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Abstract: The aim of the study was to investigate the relationship between the melting point and
the supramolecular structure of three multi-component crystals of aliphatic dicarboxylic acids with
2,2′-bipyridine and to investigate the conformations of 2,2′-bipyridine in published multi-component
crystals. The crystals were prepared using the solvent evaporation method and were characterized
using single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), and differential
scanning calorimetry (DSC). The crystal structures were further analyzed using CrystalExplorer, and
the results were correlated with the melting points. The results of the conformation analysis of the
reported multi-component crystals of 2,2′-bipyridine are also presented.

Keywords: multicomponent crystals; 2,2′-bipyridine; structure-property relations

1. Introduction

Co-crystallization is a crystal engineering technique that has been successfully em-
ployed in the preparation of new solid forms with improved physical and chemical prop-
erties [1,2]. Pharmaceutical co-crystals, in which an active pharmaceutical ingredient
with one or more undesirable properties is co-crystallized with a benign compound, are
recognized as one of the most successful applications of co-crystallization [3–5]. Structure-
property studies form a very important part of co-crystal and pharmaceutical co-crystal
research [6–9]. However, the relationship between the supramolecular structure of a co-
crystal and some of its physical properties is not yet fully understood. Therefore, under-
standing this relationship is very important and will ultimately assist in improving the
design and synthesis of these compounds.

2,2′-bipyridine (BPY) is a versatile compound that is employed in the preparation
of coordination compounds and multi-component crystals. Compounds that have the
2,2′-bipyridine moiety contain a π conjugated system which makes them ideal for use in
photochemical devices [10] and nonlinear optical materials [11]. BPY can adopt s-trans or
s-cis conformation, and early computational studies showed that the s-trans form is the
most stable [12]. In the same paper, the authors also indicated that the unstable s-cis form
has an N–C–C–N dihedral angle of 30◦. In another study, restricted Hartree Fock (RHF)
geometry optimizations were carried out on BPY and monoprotonated BPY (BPY H+) using
the 6–31 G** basis set [13]. It was found that the most stable s-cis BPY has an N–C–C–N
dihedral angle of 44.9◦ while the most stable s-cis monoprotonated form (s-cis BPY H+)
has a dihedral angle of 0◦. Using the same basis set, the s-trans BPY was shown to prefer
a planar geometry with an N–C–C–N dihedral angle of 180◦ while the monoprotonated
s-trans BPY (s-trans BPY H+) has an N–C–C–N dihedral angle of 153.7◦.

The aim of this study is threefold. Firstly, to prepare multi-component crystals of
BPY with aliphatic dicarboxylic acids (Figure 1). Secondly, to investigate the relationship
between supramolecular structure and melting point in the resulting crystals. Lastly,
to examine the conformation of BPY in the new crystal structures as well as structures
deposited in the Cambridge Structural Database (CSD) [14]. BPY was chosen for this
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study because of its simplicity. The pyridyl is a good hydrogen bond acceptor, while the
carboxylic acid is a good hydrogen bond donor. Therefore, we expected the N···H–O
heterosynthon to direct co-crystal formation.
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Figure 1. Structures and abbreviations of compounds used in this study. 
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(BPY·SUC), and a CSD conformation analysis of multi-component crystals containing 
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adipic acid in this series; however, the co-crystallization experiments were unsuccessful, 
and only BPY crystallized in both experiments. A reported co-crystal of BPY and succinic 
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tionship was investigated. 

2. Materials and Methods 
All chemicals were supplied by Sigma-Aldrich (Burlington, MA, USA) and were 

used without further purification. 

2.1. Preparation of Co-Crystals 
Crystals of BPY H+·OXA− and BPY 2H+·2MAL− were prepared by dissolving BPY and 

the corresponding dicarboxylic acid in a 1:1 molar ratio in methanol. The solvent was al-
lowed to evaporate, and crystals appeared after several days. Crystals of BPY·SUC [15] 
were prepared following a reported procedure. 

