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Abstract: The effects of substituents on the arrangement of metal–dithiolene complexes based on
π-conjugated systems, which are extensively used to synthesize various functional materials, have not
been studied adequately. New donor-type nickel–dithiolene complexes fused with bulky cycloalkane
substituents [Ni(Cn-dddt)2] (C5-dddt = 4a,5,6,6a-pentahydro-1,4-benzodithiin-2,3-dithiolate; C6-
dddt = 4a,5,6,7,8,8a-hexahydro-1,4-benzodithiin-2,3-dithiolate; C7-dddt = 4a,5,6,7,8,9,9a-heptahydro-
1,4-benzodithiin-2,3-dithiolate; and C8-dddt = 4a,5,6,7,8,9,10,10a-octahydro-1,4-benzodithiin-2,3-
dithiolate) were synthesized in this study. All the complexes were crystallized in cis-[Ni(cis-Cn-
dddt)2] conformations with cis-oriented (R,S) conformations around the cycloalkylene groups in the
neutral state. Unique molecular arrangements with a three-dimensional network, a one-dimensional
column, and a helical molecular arrangement were formed in the crystals owing to the flexible
cycloalkane moieties. New 2:1 cation radical crystals of [Ni(C5-dddt)2]2(X) (X = ClO4

− or PF6
−),

obtained by electrochemical crystallization, exhibited semiconducting behaviors (ρrt = 0.8 Ω cm,
Ea = 0.09 eV for the ClO4

− crystal; 4.0 Ω cm, 0.13 eV for the PF6
− crystal) under ambient pressure due

to spin-singlet states between the dimers of the donor, which were in accordance with the conducting
behaviors under hydrostatic pressure (ρrt = 0.2 Ω cm, Ea = 0.07 eV for the ClO4

− crystal; 1.0 Ω cm,
0.12 eV for the PF6

− crystal at 2.0 GPa).

Keywords: nickel–dithiolene complex; cycloalkane substituent; molecular conductor

1. Introduction

Organic π-conjugated molecules, including tetrathiafulvalene (TTF) skeletons, are
among the most common building blocks for the realization of various functional mate-
rials [1]. The TTF molecule has an electron donor ability, which can help realize various
charge transfers and produce radical cation crystals. The TTF-TCNQ (TCNQ: 7,7,8,8-
tetracyanoquinodimethane) is a prototype of charge-transfer compounds, where the
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) bands of the open-shell donors and acceptors, respectively, contribute to the con-
duction [2,3]. It is the first organic conductor to exhibit a metallic conductivity within a
wide temperature range with a minimum of 59 K, where a sharp metal-to-insulator tran-
sition is observed [4]. Moreover, TTF has attracted significant research attention with the
discovery of superconducting salts [5–8] based on TTF derivatives such as atetramethylte-
traselenafulvalene (TMTSF) [9], bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) [10,11], and
dimethyl(ethylenedithio)diselenadithiafulvalene (DMET) [12,13]. The conducting properties
of molecular-based materials are significantly influenced by their molecular arrangements in
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crystal form. The cation radicals of BEDT-TTF and bis(ethylenedithio)tetraselenafulvalene
(BETS) can crystallize in various donor packing motifs, including α-, β-, θ-, κ-, and λ-type
arrangements by combination with inorganic, organic, and organometallic anions [14–18].
Alternative strategies for tuning the molecular arrangements in organic conductors were
reported based on organic synthesis techniques. A potential method involves the di-
rect introduction of various substituents into the TTF or BEDT-TTF skeletons [19–42].
Kimura et al. reported that meso-2-(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)-
5,6-dihydro-5,6-dimethyl-1,3-dithiolo[4,5-b][1,4]dithiin (meso-DMBEDT-TTF) forms a su-
perconducting crystal β-(meso-DMBEDT-TTF)2PF6 with a transition temperature at 4.3
K under a hydrostatic pressure of 4.0 kbar due to a checkerboard-type charge order state
on the donor molecules [43,44]. Another alternative method involves the introduction
of bulky cycloalkane moieties into the donor molecules to determine the stacking of
the donor molecules; thus, the ratio of the on-site Coulomb repulsion energy U to the
bandwidth W can be controlled by changing W for the organic Mott insulators based on
the enhanced steric hindrance in the radical cation crystals of CnDT-EDO-TTF (n = 5, 6,
7, 8; cis-1,2-cycloalkylene-1,2-dithio)ethylenedioxytetrathiafulvalene] and its derivatives
(Scheme 1) [45,46].
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Metal bis-dithiolene complexes can exhibit various oxidation states [47] and have
smaller HOMO–LUMO gaps than those of the organic donors [48,49], which is advanta-
geous for the components of molecular conductors. Electron-acceptor type [M(dmit)2]
(M = Pd, Pt; dmit = 1,3-dithiole-2-thion-4,5-dithiolete) complexes with small gaps between
the HOMO and LUMO form dimer structures. These structures induce crossing HOMO–
LUMO band inversions through metal–metal interactions in the solid state, which provide
various conducting, magnetic, and other physical properties by combining with closed-shell
cations [47,50–52]. The electron-donor-type metal bis-dithiolene complexes [M(dddt)2]
(M = Ni, Pd, Pt, and Au; dddt = 5,6-dihydro-1,4-dithiine-2,3-ditholate) are candidate mate-
rials for the development of molecular conductors due to their orbital symmetries, which
are similar to those of BEDT-TTF [53–56]. A cation radical crystal, [Ni(dddt)2]3(AuBr2)2,
is the first metal based on the donor-type metal–dithiolene complexes exhibiting metallic
behavior down to at least 1.3 K [57]. Recently, Kato et al. reported a single-component
molecular Dirac electron system based on Pd(dddt)2 that exhibits temperature-independent
resistivity under high hydrostatic pressures [58–63]. The conducting and magnetic proper-
ties exhibited by the molecular crystals based on the dithiolene complexes are significantly
dependent on the molecular arrangements of the metal–dithiolene complexes and organic
molecular conductors. In the case of molecular conductors based on metal–dithiolene com-
plexes, the molecular arrangements of the complexes are dependent on the combination of
counter cations and anions in the crystals [47,48]. However, there are few reports on the
substituent effects on the molecular arrangement, which influences the physical properties,
despite the advantages of the components of molecular conductors [64,65]. Thus, we
designed novel donor-type metal bis-dithiolene complexes [Ni(Cn-dddt)2] formed by a
[Ni(dddt)2] skeleton fused with bulky cycloalkane rings and investigated the substituent
effects on the arrangement of the complexes and their physical properties (Scheme 2).
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Donor organic molecules fused with bulky substituents such as cycloalkane and diox-
ane moieties can form unique molecular arrangements in the crystals [66], which exhibit
superconducting and metallic behaviors [45,46,67–69].
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In this paper, we report the donor abilities of novel donor complexes [Ni(Cn-dddt)2]
with two cycloalkane rings (C5-dddt = 4a,5,6,6a-pentahydrro-1,4-benzodithiin-2,3-dithiolate;
C6-dddt = 4a,5,6,7,8,8a-hexahydro-1,4-benzodithiin-2,3-dithiolate; C7-dddt = 4a,5,6,7,8,9,9a-
heptahydro-1,4-benzodithiin-2,3-dithiolate, and C8-dddt = 4a,5,6,7,8,9,10,10a-octahydro-
1,4-benzodithiin-2,3-dithiolate) based on electrochemical measurements and electronic
absorption spectra. The packing motifs of the neutral [Ni(Cn-dddt)2] (n = 5, 6, 7, 8) were
discussed based on X-ray crystallographic analysis results. Furthermore, electronic features
of new cation radical crystals [Ni(C5-dddt)2]2[X] (X = ClO4

