive testing (NDT) methods are used to examine the
compressive strength of concrete because they are important alternatives to destructive
tests, and in the meantime, are relatively easy to conduct and are economical. If destructive
methods are used in the lab, the resulting compressive strength test results would not
accurately represent the quality of the in-situ cast concrete. This is because the strength and
quality of the in-situ concrete might be affected by many factors such as transportation,
placement, tamping and curing. Testing core samples from an existing structure is a
better way to examine the concrete quality. However, it is sometimes not feasible to take
core samples on site. Oftentimes, the drilled samples or the concrete structure might be
damaged during the drilling process. Therefore, NDT are good alternatives to measure the
compressive strength of concrete. Rebound Hammer (RH) and Ultrasonic Pulse Velocity
(UPV) tests are two popular NDT methods that can be used to estimate the compressive
strength of concrete. Without damaging the structure, they can effectively evaluate the
uniformity and relative quality of concrete structures. The RH test, however, provides
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estimated results with a large percentage of errors compared to the results obtained from
using destructive testing methods, and for UPV testing method, the estimated results are
not quite accurate. In addition, the actual compressive strength of concrete is unconfined
and self-compacted [6]. This research adopts AI techniques to analyze Silver Schmidt
RH and UPV test results. The goal of this research is to develop more accurate concrete
compressive strength prediction models.

The RH test is relatively simple to conduct. First, the plunger of a rebound hammer
is pressed against the surface of a concrete sample; then, a graduated scale is used to
measure the mass rebound; finally, the rebound value is read in terms of the rebound
number or rebound index. The compressive strength is calculated using the conversion
chart provided by the manufacturer [7,8]. The UPV tests are based on the principles of
measuring the propagation time of an ultrasonic pulse wave in concrete samples. After
the velocity is calculated, the compressive strength is then evaluated. It has been shown
in previous studies that the higher the velocity of an ultrasonic pulse wave, the better the
quality of a concrete sample is [9,10]. To predict the compressive strength of concrete, a
prediction model needs to be constructed. In addition to the traditional statistical prediction
model, artificial intelligence prediction models are also adopted to evaluate the property of
concrete sample [11,12].

This investigation incorporates ANNs, SVMs and ANFIS to develop prediction mod-
els. The estimation results show significant improvement when compared to traditional
estimation methods. A total of 98 in-situ test samples were collected for study. Among
them, 70 were randomly chosen to be the training dataset and the remaining 28 samples
were used for model validation. Both traditional statistical models and AI models were
developed and tested using the sample data. Analysis results showed that the AI models
could provide better concrete compressive strength prediction results.

2. Research Significance

Most of the previous research testing the compressive strength of concrete has used
lab concrete samples for the NDT, while this research uses drilled samples from existing
structures. Both artificial intelligence along with traditional statistical analysis methods are
employed to investigate the relationship between the compressive strength of the concrete
samples and the SONREB (UPV + RH) test results. For future research, more samples
from other existing buildings could be collected for further analysis. In addition, other
non-destructive methods can be incorporated for further investigation.

The remainder of this paper is organized as follows: Section 3 introduces related work
applying AI in combination with NDT; Section 4 describes the experiment methodology;
The research results are presented in Section 5. Then, the conclusions are made in Section 6.

3. Literature Review

In assessing concrete structure, destructive methods are sometimes not preferred
because they might cause damage to the concrete. This makes the NDT method a popular
alternative. NDT methods do not require a lot on sample preparation, and the test equip-
ment is relatively simple [13]. Due to laboratory equipment limitations, NDT methods are
preferable for the prediction of concrete compressive strength [14]. Based on the relation-
ship between material strength and NDT parameters, the concrete strength of concrete
will be evaluated. Detailed information regarding the empirical relationship between the
concrete strength and the NDT parameters is provided by the NDT equipment manufac-
turers. Hence, calibration is necessary for different types of concrete [15,16]. RH and UPV
testing methods are among the most popular NDT methods that are successfully applied
to evaluate the properties of concrete.

The RH test is one of the most popular NDT methods to measure the compressive
strength of concrete. The process of the RH test is summarized as follows [17]: an elastic
mass will strike the surface of concrete sample, and its rebound depends on the hardness
of the concrete sample. First the plunger should be pressed against the test surface, the
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weight will then strike the surface and the mass rebound is measured from a graduated
scale. The rebound index (or rebound number) is read from the test hammer. In the RH
test, the rebound number is one of the concrete strength indicators. The rebound number
is measured through the energy that was absorbed during the impact [18]. In addition,
there are also other factors that affect the rebound number, such as the moisture content
of the concrete, the surface smoothness, the nature of the coarse aggregate, the age of the
concrete, the size and shape of the concrete, and the rigidity of the concrete specimen [19].
Although there has not been a universal relationship developed between concrete strength
and surface hardness, several researchers have tried to examine the relationship for a given
concrete [20]. The detailed procedure of the RH experimental setup in this research follows
ASTM C805 [21].