2.2. Single-Crystal X-ray Diffraction 
Data were collected on the Bruker DUO APEX II diffractometer with graphite-mon-

ochromated MoKα radiation (λ = 0.71073 Å) at 173 K using an Oxford Cryostream 700. 
Data collection and cell refinement were performed using SAINT-Plus [16], and the space 
groups were determined from systematic absences using XPREP [17]. Accurate unit cell 
parameters were refined on all data. The structures were solved using SHELXS-97 [18] 
and refined using full-matrix least-squares methods in SHELXL-97 [18]. X-Seed [19] was 
used as an interface to the SHELX programs. Non-hydrogen atoms were refined aniso-
tropically by means of full-matrix least-squares calculation on F2. Hydroxyl hydrogen at-
oms were located in the difference electron density map. The hydrogen atoms bound to 
carbon atoms were placed at idealized positions and refined as riding atoms. Figures were 
prepared using X-SEED [19] as well as POV-Ray [20]. CCDC deposit numbers 1979404 
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Herein, we report a melting point–structure analysis of multi-component crystals of
BPY with oxalic acid (BPY H+·OXA−), maleic acid (BPY 2H+·2MAL−), and succinic acid
(BPY·SUC), and a CSD conformation analysis of multi-component crystals containing BPY.
It was initially intended to include multi-component crystals of glutaric acid and adipic
acid in this series; however, the co-crystallization experiments were unsuccessful, and
only BPY crystallized in both experiments. A reported co-crystal of BPY and succinic acid
(BPY·SUC) [15] was also reproduced in this study, and its structure-property relationship
was investigated.

2. Materials and Methods

All chemicals were supplied by Sigma-Aldrich (Burlington, MA, USA) and were used
without further purification.

2.1. Preparation of Co-Crystals

Crystals of BPY H+·OXA− and BPY 2H+·2MAL− were prepared by dissolving BPY
and the corresponding dicarboxylic acid in a 1:1 molar ratio in methanol. The solvent was
allowed to evaporate, and crystals appeared after several days. Crystals of BPY·SUC [15]
were prepared following a reported procedure.

2.2. Single-Crystal X-ray Diffraction

Data were collected on the Bruker DUO APEX II diffractometer with graphite-monoch
romated MoKα radiation (λ = 0.71073 Å) at 173 K using an Oxford Cryostream 700. Data
collection and cell refinement were performed using SAINT-Plus [16], and the space groups
were determined from systematic absences using XPREP [17]. Accurate unit cell parameters
were refined on all data. The structures were solved using SHELXS-97 [18] and refined
using full-matrix least-squares methods in SHELXL-97 [18]. X-Seed [19] was used as an
interface to the SHELX programs. Non-hydrogen atoms were refined anisotropically by
means of full-matrix least-squares calculation on F2. Hydroxyl hydrogen atoms were
located in the difference electron density map. The hydrogen atoms bound to carbon atoms
were placed at idealized positions and refined as riding atoms. Figures were prepared
using X-SEED [19] as well as POV-Ray [20]. CCDC deposit numbers 1979404 and 1979405
contain the supplementary crystallographic data for the crystal structures reported in
this paper.
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2.3. Differential Scanning Calorimetry (DSC)

DSC was used to measure the melting points of the pure compounds as well as the
melting points of the multi-component crystals. DSC data were recorded on a PerkinElmer
DSC 400. Crystals were dried on a filter paper, weighed, and placed in a vented pan for
analysis. Samples were heated at a rate of 10 ◦C min−1 under N2 atmosphere (flow rate
50 mL min−1). The sample size was varied between 1–2 mg.

2.4. Powder X-ray Diffraction (PXRD)

PXRD data were recorded on a PANalytical XPERT-PRO diffractometer. The diffrac-
tometer is equipped with Bragg-Brentano geometry and uses Cu K-α radiation (1.5418 Å)
as the incident beam. Intensity data were collected on a flat stage. Samples were gently pre-
ground using a mortar and pestle and loaded onto a zero-background sample holder. The
samples were scanned between 3◦ and 50◦ with a scan step size of 0.017◦ and a scan speed
of 42 s per step. The PXRD patterns of BPY H+·OXA−, BPY 2H+·2MAL− and BPY·SUC are
shown in Figures S4–S6 in the supplementary material.