− and PF6
−) were revealed

using electrical resistivity, magnetic measurements, and band calculations based on the
crystal structures.

2. Materials and Methods
2.1. Materials

All the solvents were of analytical grade and were used without further purifica-
tion. All the reactions were performed in a nitrogen atmosphere. Oligo(1,3-dithiole-2,4,5-
trithione) ((C3S5)x) [70] and (Bu4N)[Ni(dddt)2] [56] were prepared using a previously
reported method.

2.2. Synthesis
2.2.1. Synthesis of 4,5-Cis(cyclopentalenedithio)-1,3-dithiole-2-thione (L1),
4,5-Cis(cyclohexylenedithio)-1,3-dithiole-2-thione (L2),
4,5-Cis(cycloheptalenedithio)-1,3-dithiole-2-thione (L3), and
4,5-Cis(cyclooctalenedithio)-1,3-dithiole-2-thione (L4)

In a nitrogen atmosphere, cyclopentene (25 mmol) was dissolved in 1,2-dichloroethane
(25 mL), and oligo(1,3-dithiole-2,4,5-trithione) (10 mmol) was added. The resulting suspen-
sion was heated to 135 ◦C for 14 h with stirring, and the reaction mixture was filtered to
remove insoluble precipitates. The evaporation of the filtration in vacuo, followed by purifi-
cation of the residue by column chromatography (SiO2, carbon disulfide (CS2)-hexane 1:3),
yielded 67.6% 4,5-cis(cyclopentalenedithio)-1,3-dithiole-2-thione (L1) as yellow crystals
after recrystallization from hot ethanol (EtOH). Moreover, 4,5-cis(cyclohexylenedithio)-
1,3-dithiole-2-thione (L2), 4,5-cis(cycloheptalenedithio)-1,3-dithiole-2-thione (L3), and 4,5-
cis(cyclooctalenedithio)-1,3-dithiole-2-thione (L4) were obtained using a similar procedure
with corresponding cycloalkenes as starting materials, yielding 32.7% L2, 77.6% L3, and
69.2% L4.
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2.2.2. Synthesis of 4,5-Cis(cyclopentalenedithio)-1,3-dithiole-2-one (L1′) and
4,5-Cis(cyclohexylenedithio)-1,3-dithiole-2-one (L2′),
4,5-Cis(cycloheptalenedithio)-1,3-dithiole-2-one (L3′), and
4,5-Cis(cyclooctalenedithio)-1,3-dithiole-2-one (L4′)

Mercuric acetate (1.5 mmol) was added to a solution of L1′ (1 mmol) in tetrahydrofuran-
acetic acid (2:1, 45 mL), and the resulting white suspension was stirred for 30 min at
20 ◦C. The resulting white precipitate was removed by filtration using Celite and washed
thoroughly using chloroform. The combined organic phases were washed using water
(2 × 100 mL), saturated sodium hydrogen carbonate (2× 100 mL), and water (1 × 100 mL),
and then they were dried using magnesium sulfate. The removal of the solvent in
vacuo yielded 98% 4,5-cis(cyclopentalenedithio)-1,3-dithiole-2-one (L1′) as large pale
yellow needle crystals. Moreover, 4,5-cis(cyclohexylenedithio)-1,3-dithiole-2-one (L2′),
4,5-cis(cycloheptalenedithio)-1,3-dithiole-2-one (L3′), and 4,5-cis(cyclooctalenedithio)-1,3-
dithiole-2-one (L4′) were obtained using a similar procedure; thus yielding 97% L2′, 98%
L3′, and 97% L4′.

2.2.3. Synthesis of Monoanionic Complexes (Bu4N)[Ni(Cn-dddt)2] (n = 5, 1; n = 6, 2; n = 7,
3; and n = 8, 4)

Sodium (3.0 mmol) and Lm’ (m = 1–4) (1.2 mmol) were dissolved in EtOH (15 mL). The
resulting clear orange solution was dropped into an EtOH solution (15 mL) of NiCl2·6H2O
(0.6 mmol) for 30 min with stirring. The resulting solution had a dark purple color. It
was stirred in the air for a further 30 min, and the color changed to dark green as the
reaction proceeded. After filtration to remove insoluble precipitates, one equivalent tetra-
butylammonium bromide was added to the solution, and a dark green solid precipitated
immediately. The green solids of monoanionic complexes 1–4 were collected by filtration
and recrystallized using acetone. The yields for 1, 2, 3, and 4 were 79.6%, 63.0%, 46.4%, and
38.8%, respectively.

2.2.4. Synthesis of Neutral Complexes [Ni(Cn-dddt)2] (n = 5, 5; n = 6, 6; n = 7, 7; and
n = 8, 8)

An acetonitrile (CH3CN) (50 mL) solution of iodine (1.3 mmol) was added to a CH3CN
solution (100 mL) of monoanionic complexes 1–4 (0.23 mmol). Black precipitates of 5–8
were obtained immediately. The precipitates of the neutral complexes were collected by
filtration, washed using CH3CN and methanol, and dried under reduced pressure. Black
block-shaped single crystals of the neutral complexes 5–8, which were suitable for X-ray
crystallographic analyses, were obtained by recrystallization from their carbon disulfide
solutions. The yields for 5, 6, 7, and 8 were 69.2%, 31.5%, 62.9%, and 36.8%, respectively.
The elemental analysis results for these complexes are summarized in Table 1.