In the UPV test, ultrasonic pulse wave velocity is measured in order to estimate
the material strength. This technique adopts the theory of wave propagation in order to
measure the depth of the material and to determine the internal cracks or damage [22–24].
The ultrasonic pulse velocity of the concrete is affected by age and is inversely proportional
to the volume of pores in the concrete [25]. The rate of UPV change in concrete is used to
determine the setting of the concrete and to specify the different stages of change at early
ages at the microstructural level [26,27]. Some researchers also state that UPV is exaggerated
by the variation at the microstructural level in the mortar and is used to estimate the sand
content in the mortar [28]. To detect damage inside the concrete, the UPV is also used
in some research [29,30]. For other types of concrete, such as lightweight or asphalt
concrete, UPV tests were also conducted to evaluate the properties of samples [31,32].
UPV measures the ultrasonic pulse wave velocity when it penetrates through materials.
The measurement is used to predict the strength of the materials, find any changes in the
condition of the materials, internal flaws, and other factors. The UPV technique, however,
is not always practical for all type of concrete samples. Because sound waves are used in
UPV tests, the test is not accurate for samples that have internal water-filled cracks and
rough surfaces [33]. To increase the accuracy of the UPV tests, coupling gels are applied
in between the transducer of the testing equipment and roughness samples to smooth
the contact layer. This ultrasonic pulse velocity is affected by various factors, such as the
aggregate, water/cement ratio, moisture, and so on. Previous research has used UPV test
results to evaluate the compressive strength, modulus of elasticity, aggregate type, and
moisture content of the concrete, etc. [34]. A detailed description of UPV test as well as a
detailed description of the correlation between the compressive strength, the pulse velocity,
and the elastic modulus can be found in ASTM C597-83 [35]. The ultrasonic pulse velocity is
determined by the density and elasticity of the material sample and considers factors such
as the cement type, the concrete mix, the aggregate type, the permeability, porosity, density,
cement hydration, curing, water cement ratio, and the manufacturing process [36–38]. This
complexity makes the ultrasonic waves irregular and affects the concrete compressive
strength estimations in non-destructive tests [39]. The aggregate size affects the ultrasonic
pulse velocity, as a larger aggregate results in a higher pulse velocity [40]. In addition, the
production process also affects the behavior of UPV. For instance, prolonging the curing
period amplifies the UPV values. A longer curing period increases the UPV because the
ratio of gel/space changes during a longer curing period [41,42]. The UPV value decreases
when the oxygen permeability and porosity of the sample material is increased, which
indicates that an ultrasonic pulse travels faster in solids than in a void [43]. Islam et al. [44]
showed the effect of peat presence on cement–sand–bricks. A relationship between the
UPV and the wet compressive strength of the peat-enhanced bricks was found. Hence,
reducing the compressive strength would lead to the UPV values to drop for cementation
products.

Upon applying AI in predicting concrete strength, most research work focusses on
applying neural networks for the prediction. Some of the latest works discussing the use of
ANNs are briefly summarized in this section. Asteris and Mokos applied ANNs to predict
the compressive strength of concrete. They proposed two ANNs models that can be reliably
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applied for data obtained by NDT tests with some constraints on the data value [45]. Using
a hybrid AI method, Gholamreza and Arash studied the radial basic function of neural
networks in combination with the firefly algorithm to predict the compressive strength of
concrete [46]. Bonagura and Bobile verified the accuracy of the artificial neural approach
in predicting the compressive strength compared to parametric multi-variable regression
models [47]. It is noted that these research works used the database obtained from previous
studies. For this study, the researchers collaborated with a material testing laboratory and
the Professional Civil Engineer Association to obtain the experimental data for the in-situ
concrete samples. In addition to ANNs, other AI methods such as SVMs and ANFIS were
also adopted to develop and validate prediction models for concrete compressive strength.

4. Experiment Methodology

The data collection was done in collaboration with a material testing laboratory in
Taiwan. The authors of this paper have signed a non-disclosure agreement to keep the raw
data information confidential. Hence, only limited data can be revealed to the public. Data
from a total of 98 samples were collected for this research. The descriptive statistics of the
data are shown in Table 1. The scatter plots of the actual strength of the concrete samples
(obtained from destructive tests) and the NDT test results (RH and UPV) are shown in
Figure 1.

Table 1. Summary of concrete sample test results.

Test Results Max Min Average Stdev.

Rebound value (n = 98 × 10) 59.400 36.650 50.698 4.516

Average wave speed (UPV) (m/s) (n = 98) 155.600 111.475 125.588 8.0613

Actual compressive strength (MPa) (n = 98) 65.998 15.495 47.759 9.660

Figure 1. Actual concrete strength linear fit scatterplot.

Three AI techniques (ANNs, SVM and ANFIS) were used to develop the prediction
model in this study. The performance of the model to predict concrete compressive strength
was expected to improve due to the use of the AI approach, especially when compared to
conventional approaches. The model development process is shown in Figure 2. According
to Khademi [48], the generalization aibility of the predictive models can be enhanced, but
their effectiveness needs further examination.
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Figure 2. Model development.