3. Results and Discussion
3.1. Differential Scanning Calorimetry

To verify the formation of a new co-crystal or a salt, DSC analysis was performed on
the synthesized multi-component crystals (Figures S1–S3). BPY·SUC was also reproduced
and its melting point measured. The melting point of BPY H+·OXA− is 135.7 ◦C. This
indicates stronger interactions in BPY H+·OXA− compared to OXA and BPY. The melting
points of BPY 2H+·2MAL− (116 ◦C) and BPY·SUC (94 ◦C) are higher than that of BPY
but lower than the melting point of the corresponding dicarboxylic acid. This indicates
stronger intermolecular interactions in the multi-component crystals compared to those in
BPY but weaker than the interactions in the corresponding dicarboxylic acid.

3.2. Single-Crystal X-ray Diffraction
3.2.1. BPY H+·OXA−

Slow evaporation of a methanol solution of oxalic acid and 2,2′-bipyridine in a 1:1
molar ratio yielded crystals of BPY H+·OXA−. BPY H+·OXA− crystallizes in the monoclinic
space group P21/c with one BPY H+ and one OXA− in the asymmetric unit. The structure is
a salt, i.e., a proton is transferred from oxalic acid to 2,2′-bipyridine. The N toms in the BPY
H+ are in the s-cis conformation. BPY H+ and OXA− molecules interact via intermolecular
charge assisted hydrogen bonds (N–H+···−O) as well as C–H···O (C8–H8···O16 and C9–
H9···O15) interactions forming 1D chains running along the c axis (Figure 2a). The ID chains
interact with each other via C–H···O interactions (C10–H10···O15 and C11–H11···O18) as
well as C···O interactions (C11···O18 = 3.080 Å). OXA− molecules interact with each other
via O–H···O interactions while the BPY H+ molecules interact with each other along the b
axis via π···π interactions (centroid to centroid distance = 3.60 Å). The packing diagram
viewed down the b axis is shown in Figure 2b. Crystallographic data are given in Table 1,
and hydrogen bond and short contact details are given in Table 2.
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Table 1. Selected crystallographic data for BPY H+·OXA− and BPY 2H+·2MAL−.

BPY H+·OXA− BPY 2H+·2MAL−

CCDC number 1979405 1979404
Molecular formula C12H10N2O4 C18 H14 N2 O8

Formula weight 246.22 386.31
Temperature (K) 173 173
Crystal system Monoclinic Monoclinic

Space group P21/c P21/n
a/Å 12.225 (2) 12.038 (4)
b/Å 5.3046 (9) 5.4644 (18)
c/Å 17.680 (3) 13.068 (4)
α/◦ 90 90
β/◦ 106.409 (3) 90.207 (7)◦

γ/◦ 90 90
Volume (Å3) 1099.9 (3) 859.6 (5)

Z 4 2
ρ (g cm−3) 1.487 1.492
µ (mm−1) 0.114 mm−1 0.120

Limiting indices (hkl) ±16; ±7; ±23 ±16; 6, −7; ±17
Reflections collected/unique 16779/2730 6525/2129

Rint 0.0298 0.0479
Final R indices [I > 2σ(I)] R1 = 0.0373, wR2 = 0.0992 R1 = 0.0668, wR2 = 0.1709
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Table 2. Hydrogen bond details and short contacts for BPY H+·OXA− and BPY 2H+·2MAL−.