Table 1. Results of the elemental analyses of 1–8.

Complex Observed (Calculation Result) (%) Complex Observed (Calculation Result) (%)

Formula C H N Formula C H Ni S

1 48.32 6.91 1.89 5 33.59 3.14 11.58 51.33
C30H52NNiS8 (48.56) (7.06) (1.89) C14H16NiS8 (33.66) (3.23) (11.75) (51.36)

2 49.65 7.26 1.85 6 36.21 3.70 11.08 48.60
C32H56NNiS8 (49.91) (7.33) (1.82) C16H20NiS8 (36.43) (3.82) (11.13) (48.63)

3 50.88 7.50 1.67 7 38.87 4.26 10.44 46.40
C34H60NNiS8 (51.17) (7.58) (1.76) C18H24NiS8 (38.91) (4.35) (10.56) (46.17)

4 51.90 7.71 1.70 8 41.00 4.81 9.81 43.86
C36H64NNiS8 (52.34) (7.81) (1.70) C20H28NiS8 (41.16) (4.84) (10.06) (43.95)
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2.2.5. Synthesis of Radical Cation Crystals [Ni(C5-dddt)2]2[ClO4] (9) and
[Ni(C5-dddt)2]2[PF6] (10)

Dichloromethane (CH2Cl2) solutions (10 mL) of 5 (0.03 mmol) containing (Bu4N)(X)
(X = ClO4 or PF6) (0.09 mmol) as electrolytes were electrolyzed under constant-current con-
ditions (3 µA) for three days in an H-shaped cell equipped with platinum wire electrodes in
an argon atmosphere at 20 ◦C. Black crystals of 9 and 10 were formed on the anode surface.
The chemical formulas of 9 and 10 were confirmed by X-ray crystal structural analyses.

2.3. Physical Measurements
2.3.1. Elemental Analyses

The analyses of the carbon, hydrogen, and nitrogen elements were performed using a
PERKIN-ELMER 240 C elemental analyzer for 1, 3, 7; and a Yanako MT-6 CHN CORDER
for 2, 4, 5, 6, and 8. The elemental analyses of the nickel and sulfur atoms of the neutral
complexes 5–8 were performed using a SHIMADZU ICPS-1000IV by the Chemical Analysis
Team of AD&SD in RIKEN.

2.3.2. Electrochemical Measurements

Cyclic voltammograms of monoanionic complexes 1–4 were obtained using acetoni-
trile solutions (1 × 10−3 mol L−1) with (Bu4N)(ClO4) (0.1 M) as a supporting electrolyte
and recorded using a BAS ALS/[H] CH Instruments Model 610 electrochemical analyzer
combined with an Ag/Ag+ reference electrode, platinum counter electrode, and glassy
carbon working electrode at room temperature. The scan rate of the measurements was
100 mV/s.

2.3.3. Electronic Absorption Spectra

The electronic absorption spectra (300–1600 nm) of 1–8 in CH2Cl2, CH3CN, and
benzene solutions (5× 10−5 mol L−1) at room temperature were measured by the Chemical
Analysis Team of AD&SD in RIKEN using a Shimadzu UV-3100 system.

2.3.4. Electrical Resistivity

The temperature dependence of the electrical resistivity was measured using the
standard four-probe method at ambient pressure for 9 and 10. Gold wires (15 µm in
diameter) were attached to the crystal with a carbon paste. Resistivity measurements under
the hydrostatic pressure of the salt were performed within the range from 0.3–1.8 GPa
using a clamp-type piston-cylinder high-pressure cell [71,72].

2.3.5. Magnetic Susceptibility

The magnetic susceptibilities of 9 (15 mg) and 10 (20 mg) were measured in a magnetic
field of 1 T using a superconducting quantum interference device (SQUID) magnetometer
(Quantum Design, MPMS-XL7) within the temperature range of 2–300 K.

2.3.6. Band Calculation

The intermolecular overlap integrals (S) between the frontier orbitals were calcu-
lated based on the extended Hückel molecular orbital (MO) method. The semi-empirical
parameters for the Slater-type atomic orbitals were obtained from the literature [73–75].

2.3.7. Crystal Structure Determinations of L2–L4, Neutral Complexes 5–8, and Radical
Cation Crystals 9 and 10

Crystallographic data for the single crystals of L2–L4, 5–8, and 9–10 were obtained
using a Rigaku MicroMax-007 diffractometer with a multilayer mirror monochromated
Mo-Kα (λ = 0.71073 Å) and charge-coupled device detector at 93 K. Structural refinements
were carried out using the full-matrix least-squares method on F2 [76]. The structures
were determined and refined using SHELXL-2018 in the Olex2 software package [77,78].
The parameters were refined using anisotropic temperature factors, with the exception
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of the hydrogen atoms, which were parametrically refined using the riding model with a
fixed C-H bond distance of 0.95 Å. The crystallographic data for L2–L4, 5–8, and 9–10 are
summarized in Tables 2–4, respectively.

Table 2. Crystallographic data for neutral complexes L2–L4.

L2 L3 L4

Chemical formula C7.2H8S4 C8H9.60S4 C7.34H9.34S3.34
Crystal size/mm3 0.40 × 0.10 × 0.04 0.30 × 0.06 × 0.03 0.40 × 0.03 × 0.02
Formula weight 222.78 234.00 204.45
Crystal system Monoclinic Monoclinic Monoclinic

Space group P21/c P21/c P2/c
a/Å 12.7079(3) 5.3224(3) 11.2835(7)
b/Å 9.8356(2) 21.7855(10) 6.8878(3)
c/Å 18.7846(4) 10.5687(5) 17.1727(13)
α/◦ 90 90 90
β/◦ 105.640(2) 95.793(5) 106.533(7)
γ/◦ 90 90 90

V/Å3 2260.95(9) 1219.19(11) 1279.46(14)
Z 10 5 6

T/K 93 93 93
µ(Mo Kα)/mm−1 0.980 0.913 0.874

Dcalc/g cm−3 1.636 1.594 1.592
F(000) 1152 608 640

λ (Mo-Kα)/Å 0.71073 0.71073 0.71073
Measured 2θ range/◦ 4.75–60.98 3.938–60.722 3.766–60.41

No. of reflections
collected 22,206 10,849 11,351

Independent
reflections 16,862 7823 6705

Observed reflections
with I > 2.00 σ(I) 5456 2882 2973

Rint 0.0191 0.0291 0.0255
R(F2) (I > 2.00σ(I)) a 0.0211 0.0293 0.0267
wR(F2) (all data) b 0.0537 0.0740 0.0654

Goodness of fit (GOF) 1.064 1.056 1.041
CCDC number 2,103,657 2,103,658 2,103,659

a R(F2) = Σ (Fo
2 − Fc

2)/Σ Fo
2; b wR(F2) = [Σ w(Fo

2 − Fc
2)2/Σ w(Fo

2)2]1/2 and w−1 = [Σ2 (F2) + (0.0278P)2 +
0.7843P] for L2; w−1 = [Σ2 (F2) + (0.0450P)2 + 0.3773P] for L3; and w−1 = [Σ2 (F2) + (0.0379 P)2 + 0.4043P] for L4
(where P = (Fo

2 + 2Fc
2)/3).