4.1. Artificial Intelligence Prediction Methods

ANNs, SVM, and ANFIS are used to develop the concrete compressive strength
prediction models for the RH and UPV tests. These models are designed and applied to
arbitrate non-linear problems. To search for more accurate prediction results, this research
uses these three methods to develop prediction models to determine concrete compressive
strength.

4.1.1. Overview of Artificial Neural Networks

Artificial neural networks simulate the human brain in terms of two important features:
learn and adapt. ANNs have been applied in many areas of engineering-related fields, such
as pattern recognition, system model and control, system identification, and classification
tasks [49]. Previous research results show that ANNs outperform traditional methods
such as multiple regression analysis or multivariate analysis [50]. In ANNs, a highly
interconnected system with simple processing elements has the ability to learn the complex
interrelationship between independent and dependent variables [51]. A neuron is defined
as an information processing system unit that consists of a connecting link, which is a
summation with/without bias and an activation function [52]. Each neuron, as shown in
Figure 3, receives inputs and weights from neurons in previous layer using mathematical
training processes.

Figure 3. Model of network block.

The weighted sum of input data is used as an argument for an activation function to
form an output [53]. The output of a neuron is calculated follow Equations (1)–(3):

u =
m

∑
j=1

wjxj + b (1)

y = f (u) (2)

f (u) =
1 + e−u

1− e−u (3)
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where xj(j = 1, . . . , m) is the input signal from previous layer; wj(j = 1, . . . , m) is the weight
associated with xj; m is the number of inputs; b is the bias; and f (u) is the activation function.
The activation function takes the form of sigmoid functions (logistic) or linear function as
given in Equations (4) and (5).

Logistic transfer function (logsig):

f (u) =
1

1 + e−u (4)

Linear transfer function (pure line):

f (u) = u (5)

4.1.2. Multilayer-Feedforward Neural Network

For multi-layer ANNs, neurons in the networks are arranged in layers as shown
in Figure 4. In a multilayered feed-forward neural network (FFNN), the outputs of the
previous layer become the inputs of the following layer. The layers between the input layer
and output layer are hidden layers. More hidden layers indicate the higher complexity
of the approximation function of the network. One or two hidden layers are capable of
approximating an arbitrarily complex mapping within a finite dataset of patterns [54].

Figure 4. A typical architecture of a multilayer neural network.

4.1.3. Radial Basis Function Neural Network

An alternative multilayered feed-forward neural network is the radial basis function
neuron network (RBFNN), which was proposed by Samarasinghe [55]. An RBFNN has
three layers: the input layer, a single hidden layer, and the output layer. Compared to
FFNN, RBFNN has some advantages, such as its high training speed and the fact that
it is less vulnerable to problems with non-stationary inputs [56]. The hidden neurons
distinguish the two types of neural networks. FFNN uses the S-shaped sigmoid activation
function while RBFNN uses the Gaussian radial basis function. In RBFNN, there are vector
connecting weights, w, between the output layer and the hidden layer. However, there are
no weights between the input layer and the hidden layer. Figure 5 illustrates an RBFNN
with a single output.
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Figure 5. A typical architecture of an RBF neural network.

4.1.4. General Linear Regression

Estimating the correlation between inputs and outputs, general linear regression
(GLR) determines how a dependent variable, which is a response variable, reacts to the
independent variables, which are predictors. GLR is categorized into linear and non-linear
regression. In linear regression, the margin of the training data input is maximized using
the best hyperplane. The hyperplane boundary is defined as the training sample that has
the shortest distance in the range of {−1, +1} to the hyperplane. In non-linear regression,
the data are transformed into a high dimension feature space using a mapping function Φ.

Given that X is the predictor variable and y is the response variable, the relationship
between X and y is estimated in GLR by forming a model using a link function, which is
shown in Equation (6) [57].

g(E(y)) = X× β + O, y ∼ F (6)

where g() is the selected link function, O is the offset variable, F is the distribution model of
response variable y, X is the predictor, and β is the regression coefficient.

4.1.5. Overview of Support Vector Machines

Support vector machines (SVMs) are mechanical algorithms developed based on
the theory of statistics. SVMs are usually suitable for small scale, nonlinear or high
dimensional problems. This research uses SVMs to develop the prediction model for
concrete compressive strength, using the experiment results from RH and UPV tests. The
model prediction results are then compared with the real compressive strength. In SVMs,
the upper boundary of the generalization error has been minimized. This enables the SVMs’
ability to process data better than other artificial intelligence techniques even for unseen
data [58–60]. Some basic concepts of SVM models are described as follows [61]:

A dataset G = {(xu, di)}n
i is given with input vector xu and target value di, and

the size of the dataset is n. By mapping x into the high-dimensional feature space,
f (x) = ωΦ(x) + b is the non-linear regression function, where ω, Φ and b are the weight
vector, the high-dimensional feature space, and the bias of the hyper plane, respectively.
SVMs minimize the structural risks; therefore, the weight vector and the bias of the hyper
plane can be obtained by minimizing the risk penalty function.