D–H···A D–H (Å) H···A (Å) D–H···A (Å) ∠D–H···A (◦)

BPY H+·OXA−

N12–H12···O18 i 0.88 1.87 2.6697 (5) 150
O13–H13···O16 i 0.84 1.68 2.5170 (4) 172
C8–H8···O16 ii 0.95 2.50 3.4408 (6) 173
C9–H9···O15 ii 0.95 2.43 3.2465 (6) 143

C10–H10···O15 iii 0.95 2.34 3.2810 (6) 169
C11–H11···O18 iv 0.95 2.39 3.0801 (5) 129
BPY 2H+·2MAL−

N1–H1···O9 v 1.03 1.99 2.9688 (10) 158
C3–H3···O7 vi 0.95 2.59 3.5369 (12) 177
C5–H5···N1 vii 0.95 2.38 3.3046 (11) 166

Symmetry codes: (i) x, −1 + y, z, (ii) x, 3/2 − y, 1/2 + z, (iii) 1 − x, 1/2 + y, 1/2 − z, (iv) 1 − x, 1/2 + y, 1/2 − z,
(v) 1 − x, 1 − y, 1 − z, (vi) −1/2 + x, 1/2 − y, −1/2 + z, (vii) −1 + x, −1 + y, z.

3.2.2. BPY 2H+·2MAL−

Crystals suitable for single-crystal X-ray diffraction were grown by the solvent evap-
oration of a methanol solution of maleic acid and 2,2′-bipyridine. BPY 2H+·2MAL−

crystallizes in the monoclinic space group P21/n. The asymmetric unit consists of half a
molecule of BPY 2H+ and a complete molecule of MAL−. A proton is transferred from the
carboxylic acid group of MAL to the nitrogen of BPY. The BPY 2H+ adopts a trans planar
confirmation with an N–C–C–N dihedral angle of 180◦. The BPY 2H+ ring is disordered
over two positions; however, the disorder could not be modeled; therefore, only the highest
populated orientation was modeled at full occupancy. BPY 2H+ and MAL− are linked into
1D chains via intermolecular N–H+···−O charge assisted hydrogen bonds between the BPY
2H+ and the MAL− as well as O···O interactions between the MAL− anions (Figure 3a).
There is a further intramolecular hydrogen bond on maleate ions. Neighboring 1D chains
interact with each other via C–H···O interactions (C3–H3···O7) as well as C···O interactions
(C4···O14 = 3.122 Å). Figure 3b shows the packing diagram of BPY 2H+·2MAL− viewed
down the b axis. Crystallographic data are given in Table 1, and hydrogen bond and short
contact details are given in Table 2.
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3.3. Hirshfeld Surface Analysis

To determine the type and quantity of intermolecular interactions in each structure,
the program CrystalExplorer was used to generate 2D fingerprint plots [21]. The 2D fin-
gerprint plots were generated on BPY, BPY H+, BPY 2H+ in BPY·SUC, BPY H+·OXA−

and BPY 2H+·2MAL−, respectively. The 2D fingerprint plots for the O···H, H···H, C···H
and N···H interactions are shown in Figure 4 while the 2D fingerprint plots for the C···C,
C···N and C···O interactions are shown in Figure S7. Percentage contributions of the
interactions as well as the melting points of the structures are given in Table 3. The melting
points of the compounds follow the order; BPY H+·OXA− > BPY 2H+·2MAL− > BPY·SUC.
Generally, strong intermolecular interactions result in a high melting point, and weak
intermolecular interactions result in a low melting point. O···H interactions contribute
16.5% in BPY·SUC, 31.3% in BPY 2H+·2MAL− and 28.3% in the BPY H+·OXA−. BPY
2H+·2MAL− has a slightly higher percentage of O···H interactions compared to BPY
H+·OXA−; however, the closest O···H interactions distance is shorter (1.87 Å) in BPY
H+·OXA− than in BPY 2H+·2MAL− (2.14 Å). The percentage contributions of H···H in-
teractions follow the order: BPY·SUC > BPY 2H+·2MAL− > BPY H+·OXA−. The multi-
component crystal having the lowest percentage of H···H interactions has the highest
melting point. BPY·SUC has the highest percentage of H···H interactions; this may indicate
a less dense packing arrangement in the structure compared to BPY 2H+·2MAL− and
BPY H+·OXA−. The percentage contributions of C···H interactions follow the order; BPY
H+·OXA− > BPY·SUC > BPY 2H+·2MAL−. N···H interactions also contribute significantly
to the total Hirshfeld surface in BPY H+·OXA− and BPY·SUC. The highest percentage of
N···H interactions are observed in BPY·SUC with the shortest contact distance of 1.88 Å.
The sum of the percentage contributions of aromatic interactions (C···C, C···N and C···O)
is highest in the BPY H+·OXA− structure followed by the BPY 2H+·2MAL− then BPY·SUC.