Table 3. Crystallographic data for neutral complexes 5–8.

5 6 7 8

Chemical formula C14H16NiS8 C16H20NiS8 C7.2H9.6Ni0.4S3.2 C6.67H9.32Ni0.33S2.66
Crystal size/mm3 0.14 × 0.11 × 0.06 0.16 × 0.09 × 0.06 0.07 × 0.04 × 0.01 0.18 × 0.07 × 0.07
Formula weight 499.46 527.51 222.22 194.41
Crystal system Monoclinic Monoclinic Monoclinic Triclinic

Space group P21/n P21 P21/n P-1
a/Å 6.2830(2) 8.0303(3) 12.5305(6) 6.8973(10)
b/Å 9.8825(3) 8.8084(4) 6.7500(3) 8.6190(13)
c/Å 15.2978(4) 14.8128(5) 13.6312(6) 11.5730(15)
α/◦ 90 90 90 69.507(13)
β/◦ 100.685(3) 105.033(4) 108.057(5) 85.237(11)
γ/◦ 90 90 90 71.298(13)

V/Å3 933.40(5) 1011.91(7) 1096.15(9) 610.09(16)
Z 2 2 5 3

T/K 93 93 93 93
µ(Mo Kα)/mm−1 1.928 1.783 1.651 1.486

Dcalc/g cm−3 1.777 1.731 1.683 1.587
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Table 3. Cont.

5 6 7 8

F(000) 512 544 576 304
λ (Mo-Kα)/Å 0.71073 0.71073 0.71073 0.71073

Measured 2θ range/◦ 4.938–60.77 5.224–60.742 5.376–61.08 3.75–60.606
No. of reflections

collected 10,661 9330 9850 9364

Independent reflections 7606 6979 6434 3699
Observed reflections

with I > 2.00σ(I) 2215 4857 2436 2568

Rint 0.0182 0.0187 0.0226 0.0267
R(F2) (I > 2.00σ(I)) a 0.0237 0.0499 0.0252 0.0827
wR(F2) (all data) b 0.0595 0.1305 0.0544 0.1977

GOF 1.056 1.215 1.051 1.185
Flack parameter 0.328(7)
CCDC number 2,103,660 2,103,661 2,103,662 2,103,663
a R(F2) = Σ (Fo

2 − Fc
2)/Σ Fo

2, b wR(F2) = [Σ w(Fo
2 − Fc

2)2/Σ w(Fo
2)2]1/2 and w−1 = [Σ2 (F2) + (0.0341P)2 + 0.4506P] for 5; w−1 = [Σ2 (F2) +

(0.0110P)2 + 9.3099P] for 6; w−1 = [Σ2 (F2) + (0.0275P)2 + 0.2769P] for 7; and w−1 = [Σ2 (F2) + (0.0195P)2 + 10.6333P] for 8 (where P = (Fo
2 +

2Fc
2)/3).

Table 4. Crystallographic data for the radical cation crystals 9 and 10.

9 10

Chemical formula C7H8Cl0.25Ni0.50OS4 C7H8F1.5Ni0.5P0.25S4
Crystal size/mm3 0.12 × 0.12 × 0.08 0.14 × 0.07 × 0.01
Formula weight 274.59 285.97
Crystal system Monoclinic Monoclinic

Space group P2/c P2/c
a/Å 12.6888(3) 12.6865(4)
b/Å 6.25150(10) 6.3020(2)
c/Å 24.1229(6) 24.3145(8)
α/◦ 90 90
β/◦ 93.462(2) 92.900(3)
γ/◦ 90 90

V/Å3 1910.03(7) 1941.46(11)
Z 8 8

T/K 93 93
µ(Mo Kα)/mm−1 1.969 1.928

Dcalc/g cm−3 1.910 1.957
F(000) 1122 1162

λ (Mo-Kα)/Å 0.71073 0.71073
Measured 2θ range/◦ 4.782–60.788 4.518–60.73

No. of reflections collected 16,993 17,389
Independent reflections 12,771 9840

Observed reflections with I >
2.00σ(I) 4756 4142

Rint 0.0135 0.0338
R(F2) (I > 2.00σ(I)) a 0.0302 0.0335
wR(F2) (all data) b 0.0659 0.0737

GOF 1.068 1.024
CCDC number 2,103,664 2,103,665

a R(F2) = Σ (Fo
2 − Fc

2)/Σ Fo
2; b wR(F2) = [Σ w(Fo

2 − Fc
2)2/Σ w(Fo

2)2]1/2 and w−1 = [Σ2 (F2) + (0.0186P)2 +
4.1733P] for 9; and w−1 = [Σ2(F2) + (0.0403P)2 + 1.0162P] for 10 (where P = (Fo

2 + 2Fc
2)/3).
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3. Results and Discussion
3.1. Synthesis of Complexes 1–8
3.1.1. Syntheses and Molecular Structures of Precursors L1–L4