4.1.6. Least Squares Support Vector Machines

Least squares support vector machines (LS-SVMs) are used to solve linear systems
instead of quadratic programming. These linear systems are known as the Karush-
Kuhn-Tucker systems and can be used to investigate the numerical stability of these
systems [62,63]. The conjugate gradient is one of the iterative methods that can be used to
effectively solve these linear systems [64].
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Let {(yk, xk)}N
k=1, where xk ∈ Rn is the kth input pattern and yk ∈ R is the kth

output pattern, be the training set with N data points. The support vector method is

in the form of y(x) = sign
[

N
∑

k=1
αkykK(x, xk) + b

]
, with support values αk, a constant b,

and the kernel K(), where K(x, xk) = xT
k x for linear SVMs; K(x, xk) = (xT

k x + 1)d for the
polynomial SVM of degree d; K(x, xk) = tanh

(
KxT

k x + θ
)

for multilayer perceptron SVMs;
and K(x, xk) = exp

(
− ‖ x− xk ‖ 2

2/σ2) for radial basic function SVMs.

4.1.7. Overview of Adaptive Neuro Fuzzy Inference System

For complex systems, ANFIS is widely used with the adaptation of the supervised
learning algorithm. ANFIS is applied successfully when modeling non-linear functions,
controlling the parameters of the induction machine, and predicting the chaotic time series.
ANFIS has a structure that incorporates learning algorithms, fuzzy rules and multilayered-
feed forward networks, as shown in Figure 6 [65].
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By fixing the premise parameters, the overall output becomes a linear combination of
the consequent parameters, and it is written as:

f = (w1x)c11 + (w1y)c12 + (w1)c10 + (w2x)c21 + (w2y)c22 + (w2)c20 (7)

where cij denotes the consequent parameters. The consequent parameters are adjusted
by a hybrid algorithm in both forward and backward processes. In the forward process,
the network inputs propagate forward until layer 4, where the consequent parameters are
identified by the least-squares method. In the backward process, the error signals propagate
backward, and the premise parameters are updated by the gradient descent. Due to the
decoupling of hybrid learning rule during the update for the premise and the consequent
parameters, a shorter computational time is possible with the gradient method [65].

4.1.8. ANFIS Modeling in MATLAB

To find parameters that best fit the input data, the “ANFIS” function in the MATLAB
Fuzzy Control Toolbox is used for prediction model development. This function provides
an optimization scheme for the fuzzy system. The optimization can be completed with a
neural network that does not require the computation of the gradient. When the initial
condition of the fuzzy system is not clear and when there is no information on the type and
number of membership functions, researchers have suggested the “genfis1” function for
the initial modeling. This function will go through the data and find a good initial starting
system [65,66].

4.2. In-Situ NDT Test and Lab Destructive Test

In this study, the researchers collaborated with a professional government-certified
material testing laboratory. This laboratory specializes in conducting destructive and non-
destructive tests on construction materials. The NDT (RH and UPV) tests were conducted
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on 98 non-structure beams in the basement of a large residential complex. The beams were
50 cm in width and 70 cm in depth. For each beam, 10 rebound hammer measurements
were taken with the Silver Schmidt N-Type electronic rebound hammer manufactured
by PROCEQ. For the UPV tests, the test procedures followed method described in the
study of Tharmaratnam and Tan [67] and the ASTMC59716: “the standard test method
for pulse velocity through concrete”. The instrument used for UPV tests was a TICO
concrete ultrasonic detector developed by PROCEQ Company in Zurich, Switzerland. Four
ultrasonic pulse velocity measurements were taken at each test location. After the RH and
UPV tests, the core samples were taken at the same location. For consistency, all the RH
and UPV tests were conducted by the same person and all the core samples were taken by
another specialized individual. The collected data were used to develop and test the AI
models. The in-situ data collection process is shown in Figure 7.

Figure 7. In-situ sample collection.

In this study, the actual compressive strength of the concrete samples was obtained
through destructive tests according to the Taiwan National CNS1232 standard, “Compres-
sive Strength of Concrete Specimens”. This standard describes the method that determines
the compressive strength of concrete beam samples such as monolithic concrete or core-
drilled concrete beam samples. The testing device, an HT-8391 compressing machine, is
able to produce up to 200 tons of pressure on the surface of the concrete sample.

Before testing, the surface of the concrete beam was cleaned with a wet tissue to
prepare the upper surface of the concrete beam. The location of the core sample on the
beams and locations of the RH and NPV tests are shown in Figure 8.

Figure 8. Test locations on the selected test beam.

4.3. Prediction Model Development
4.3.1. Artificial Neural Networks

To develop the ANNs model, this paper used Neuro Solutions 7.0 software to construct
the neural network models (built-in with EXCEL). A back-propagation network (BPN)
was adopted for the concrete compressive strength prediction. Data from a total of 98
samples were collected from the non-structural beams of a basement of a large residential
building. Among the data from the 98 samples, 70 of them were randomly chosen as
the training dataset for the prediction model. The remaining 28 sample data were set as
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the testing dataset to validate the prediction models. The model input variables were
the average rebound number and the average ultrasonic pulse velocity obtained from
the in-situ experiments. The model output was the concrete compressive strength. Then,
the model training process was used to determine the best prediction model. After the
model set up was completed, the training data were loaded to train the ANNs model. The
prediction results were compared to the actual concrete compressive strength (obtained
from the destructive compressive strength tests on the core samples). The prediction
accuracy was evaluated by the root mean square error (RMSE), the Mean Absolute Error
(MAE), the Mean Forecast Error (MFE), and the Error to Signal Ratio (ESR) and the mean
absolute percentage error (MAPE).