Figure 4. 2D fingerprint plots of BPY·SUC, BPY 2H+·2MAL− and BPY H+·OXA− showing the O···H,
H···H, C···H, and N···H interactions.



Crystals 2021, 11, 1151 7 of 8

Table 3. Percentage contributions of the main interactions in BPY H+·OXA−, BPY 2H+·2MAL− and
BPY·SUC as well as the melting points of the compounds.

Compound O···H
(%)

C···H
(%)

N···H
(%)

H···H
(%)

Aromatic
(%)

Other
(%)

Melting
Point
(◦C)

BPY·SUC 16.5 23.9 11.2 39.6 8.6 0.2 93.4

BPY 2H+·2MAL− 31.3 18.2 1.9 35.3 10.6 2.7 117.0

BPY H+·OXA− 28.3 24.8 7.1 26.9 12.1 0.8 135.7

3.4. Cambridge Structural Database (CSD) Conformational Analysis of the 2,2′-Bipyridine

Given that the 2,2′-bipyridine can adopt an s-cis or an s-trans conformation, we
thought it would be interesting to analyze the conformation of 2,2′-bipyridine in the solid
state in published multi-component crystals. Therefore, three searches were conducted
separately on the CSD (version 5.51, March 2020) (Figures S8–S10) using the search frag-
ments depicted in Figure 5. The first search was conducted using BPY. The search produced
78 hits. Of the 78 hits, only 10 adopt the s-cis geometry, and the remaining 68 adopt the
s-trans geometry. Of these 68 that adopt the s-trans geometry, 46 have an s-trans planar
configuration with torsion angles of 180◦. The rest have torsion angles between 143◦ and
179◦. The second search was conducted on a monoprotonated 2,2′-bipyridine fragment
(BPY H+). The search produced 57 hits, with all the monoprotonated 2,2′-bipyridine, ex-
cept 1 (CCDC ref code OGAVOJ), adopting an s-cis conformation. The third search was
conducted on a biprotonated 2,2′-bipyridine (BPY 2H+). This search produced 14 hits, and
of these, only 2 adopt an s-cis conformation (both with CCDC ref code KAPKES). The other
12 adopt an s-trans conformation in which 4 are s-trans planar. In the present study, the
monoprotonated 2,2′-bipyridine in the multi-component crystal of BPY H+·OXA− adopts
an s-cis conformation with a dihedral angle of 5.7◦, whilst the 2,2′-bipyridine in BPY·SUC
structure adopts an s-trans planar conformation with an N–C–C–N of 180◦.
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4. Conclusions

In summary, two new multi-component crystals containing 2,2′-bipyridine and maleic
acid (BPY 2H+·2MAL−) and, 2,2′-bipyridine and oxalic acid (BPY H+·OXA−) were synthe-
sized and characterized. The intermolecular interactions in the two new salts, as well as the
reported co-crystal, bipyridine and succinic acid (BPY·SUC), were analyzed using Crystal-
Explorer. It was found that BPY H+·OXA− has the highest percentage of O···H and C···H
interactions and the highest melting point compared to the other two multi-component crys-
tals. A search conducted on the CSD indicated that 59% of BPY in multi-component crystal
structures adopt the s-trans planar conformation while in the multi-component crystal
structures of monoprotonated 2,2′-bipyridine and biprotonated 2,2′-bipyridine 98% of the
BPY H+ adopt the s-cis geometry and 85% of the BPY 2H+ adopt the s-trans, respectively.
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