One of the most effective methods for synthesizing various TTF derivatives and their
precursors involves [2 + 4] cycloadditions of (C3S5)x (as 4π) and a molecule that involves
one of its external double bonds (as 2π) [79]. This reaction is stereospecific, similar to
the [2 + 4] cycloaddition of tetrathiooxalate with alkanes, thus providing a cis-oriented
compound [80]. Precursors L1–L4 were synthesized using a modified version of a method
outlined in a previous study, by the [2 + 4] cycloadditions of (C3S5)x and cycloheptene,
cyclohexene, cycloheptene, and cyclooctene [81]. The cycloalkylene residues were cis-
oriented with respect to the newly formed 1,4-dithiene rings. Single crystals of L1–L4
were obtained by recrystallization from their dichloromethane solutions, which were
suitable for X-ray crystallographic analyses, with the exception of L1. Figure 1 presents
the molecular structures of two crystallographically independent molecules A and B in the
crystal of L2. The fused cyclohexane moieties in molecules A and B formed cis-oriented
(R,S) conformations at the two carbons C(4)-C(5) and C(13)-C(14), respectively. Stable
chair-type configurations of the cyclohexylene groups were observed for molecules A and
B. A similar cis-oriented conformation was observed in the crystals of 4,5-(l,4-dioxanediyl-
2,3-dithio)-l,3-dithiole-2-thione and 4,5-(cis-cyclohexylenedithio)-1,3-dithiole-2-one [82,83].
The bond distances of C=C and C=S were 1.349 Å and 1.648 Å for molecule A, and 1.352 Å
and 1.648 Å for molecule B. The angles between the planes formed by S(1)-C(2)-C(3)-S(2)
and S(3)-C(2)-C(3)-S(4) in molecule A and S(6)-C(11)-C(12)-S(7) and S(8)-C(11)-C(12)-S(9) in
molecule B were 3.86◦ and 3.08◦, respectively. The bond distances and angles indicate that
the C3S5 moieties of molecules A and B formed similar planar structures. The torsion angles
around the fused cyclohexyl group in molecule A were−71.20◦,−6.76◦, and 56.18◦ for C(2)-
S(1)-C(4)-C(5), C(3)-S(2)-C(5)-C(4), and S(1)-C(4)-C(5)-S(2), respectively. The corresponding
torsion angles in molecule B were −62.56◦, −26.37◦, and 63.91◦ for C(11)–S(6)–C(13)-C(14),
C(12)-S(7)-C(14)-C(13), and S(6)-C(13)-C(14)-S(7), respectively. The comparison of the
torsion angles between molecules A and B revealed that the fused cyclohexylene group in
molecule A deviated more from the C3S5 plane at the S(1) and S(2) positions than that of
molecule B.
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Figure 1. Molecular structures of two crystallographically independent molecules, (a) A and (b) B, in the crystal of L2 along
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Figure 2 presents the molecular structures of L3 and L4. The fused cycloheptane
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and cyclooctane moieties formed cis-oriented (R,S) conformations at the two carbons
C(4) and C(5), respectively, in addition to molecule L2. Twist-chair- and boat-chair-type
configurations of the cycloheptylene and cyclooctylene groups were formed in L3 and L4,
which were observed in the crystals of CnDT-EDO-TTF (n = 7, 8) [45]. The C3S5 moieties of
L3 and L4 were planar structures, as observed in the crystal of L2; where the bond lengths
C(1)=S(5) and C(2)=C(3) and the angles between the planes formed by S(1)-C(2)-C(3)-S(2)
and S(3)-C(2)-C(3)-S(4) were 1.656 Å, 1.355 Å, and 2.89◦ for L3; and 1.647 Å, 1.344 Å, and
2.75◦ for L4, respectively. The torsion angles around the fused cycloalkylene groups of
C(2)-S(1)-C(4)-C(5), C(3)-S(2)-C(5)-C(4), and S(1)-C(4)-C(5)-S(2) were 57.68◦, 42.60◦, and
−72.47◦ for L3; and 58.00◦, 41.11◦, and −72.18◦ for L4, respectively.
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3.1.2. Molecular and Crystal Structures of Neutral Complexes 5–8

We successfully obtained single crystals of the neutral complexes that were suitable
for X-ray crystallographic analysis by recrystallization from CS2 solutions of complexes 5–8.
The synthetic procedure for the neutral complexes is shown in Scheme 3. The precursors of
L1–L4 formed cis-oriented (R,S) conformations around the cycloalkylene groups due to the
[2 + 4] cycloadditions. Using the synthetic procedures shown in Scheme 3, Monoanionic
complexes 1–4 were obtained as mixtures, including diastereomeric isomers (Bu4N){trans-
[Ni(cis-Cn-dddt)2]} and (Bu4N){cis-[Ni(cis-Cn-dddt)2]}, due to the conformations between
the two cycloalkylene groups in the molecules. The oxidation of Monoanionic complexes
1–4 resulted in the formation of mixtures of diastereomeric isomers for neutral complexes
5–8 (Scheme 4). From the recrystallization processes, single crystals of neutral complexes
5–8 were formed by the trans-isomers.
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Scheme 4. Diastereomeric isomers of the trans- and cis-[Ni(cis-C5-dddt)2] complexes.

The selected bond lengths and angles of the neutral complexes in crystals 5–8 are
summarized in Table 5. In molecules of 5–8, square planar co-ordinations were constructed
around the Ni atoms, similar to previously reported square planar Ni-dithiolene complexes
such as [Ni(dddt)2] in a neutral state [84–91].

Table 5. Selected bond lengths and angles of neutral complexes 5–8.

5 6 7 8

N(1)-S(1) 2.1291(4) 2.134(2) 2.1350(4) 2.1341(18)
Ni(1)-S(2) 2.1340(4) 2.134(2) 2.1343(4) 2.1404(17)
Ni(1)-S(5) 2.137(2)
Ni(1)-S(6) 2.138(2)
S(1)-C(1) 1.7147(15) 1.705(8) 1.7143(15) 1.719(7)
S(2)-C(2) 1.7153(15) 1.716(9) 1.7084(16) 1.708(7)
S(3)-C(1) 1.7406(15) 1.736(9) 1.7393(16) 1.748(7)
S(4)-C(2) 1.7406(15) 1.733(9) 1.7418(15) 1.750(7)
S(5)-C(9) 1.715(9)

S(6)-C(10) 1.699(9)
S(7)-C(9) 1.739(8)

S(8)-C(10) 1.755(9)
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Table 5. Cont.