Various modes with different model setups were explored to determine the best-fit
model. Previous research has suggested that one or two hidden layers is suitable for most
non-linear regression problems. This research tried both one and two hidden layers in
the ANNs model setup. Table 2 summarizes the parameters used for the ANNs models
developed in this research.

Table 2. Network model parameter settings.

Network Parameters of the Project Explanation

Internet usage examples model Back-propagation neural network

Sample selection (Exemplars)
Total Data 98

Training Data 70

Testing Data 28

The number (Hidden Layers) One Layer and Two Layer

Transfer Tanh Axon

Learning Rule Levenberg Marqua

Maximum Epochs The default value is 200, and gradually increased

Termination 1. The minimum tolerable range (MSE)
2. The maximum training period (Epochs)

Cumulative weights update method Batch

4.3.2. Support Vector Machine setting

This research used the LS-SVM function in MATLAB to develop the support vector
machine prediction model. As is the case for ANNs models, the RMSE, MAE, MFE, ESR
and MAPE were used to evaluate model performance. The Gaussian Radial Basis Function
kernel was adopted in the SVM model, as suggested by the literature. For the RBF kernel
SVMs, two parameters, σ and
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model training process was used to determine the best prediction model. After the model 
set up was completed, the training data were loaded to train the ANNs model. The pre-
diction results were compared to the actual concrete compressive strength (obtained from 
the destructive compressive strength tests on the core samples). The prediction accuracy 
was evaluated by the root mean square error (RMSE), the Mean Absolute Error (MAE), 
the Mean Forecast Error (MFE), and the Error to Signal Ratio (ESR) and the mean absolute 
percentage error (MAPE). 

Various modes with different model setups were explored to determine the best-fit 
model. Previous research has suggested that one or two hidden layers is suitable for most 
non-linear regression problems. This research tried both one and two hidden layers in the 
ANNs model setup. Table 2 summarizes the parameters used for the ANNs models de-
veloped in this research. 

Table 2. Network model parameter settings. 

Network Parameters of the 
Project 

Explanation 

Internet usage examples model Back-propagation neural network 

Sample selection (Exemplars) 
Total Data 98 

Training Data 70 
Testing Data 28 

The number (Hidden Layers) One Layer and Two Layer 
Transfer Tanh Axon 

Learning Rule Levenberg Marqua 
Maximum Epochs The default value is 200, and gradually increased 

Termination 
1. The minimum tolerable range (MSE) 

2. The maximum training period (Epochs) 
Cumulative weights update 

method 
Batch 

4.3.2. Support Vector Machine setting 
This research used the LS-SVM function in MATLAB to develop the support vector 

machine prediction model. As is the case for ANNs models, the RMSE, MAE, MFE, ESR 
and MAPE were used to evaluate model performance. The Gaussian Radial Basis Func-
tion kernel was adopted in the SVM model, as suggested by the literature. For the RBF 
kernel SVMs, two parameters, 𝜎 and ɣ , need to be determined to set up the prediction 
model.  

Similar to the development of the ANNs model, 70 out of the 98 sample data were 
randomly chosen as the training dataset, and the remaining 28 samples were set as the 
testing dataset. The model input variables were the average rebound number and the av-
erage ultrasonic pulse velocity obtained from the in-situ experiments. The model output 
was the concrete compressive strength. For RBF kernel SVMs, the sigma indicates the 
smoothness of the decision surface. The sigma trades off miss-classification of training 
examples against the simplicity of the decision surface, and a larger sigma indicates 

, need to be determined to set up the prediction model.
Similar to the development of the ANNs model, 70 out of the 98 sample data were

randomly chosen as the training dataset, and the remaining 28 samples were set as the
testing dataset. The model input variables were the average rebound number and the
average ultrasonic pulse velocity obtained from the in-situ experiments. The model output
was the concrete compressive strength. For RBF kernel SVMs, the sigma indicates the
smoothness of the decision surface. The sigma trades off miss-classification of training
examples against the simplicity of the decision surface, and a larger sigma indicates stronger
smoothing. Gamma is the regularization parameter in the RBF kernel SVMs. A lower
gamma minimizes the complexity of the model; a larger gamma creates a better fit of
the training data points. The sigma and gamma values are problem specific and must
be selected on a trial-and-error basis. RMSE, MAE, MFE, ESR and MAPE were used to
evaluate the performance of SVMs prediction models.
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4.3.3. Adaptive Neural Fuzzy Inference System Setting

The ANFIS models were developed in MATLAB to train and test the prediction
models. Seventy out of the ninety-eight experimental data were set as the training data
for the neuron-based fuzzy inference system. Different model setups were explored to
determine the best ANFIS prediction model. The remaining 28 samples were set as the
testing data. The concrete compressive strengths predicted by the ANFIS models were
compared with the actual compressive strength obtained from the destructive test. RMSE,
MAE, MFE, ESR and MAPE were used to examine the prediction accuracy. The testing data
were used to assess the best ANFIS model from the training process. The development of
the ANFIS model in MATLAB followed the steps below:

• Step 1: Import the training and testing data:

traindata=xlsread(’traindata.xlsx’) (8)

testdata=xlsread(’testdata.xlsx’) (9)

• Step 2: Create an ANFIS prediction model
In Matlab, "anfisedit" was used to create the ANFIS prediction model. This study tried
eight different types of fuzzy membership functions (MFs) in the prediction model
development process. These membership functions were triangular MF, trapezoid
MF, generalized bell-shaped MF, Gaussian MF, Gaussian combination MF, pi-shaped
MF, the difference between two sigmoidal MF, and product of two sigmoidal MF. The
researchers also varied the number of membership functions (two, three, four, and
five) for the ANFIS model. As result a total of 32 different models were explored
during the ANFIS development process. The ANFIS model setup is summarized as
follows:

− Number of input membership functions: 2, 3, 4, 5
− MF function type: triangular, trapezoid, generalized bell-shaped, Gaussian, Gaus-

sian combination, pi-shaped, the difference between two sigmoidal, and the
product of two sigmoidal

− Output MF type: constant
− FIS training method: hybrid

• Step 3: Set the convergence condition The training model convergence conditions
were set to control the model training time. In the beginning, a learning epoch of 10
and the default value of 5000 times was set and then gradually increased. The network
error tolerance was set to 0.2.

• Step 4: Export training results
When the training process was completed, the testing datasets were used to evaluate
the training model. The model prediction results were exported to the function below.

Out_value = evalfis (testdata, fis1) (10)

The obtained prediction results were then compared to the actual concrete compression
strength to examine the model prediction accuracy. To be consistent, the RMSE, MAE, MFE,
ESR and MAPE were used to measure the model prediction performance.

5. Prediction Results
5.1. Research Implication

The average and standard deviation of the in-situ NDT measurements were calculated
for model development and validation. For the RH tests, there were ten measurements
taken at each test location. Additionally, for the UPV tests, there were four measurements
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taken at each location. The average and standard deviation of the test samples were
calculated using the following equations:

Xavg =
∑n

i=1 x
n

(11)

Xσ =

√
∑(x− x)2

n
. (12)

Among the 98 test samples collected, 70 of them were randomly selected as the
training dataset, and 28 were selected as the testing dataset. To obtain the actual concrete
compressive strength, the core samples that were taken at each location were brought back
to the laboratory for destructive tests. The model prediction accuracy was measured by
the root mean square error (RMSE), the mean absolute percentage error (MAPE), the mean
absolute error (MAE), the mean forecast error (MFE), and the error to signal ratio (ESR), as
illustrated in the following equations:

RMSE =

√
∑n

i=1(Ai − Pi)
2

n
(13)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Ai − Pi
Ai

∣∣∣∣ (14)

MAE =
1
n

n

∑
i=1
|Ai − Pi| (15)

MFE =
1
n

n

∑
i=1

(Pi − Ai) (16)

ESR =
1
n ∑n

i=1(Ai − Pi)
2

1
n ∑n

i=1

(
Pi − 1

n ∑n
i=1 Pi

)2 (17)

where Ai is the actual concrete sample compressive strength and Pi is the model predicted
strength.

In this research, there were three different AI based prediction models: (a) the artificial
neural network; (b) the support vector machine; and (c) the adaptive neural fuzzy inference
system. For these models, results from the RH and UPV tests were set as the input variables;
the concrete compressive strength was set as the output variable. The training datasets
were used to train the models. Different model and parameter setups were explored to
determine the best setup for each AI method. The training models were then validated by
the testing dataset.

5.2. ANNs Model Prediction Results

There were two input variables for the ANNs model: the rebound number and the
ultrasonic pulse velocity. The output variable was the concrete compressive strength.

• Input 1: the average of 10 RH measurements
• Input 2: the average of 4 UPV measurements
• Output: concrete compressive strength

The functions used in the ANNs were linear regression, a radial basic function net-
work (RBFN) trained by Bayesian regularization, a generalized regression network and
multilayer perceptron.

The training error for the ANNs is shown in Table 3. For ANNs model training,
generalized regression network produced the best results with a RMSE of 41.97, MAPE of
5.92%, MAE of 80.47, MFE of −50.47, and ESR of 1.28.
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Table 3. ANNs training errors.

Linear
Regression

RBFN Trained
by Bayesian

Regularization

Generalized
Regression

Network

Multilayer
Perceptron

RMSE 76.891911 51.986192 41.965952 75.674336
MAPE(%) 15.471931 9.266432 5.918182 15.086299

MAE 82.907256 102.849302 80.473584 90.372547
MFE −57.739648 −98.372583 −50.472548 −61.374364
ESR 3.407829 7.287362 1.283648 1.297132

Table 3 shows that the generalized regression network model yields the best training
results. Next, the testing datasets were used to validate the trained model. The prediction
model performances are summarized in Table 4.