5 6 7 8

S(3)-C(3) 1.8239(15) 1.819(9) 1.8486(15) 1.829(7)
S(4)-C(4) 1.8126(15) 1.823(9) 1.8291(16) 1.820(7)
C(1)-C(2) 1.386(2) 1.413(12) 1.389(2) 1.380(10)
C(3)-C(4) 1.524(2) 1.549(12) 1.525(2) 1.508(10)
S(7)-C(11) 1.818(9)
S(8)-C(12) 1.832(9)
C(9)-C(10) 1.400(12)
C(11)-C(12) 1.523(12)

S(1)-Ni(1)-S(2) 91.652(14) 91.79(10) 91.959(15) 91.68(7)
S(5)-Ni(1)-S(6) 91.50(9)

S(1)-Ni(1)-S(2′) a) 88.347(14) 88.040(15) 88.32(7)
S(1)-Ni(1)-S(5) 88.79(9)
S(1)-Ni(1)-S(6) 87.97(9)
C(1)-C(2)-S(2) 119.03(11) 118.3(7) 119.86(12) 119.5(5)
C(1)-C(2)-S(4) 127.43(12) 127.8(7) 122.23(12) 126.2(5)
C(2)-C(1)-S(1) 119.29(11) 119.4(7) 118.98(12) 119.5(5)
C(2)-C(1)-S(3) 126.84(12) 125.6(7) 126.44(12) 126.6(5)

C(9)-C(10)-S(6) 120.3(7)
C(9)-C(10)-S(8) 125.6(7)
C(10)-C(9)-S(5) 117.8(6)
C(10)-C(9)-S(7) 128.3(7)

a) The S(2′) atoms were positioned by the following symmetry operations of S(2) atoms: (2-x, 1-y, 1-z) for 5, (1-x,
1-y, -z) for 7, and (-x, 1-y, 1-z) for 8.

Figure 3 presents the molecular structure of 5. One half of the trans-[Ni(cis-C5-dddt)2]
molecule was crystallographically independent with an inversion center on the nickel
atom in the crystals of 5. The torsion angles around the fused cyclopentylene group of
the molecule were 45.93◦, 42.06◦, and −62.81◦ for C(1)-S(3)-C(3)-C(4), C(2)-S(4)-C(4)-C(3),
and S(3)-C(3)-C(4)-S(4), respectively. The approximate geometry of the [Ni(dddt)2] moiety
in crystal 5 was highly similar to those of an anionic [Ni(dddt)2]− molecule [92]. The
cyclopentylene ring of 5 adopted a folded conformation from the [Ni(dddt)2] moiety with
the trans-orientation, which is different from the conformation observed in (Ph4P){trans-
[Ni(cis-C5-dddt)2]} (an envelope conformation) [93].
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The packing diagrams of 5 are shown in Figure 4. Due to the folded geometry, the
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columnar structures of the complex were restricted. The shortest Ni–Ni distance was
6.283 Å, which was the length of the a axis. The intermolecular S···S contacts shorter
than the sum of the van der Waals radius (3.70 Å) were observed between the S(1)–S(1)
atoms (3.574 Å) and S(1)–S(4′) atoms (3.604 Å), which formed a three-dimensional network
structure in crystal 5.
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omitted for clarity. The blue dashed lines indicate the intermolecular S···S contacts shorter than the
sum of the van der Waals radius (3.70 Å).

The molecular structure of compound 6 is shown in Figure 5. One trans-[Ni(cis-C6-
dddt)2] molecule was present in the asymmetric unit of the crystal. The torsion angles
around the fused cyclohexylene group of the molecule were 43.79◦, −68.30◦, and −62.81◦

for C(1)-S(3)-C(3)-C(4), C(2)-S(4)-C(4)-C(3), and S(3)-C(3)-C(4)-S(4), respectively. The cor-
responding torsion angles in the opposite site of the molecule were −45.87◦, −47.04◦,
and 66.65◦ for C(9)-S(7)-C(11)-C(12), C(10)-S(8)-C(12)-C(11), and S(7)-C(11)-C(12)-S(8),
respectively. The stable chair-type configurations of the cyclohexylene groups were ob-
served. However, the folded conformations of the cyclohexylene groups from the planar
[Ni(dddt)2] core were different from those of L4, which exhibited larger flexures around
the terminal S-C bonds (Figure 1).
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Figure 5. Molecular structure of 6 along the vertical and parallel directions on the molecular plane
with atom labels.

A similar molecular geometry of trans-[Ni(cis-C6-dddt)2] was reported by Bai et al. [94].
However, the packing motif of crystal 6 was significantly different from that of the reported
crystal constructed by the centrosymmetric molecular arrangement of trans-[Ni(cis-C6-
dddt)2] with an inversion center on the nickel atom. In the case of crystal 6, a non-
centrosymmetric molecular arrangement with a helix axis along the b axis formed by the
trans-[Ni(cis-C6-dddt)2] molecules was observed (Figure 6). The cyclohexylene rings pre-
vented the formation of stacks of the complexes and intermolecular interactions through
the S···S contacts. The shortest intermolecular S···S distance was 3.749 Å between S(1) and
S(8). The shortest Ni–Ni distance was 8.030 Å, which was the length of the a axis.

One half of the trans-[Ni(cis-C7-dddt)2] molecule was present in the asymmetric
unit in Crystal 7 (Figure 7). The twist chair-type configurations of the cycloheptylene
groups in L3 were maintained in the crystals after the coordination reaction of L3′ and
the nickel source (Scheme 3). The twist chair-type configurations of the cycloheptylene
groups around the terminal S–C bonds in the molecule exhibited larger flexures (Figure 2),
with torsion angles around the fused cycloheptylene group of 10.13◦, 68.04◦, and −55.70◦

for C(1)-S(3)-C(3)-C(4), C(2)-S(4)-C(4)-C(3), and S(3)-C(3)-C(4)-S(4), respectively. Figure 8
presents the crystal structure of 7. The cycloheptylene moieties were in contact along the
c axis. There was no intermolecular S···S contact, given that the [Ni(dddt)2] cores were
completely separated by the steric hindrance of the cycloheptane moieties.
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Figure 8. Crystal structure of 7 along the (a) a, (b) b, and (c) c axes. Hydrogen atoms are omitted
for clarity.

Figures 9 and 10 present the molecular and crystal structures of 8. The centrosymmetric
crystal was formed by one-half of the trans-[Ni(cis-C8-dddt)2] molecule in the asymmetric
unit. The boat-chair-type configurations of the cyclooctylene groups formed in L4 remained
in molecule 6 with torsion angles of 54.74◦, 46.88◦, and −70.84◦ for C(1)-S(1)-C(3)-C(4),
C(2)-S(4)-C(4)-C(3), and S(3)-C(3)-C(4)-S(4), respectively. One-dimensional columns along
the a axis were constructed by ring-over-ring overlaps between the molecules sliding to
the molecular longitudinal axis. There were no intercolumnar interactions through the
S–S contacts. The shortest distance was 3.775 Å between S(2) and S(3′) in the column. The
columns interacted through the side-by-side intermolecular S···S contacts between S(3) and
S(3′) with a distance of 3.444 Å.
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3.2. Electrochemical Properties of 1–4