Table 4. Prediction results of ANNs models.

Linear
Regression

RBFN Trained
by Bayesian

Regularization

Generalized
Regression

Network

Multilayer
Perceptron

RMSE 95.652017 120.0424 107.0982 104.68823
MAPE(%) 14.690727 18.414986 14.730913 16.449083

MAE 80.368865 106.272740 84.247309 89.247132
MFE −59.742357 −102.085052 −60.145486 −67.736283
ESR 3.417543 6.915669 4.192067 4.137828

In this ANNs simulation, the linear regression function and generalized regression
network produced a better performance, with MAPE’s of 14.69% and 14.73%, respectively.
The multilayer perceptron model had better RMSE than the generalized regression network;
but its MAPE was 2% higher. The model with the linear regression function produced
the best performance compared to models with other functions. The RMSE, MAPE, MAE,
MFE, and ESR of the linear regression model were 95.65, 14.6%, 80.37, −59.74, and 3.42,
respectively.

5.3. SVMs Model Prediction Results

The SVMs models for this research were developed in the MATLAB environment. As
was the case for ANNs models, the input variables for the SVMs models were the average
rebound number and the ultrasonic pulse velocity obtained in the in-situ NDT tests. The
output variable was the concrete compressive strength. From the literature, there is still no
universal method for determining sigma and gamma in the SVMs modeling process. For
this research, sigma and gamma were determined by trial and error. The gamma parameter
was first fixed at 1000, and then sigma was changed for a different model setup. The SVMs
model training results are shown in Table 5. The SVMs model with best prediction result
was the model with a sigma of 32. Next, the sigma parameter is fixed at 32, and the gamma
was changed for a different model setup. The results are summarized in Table 6.

Table 5. SVMs training errors for two input results with fixed gamma = 1000.

Strength
MPa

Sigma
= 1

Sigma
= 2

Sigma
= 4

Sigma
= 8

Sigma
= 16

Sigma
= 32

Sigma
= 64

Sigma
= 128

Sigma
= 256

Sigma
= 512

Sigma
= 1024

RMSE 225.379 238.761 127.547 71.847 67.685 70.755 74.786 76.794 79.475 84.551 88.449
%MAPE 34.893 38.645 18.453 10.237 10.453 10.003 10.870 10.225 11.121 12.337 12.888

MAE 175.365 188.848 104.752 59.916 56.692 55.140 56.481 59.193 62.685 67.241 71.199
MFE 110.943 89.414 35.578 8.192 −7.760 −15.055 −14.912 −14.963 −10.534 −8.297 −4.552
ESR 0.917 0.793 0.918 0.990 0.787 0.782 0.999 1.154 1.437 1.863 2.244
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Table 6. SVMs training errors with two input results with fixed sigma = 32.

Concrete Strength
MPa/cm2 Gamma = 1 Gamma = 10 Gamma = 100 Gamma = 1000

RMSE 97.980 83.296 79.233 70.755
%MAPE 16.003 11.667 10.245 10.003

MAE 85.022 66.797 58.542 55.140
MFE −62.248 −37.794 −23.801 −15.055
ESR 0.795 1.935 1.127 0.782

As shown in Table 6, the sigma of 32 and the gamma of 1000 were obtained for the
SVMs model with the best training results. Then, the testing dataset was used to validate
the best SVMs training model. For the 28 testing samples, prediction model to determine
the compressive strengths were compared with the actual compressive strength. The RMSE
and MAPE that were obtained were 70.15 and 10.23%, respectively, for the best SVMs
training model.

5.4. ANFIS Model Prediciton Results

In the MATLAB environment, users can choose different numbers and different types
of membership functions in the ANFIS model development process. For this research,
ANFIS models with two, three, four, and five membership functions were created to
examine the prediction performance of different model setups. In the meantime, eight
different types of attribution functions were also explored in the ANFIS models, and the
attribute functions were trimf, trapmf, gbellmf, gaussmf, gauss2mf, pimf, dsigmf, and
psigmf.

For this research, a total of 32 different ANFIS models were developed (eight types
of attribute function x four types of function number). Among the 32 ANFIS models, the
model with the triangular membership function ‘trimf’ and the model with the trapezoid
membership function ‘tramf’ had the best training results, as shown in Tables 7 and 8. The
average rebound number and average ultrasonic pulse velocity were the ANFIS input
variables. The output variable was the concrete compressive strength.

Table 7. Training results of the ANFIS model with triangular membership function ‘trimf’.

Concrete Strength (MPa) 2 2 3 3 4 4 5 5

RMSE 94.997 65.765 2.98 × 103 390.926
MAPE (%) 14.000 9.994 126.478 50.085

MAE 76.887 52.965 720.754 177.836
MFE −53.776 −2.827 587.964 −17.507
ESR 2.904 0.797 1.028 0.799

Table 8. Training error results of the ANFIS model with the trapezoid membership function ‘tramf’.