Cyclic voltammograms of monoanionic complexes 1–4 and (Bu4N)[Ni(dddt)2] in
MeCN were obtained (Figure 1). The voltammograms of (Bu4N)[Ni(dddt)2] exhibited
two quasi-reversible couples and one irreversible redox couple in the recorded region
(Figure 1). The quasi-reversible redox peaks were assigned to [Ni(dddt)2]0/[Ni(dddt)2]+

(E1/2
1 = −1.24 V) and [Ni(dddt)2]−/[Ni(dddt)2]0 (E1/2

2 = −1.02 V) (Figure 11a). An ir-
reversible oxidation peak was observed at 0.28 V, which indicates a reduction process
between the dianionic [Ni(dddt)2]− and monoanionic [Ni(dddt)2]2− states. The electro-
chemical features of 1–4 were similar to those of (Bu4N)[Ni(dddt)2]. The redox potentials
E1/2

1 ([Ni(Cn-dddt)2]0/[Ni(Cn-dddt)2]+) and E1/2
2 ([Ni(Cn-dddt)2]−Ni(Cn-dddt)2]0) of

1–4 are summarized in Table 6. Potentials E1 and E2 were correlated to the donor abilities
of the complexes. The ∆E (= E1/2

2 – E1/2
1) values could be considered a measure of the

on-site Coulomb energies [47,64]. Based on the E1/2
1, E1/2

2, and ∆E values, the complexes
with fused cycloalkanes maintained the donor ability and on-site Coulomb energy of
(Bu4N)[Ni(dddt)2].
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With respect to neutral complexes 5–8, the HOMO–LUMO absorption bands were shifted 
to the higher energy region (982–1040 nm), which corresponds to the energy gap between 
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Figure 11. Cyclic voltammograms of (a) (Bu4N)[Ni(dddt)2], (b) 1, (c) 2, (d) 3, and (e) 4. Conditions:
MeCN (1 × 10−3 M), supporting electrolyte: (Bu4N)(ClO4) (0.1 M), scan rate: 100 mV/s, reference
electrode: Ag/Ag+, counter electrode: Pt wire, working electrode: glassy carbon at room temperature.

Table 6. Redox potentials E1/2
1/V (0, −1), E1/2

2/V (−1, −2), and ∆E (= E1/2
2 − E1/2

1)/V of
(Bu4N)[Ni(dddt)2] and Complexes 1–4.

E1/2
1/V E1/2

2/V ∆E/V

(Bu4N)[Ni(dddt)2] −1.24 −1.02 0.22
1 −1.23 −1.03 0.20
2 −1.23 −1.05 0.18
3 −1.23 −1.05 0.18
4 −1.23 −1.06 0.17

Conditions: MeCN (1 × 10−3 M), supporting electrolyte: (Bu4N)(ClO4) (0.1 M), scan rate: 100 mV/s, reference
electrode: Ag/Ag+, counter electrode: Pt wire, working electrode: glassy carbon at room temperature.

3.3. Electronic Absorption Spectra of 1–8

The electronic absorption spectra of monoanionic complexes 1–4 and neutral com-
plexes 5–8 in CH2Cl2 were measured. Monoanionic complexes 1–4 exhibited a strong and
broad absorption band at approximately 1036–1201 nm in the near-infrared region, which
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can be attributed to a π–π * transition between their HOMOs and LUMOs (Table 7) [95,96].
With respect to neutral complexes 5–8, the HOMO–LUMO absorption bands were shifted
to the higher energy region (982–1040 nm), which corresponds to the energy gap between
HOMO-1 and the HOMOs of the monoanionic complexes due to the weak shoulder absorp-
tions observed at approximately 1000 nm. For example, monoanionic complex 4 exhibited
two absorptions at 1201 nm and 1040 nm, which can be attributed to the HOMO–LUMO
and HOMO-1 to HOMO gaps, respectively (Figure 12). The HOMO–LUMO gaps of the
neutral complexes estimated by the spectra were within the range 1.19–1.26 eV. The spectro-
scopic behaviors of the complexes were similar to those of other bis(ethylene-1,2-dithiolato)
complexes and M(S2C2R2)2 [85–89,93,94,97,98].

Table 7. Wavelength at absorption maxima (λmax) and absorption coefficients (ε) for the π–π*
transitions of 1–8 in CH2Cl2.

λmax/nm Energy gap/eV ε/dm3 mol−1

1 1036 1.19 12,000
2 1198 1.03 10,000
3 1144 1.08 13,000
4 1201 1.03 13,000
5 982 1.26 32,000
6 1035 1.20 32,000
7 1031 1.20 39,000
8 1040 1.19 49,000
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3.4. Structures and Physical Properties of Radical Cation Crystals 9 and 10
3.4.1. Molecular and Crystal Structures of 9 and 10

The electrochemical oxidation of CH2Cl2 solutions, including neutral complex 5 and
the corresponding supporting electrolytes (Bu4N)X (X = ClO4

− and PF6
−), resulted in

the crystallization of 2:1 [Ni(cis-C5-dddt)2]2(X) salts. The donor/acceptor ratios of the 2:1
crystals were different from those of the previously reported radical cation crystals based
on the [Ni(dddt)2] complex without bulky substituents, constructing the 3:2 crystals of
[Ni(dddt)2]3(A)2 (A = AuBr2

−, BF4
−, ClO4

−, HSO4
−, and HSeO4

− [55,56,99–103]. The
crystals of 9 and 10 included one crystallographically independent donor and half of the
ClO4

− or PF6
− anions, respectively. Figure 13 and (Supplementary Materials) Figure S1

present the molecular structures of the donors in 9 and 10. In the case of the radical
cation crystals, the cis-[Ni(cis-C5-dddt)2] conformation was formed preferentially, although
the corresponding neutral complex exhibited the trans-[Ni(cis-C5-dddt)2] conformation
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(Scheme 4). The donors exhibited a square planar coordination around the Ni atoms.
Moreover, the bond distances of Ni-S = 2.1438(5)–2.1481(5) Å, S–C = 1.703(2)–1.7077(19) Å,
and C=C = 1.406(3)–1.408(3) Å for 9; and Ni-S = 2.1435(6)–2.1498(6) Å, S-C = 1.702(2)–
1.705(2) Å, and C=C = 1.404(3)–1.414(3) Å for 10 in the NiS4C4 framework were slightly
larger than those of the neutral trans-[Ni(cis-C5-dddt)2]. Figure 14 and Figure S2 present the
crystal structures of 9 and 10. In the crystals, similar molecular arrangements of the donors
and anions were observed with a two-fold axis on one of the Cl-O and P-F bonds of the
anions along the b axis, respectively. In 9, the perchlorate anions were disordered at the two
sites by rotation around the two-fold axis. The cis-[Ni(cis-C5-dddt)2] conformation would
induce dimerized structures of the donors in 9 and 10, which differ from the molecular
arrangement in the cases of the 3:2 crystals of [Ni(dddt)2]3(A)2 significantly. The dimerized
structures of the donors were formed by the S···S contacts (3.665 Å and 3.664 Å for 9 and
10, respectively), and the dimers were arranged into columnar structures through the S···S
contacts (3.682 Å and 3.556 Å for 9 and 10, respectively) along the a-c axis directions in 9
and 10. Intermolecular side-by-side interactions through the S···S contacts (3.507–3.637 Å
and 3.500–3.629 Å for 9 and 10, respectively) between the columns were observed along the
b axis, thus providing two-dimensional donor sheets parallel to the bc planes. Although the
donor molecule is fused with the bulky cyclopentane moieties, the two-dimensional donor
sheet arrangements through the S···S contacts preferentially are constructed in the radical
cation crystals, which are also observed in the organic radical cation crystals based on the
BEDT-TTF and BETS molecules exhibiting metallic and superconducting behaviors [14–18].
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3.4.2. Molecular Orbitals and Energy Band Calculations of 9 and 10

To reveal the electronic features of the salts, molecular orbitals (MO) and energy
band structures were determined using the extended Hückel and tight-binding methods.
Figure 15 presents the determined HOMOs and LUMOs of the donor molecules of 9 and
10 in their neutral states. The highly symmetric HOMOs and LUMOs with the nickel d
orbitals of the donors were in good agreement with the molecular orbitals of the [M(dddt)2]
complex calculated based on the first-principles density-functional theory [56–62].
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The calculated overlap integrals (S) of the crystals between the HOMOs are summa-
rized in Table 8 with a schematic diagram of their donor arrangements. The symbols a1–b4
indicate directions of intermolecular interactions between the donors. Figure S3 presents
the corresponding molecular arrangement of the donor molecules viewed along the end-on
direction in the crystal. The significant dimerization of the crystals was observed, given
that the face-to-face interactions (a2) were significantly stronger than the other interactions
(a1) in the columns. Dominant side-by-side interactions (b1 and b4) connected the dimers,
thus forming two-dimensional sheets in the crystals. Figure 16 presents the calculated band
structure of 9, which is similar to that of crystal 10. Both the upper bands crossed the Fermi
level, thus forming the small two-dimensional Fermi surfaces of the crystals.

Table 8. Overlap integrals (S) between the HOMOs and a schematic diagram of the donor arrange-
ments for Crystals 9 and 10.

S (× 103) 9 10
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Figure 16. (a) Energy band structure and (b) Fermi surface of 9. The characters b* and c* denote
reciprocal lattice axes.

3.4.3. Electrical Conductivities and Magnetic Properties of 9 and 10

The temperature dependence of the resistivities was measured for single crystals of 9
and 10 K using a standard four-probe direct current (DC) method (Figure 17). The salts
exhibited semiconducting behaviors (9: ρrt = 0.8 Ω cm and Ea = 0.09 eV; 10: ρrt = 4.0 Ω cm
and Ea = 0.13 eV). Although the energy band calculations for 9 and 10 suggested a metallic
nature, crystals 9 and 10 exhibited semiconducting behaviors under ambient pressure.
The results of the resistivity measurements and the energy band calculations indicate
that the crystals forms a Mott insulating state or a spin-singlet state under ambient pres-
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sure [104]. In order to reveal the electronic structures of the crystals, temperature depen-
dence of the resistivities under hydrostatic pressures and magnetic susceptibilities of 9
and 10 were measured. The resistivity measurements under various hydrostatic pressures
(0.3–1.8 GPa) exhibited slightly smaller activation energies than those under ambient pres-
sure (9: ρrt = 0.2 Ω cm and Ea = 0.07 eV; 10: ρrt = 1.0 Ω cm and Ea = 0.12 eV at 1.8 GPa).
The temperature dependencies of the magnetic susceptibilities of 9 and 10 were in accor-
dance with the Curie–Wiess law. However, significantly small χ values at 300 K indicate
diamagnetic features (χ = 2.9 × 10−5 cm3 mol−1 for 9 and χ = 2.3 × 10−5 cm3 mol−1 for
10). These results suggest that the crystals formed spin-singlet states between the dimers
through the S···S contacts to the b1 direction (Table 8), which is in accordance with their
conducting behaviors.
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4. Conclusions

New donor-type nickel–dithiolene complexes based on the [Ni(dddt)2] skeleton fused
with bulky cycloalkane substituents were synthesized as new components of molecular
conductors. All the neutral crystals were crystallized in cis-[Ni(cis-Cn-dddt)2] conforma-
tions with cis-oriented (R,S) conformations around the cycloalkylene groups due to the [2 +
4] cycloadditions. The flexible cycloalkane moieties in the molecules can induce unique
molecular arrangements in their neutral crystals. The three-dimensional network and one-
dimensional columnar structures were constructed through intermolecular S···S contacts
in crystals 5 and 8. No intermolecular S···S contacts were observed in 6 and 7. However,
[Ni(C6-dddt)2] formed a helical molecular arrangement in the crystal. New cation radi-
cal crystals [Ni(C3-dddt)2]2(ClO4

− or PF6
−) with dimerized structures were successfully

obtained by electrochemical crystallization, which formed different electronic structures
of the [Ni(dddt)2]3(X)2 crystals [55,57,99–103]. The radical cation crystals were insulators
due to the spin-singlet states between the dimers through the strong intermolecular S···S
contacts. However, the donors with cycloalkane substituents can adjust the proportions
of the inter- and intra-dimer interactions through the S···S contacts in their radical cation
crystals by modification of the cycloalkane moieties, and allow for the realization of various
cation radical crystals with unique donor arrangements by introducing linear, tetrahe-
dral, and octahedral anions. Moreover, neutral crystals are potential candidates for new
single-component molecular conductors [58–63].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11101154/s1, Figure S1: Molecular structure of 10 along vertical and parallel directions on
the molecular plane with atom labels. Figure S2: Crystal structure of 10 along the (a) a, (b) b, and (c)
c axes. Hydrogen atoms are omitted for clarity. The dashed lines indicate sulfur–sulfur distances
shorter than the sum of the van der Waals radius (<3.70 Å), CIFs: CCDC numbers 2103657–2103665
for 5–8, 9, and 10.
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