Concrete Strength (MPa) 2 2 3 3 4 4 5 5

RMSE 115.004 94.001 460.393 271.861
MAPE (%) 16.993 13.046 47.993 35.937

MAE 95.973 65.237 276.482 168.496
MFE −77.827 11.362 −164.447 −25.646
ESR 4.436 1.020 1.184 0.759

After obtaining the best ANFIS training models, the validation was conducted by
introducing the testing data to examine the model prediction accuracy. The ANFIS model
prediction results are summarized in Tables 9 and 10.



Crystals 2021, 11, 1157 15 of 18

Table 9. Prediction results of the ANFIS model with the triangular membership function ‘trimf’.

Concrete Strength (MPa) 2 2 3 3 4 4 5 5

RMSE 95.221 64.489 3.21 ×103 393.210
MAPE (%) 14.086 10.019 126.344 49.439

MAE 77.107 53.025 721.955 180.336
MFE −52.932 −2.973 585.836 −17.787
ESR 3.034 0.787 0.992 0.826

Table 10. Prediction results of the ANFIS model with the trapezoid membership function ‘tramf’.

Concrete Strength (MPa) 2 2 3 3 4 4 5 5

RMSE 114.845 94.150 456.313 272.701
MAPE (%) 17.135 12.924 48.944 36.643

MAE 96.353 64.208 275.324 169.001
MFE −75.985 12.963 −160.186 −26.294
ESR 4.298 0.993 1.086 0.782

The models with the best prediction performance are summarized in Table 11. All
three AI methods have a MAPE under 15%, while the ANFIS model has the best prediction
results, with a MAPE of 10.01%. For the ANNs models, the linear regression model has
the best prediction results. Table 12 shows a portion of the weights and the bias of the best
ANNs prediction model. For the SVMs models, the RBF kernel SVMs with a sigma of 32
and a gamma of 1000 yields the best prediction results. For the ANFIS models, the model
with two triangular membership functions for each input produces the best prediction
results. Overall, the ANFIS models yield the best prediction performance, with an RMSE
of 64.49 and a MAPE of 10.01% when validated using the randomly chosen testing dataset.
Moreover, both the prediction results of the SVMs and ANFIS models outperform the
ANNs model, which is the model that is the most commonly used by other researchers.

Table 11. Best model prediction accuracy summary.

Forecasting
Model Parameter Setting RMSE MAPE (%) MAE MFE ESR

ANNs linear regression 95.65 14.69 80.37 −59.74 3.42

SVMs gamma = 1000, sigma = 32 70.76 10.00 55.14 −15.06 0.78

ANFIS Two triangular membership
function 64.49 10.01 53.03 −2.97 0.79

Table 12. Weights and bias of the best ANNs model.

Weights W1i W2i W3i W4i W5i W6i W7i W8i W9i W10i Bias

W1(1 × 10)
W2,col1(10 × 7)

Layer 1 −0.445 0.563 1.456 −2.159 0.849 0.849 0.849 0.849 0.849 0.717
Layer 2 0.261 −2.314 1.347 −1.352 −0.013 −0.013 −0.013 −0.013 −0.013 0.657 0.921

WO(7 × 1) −0.329 1.020 0.598 0.230 −1.239 1.254 0.962 0.487

6. Conclusions

To improve the estimation results of in-situ non-destructive concrete compressive
strength tests, artificial intelligence methods were applied to analyze the experimental
data from the rebound hammer test and the ultrasonic pulse velocity test. Three artificial
intelligence techniques (artificial neural networks, support vector machines, and adaptive
neural fuzzy inference system) were adopted to develop concrete compressive strength
prediction models. In-situ experimental data form a total of 98 samples were collected
from the non-structural beams of a large residential complex. Both RH and UPV tests were
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conducted on the designated test locations, and core samples were then taken to obtain the
actual concrete compressive strength at each test location. Among the 98 samples, 70 sam-
ples were randomly chosen to be the training data in this study. The remaining 28 samples
were set as the testing data to evaluate the model prediction accuracy. When applying the
three AI methods, different model setups were explored in the model development process.
The two model input variables were the average of the rebound hammer number and the
average of the ultrasonic pulse velocity. The model output was the concrete compressive
strength. During the model development process, the 70 testing data were used to develop
and train the models. The training models with the best results were identified and were
then validated using the 28 testing data.

From the literature, it has been shown that traditional concrete compressive strength
estimations have a mean absolute percentage error (MAPE) of over 20% when compared
to the actual compressive strength obtained by destructive tests. Moreover, most of the
previous research used samples from a laboratory instead of samples from the actual
structure. For this research, in-situ non-destructive concrete compressive strength tests
were conducted, and core samples were taken to identify the actual concrete compressive
strength. By applying the AI techniques to the data analysis, the research results show
that the ANNs, SVMs, and ANFIS prediction models yield satisfactory concrete strength
prediction results with MAPE’s of 14.69%, 10.23%, and 10.01%, respectively. This shows
a significant improvement compared to the results from previous research. The research
results provide a valuable reference for both researchers and the industry practitioners
when evaluating in-situ concrete compressive strength using NDT methods.
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