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Abstract: Lung cancer is one of the serious malignant tumors with high morbidity and mortality
due to the poor diagnosis and early metastasis. The developing nanotechnology provides novel
concepts and research strategies for the lung cancer diagnosis by employing nanomaterials as
diagnostic reagents to enhance diagnostic efficiency. This commentary introduces recent progress
using nanoparticles for lung cancer diagnosis from two aspects of in vivo and in vitro detection. The
challenges and future research perspectives are proposed at the end of the paper.
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1. Introduction

Environmental pollution and unhealthy living habits have caused a climbing mor-
bidity of lung cancer. The rapid proliferation, early metastasis, low sensitivity, and poor
specificity in early diagnosis cause the lung cancer the highest mortality rate among all
cancers [1–3]. At present, many methods have been developed to diagnose lung cancers
including sputum cytology, and pleural fluid cytology as well as the autofluorescence
bronchoscopy (AFB), endoscopic ultrasound (EUS), endobronchial ultrasound (EBUS)
and imageological examination, such as chest radiograph (CXR), computed tomography
(CT) scan (computerized axial tomography (CAT) scan, low-dose helical CT scan) bone
scans, positron emission tomography (PET) and magnetic resonance imaging (MRI) [4–9].
However, the detection of cancer biomarkers (such as specific proteins, nucleic acids, cells,
and volatile organic compounds) in blood, urine, sputum, exhaled breath, and tissues
are limited by the low detection sensitivity, poor specificity, complex operations, and low
adsorptivity of gaseous molecules on solid substrates [10–13]. During the imageological
examination, patients suffer from a heavy burden of cost and the risk of cumulative radia-
tion [14]. Additionally, poor tissue penetration of ray and low specificity of photographic
developer can cause false-negative results [15]. In clinical practice, X-ray chest imaging is a
basic method to detect lung cancer without providing detailed images of inside informa-
tion. Therefore, low dose computed tomography (LDCT) becomes a promising method for
lung cancer screening with lower radiation and higher security [16–18]. These detection
methods possess a bottleneck of an unsatisfactory sensitivity with sputum cytology of 66%,
pleural fluid cytology of 70%, PET scan of 88%, CT scan of 55% and bone scan of 77% [19].
Therefore, it is essential to establish low-cost, sensitive, convenient, and non-invasive
detection approaches for lung cancer diagnosis.

Nanomaterials have been widely applied in cancer diagnosis and treatment because
of their excellent plasticity, controllable shapes and sizes, as well as adjustable thermal,
magnetic, and optical properties [20–27]. The nanoparticles can be used as carriers to
de-liver anti-cancer drugs (such as small molecule drugs, RNA, and protein) [28–30]. More-
over, they can function as direct diagnostic agents according to their inherent properties,
such as the superparamagnetic properties of Fe3O4 nanoparticles [31], and the photoacous-
tic properties of melanin nanoparticles [32]. In addition to stabilizing drugs, functional
nanoparticles can be obtained by surface modification, including specificity targeting,
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stimulus response, improving the detection sensitivity, and increasing the biocompatibil-
ity [14,31,33,34]. Moreover, a novel idea has been demonstrated to discriminate non-small
cell lung cancer patients from healthy volunteers through exploiting the biomolecular
corona that forms around nanoparticles to identify the differences of protein patterns
between cancer patients and healthy subjects in blood [35]. Through the combination of
nanotechnology and diagnostic targets, the novel diagnostic strategies with high efficiency
and specificity have been developed, which are expected to improve the detection effi-
ciency at an early stage and monitor the development trend and accurate therapeutics in
the follow-up treatment of lung cancer [36].

In the past five years, the treatment of lung cancer by employing nanomaterials was
reviewed [37–41], but the relationship between lung cancer diagnosis and nanomaterials
still needs to be further summarized. In this commentary, we focus on the characteristics of
some dominant nanomaterials, primary functions, and improvement strategies to commen-
tate the progress in improving detection specificity, diagnosis accuracy and internalization
efficiency, when using nanomaterials in the early-stage diagnosis of lung cancer from
in vivo detection (imageological examination) and in vitro detection (biomarker detection).
Besides, the current challenges and the future development prospects of nanomaterials in
the diagnosis of lung cancer are also discussed.

2. Applications of Nanoparticles in Diagnosis of Cancer

The occurrence and progression of cancer are normally accompanied by a series of
changes at the molecular or cellular level, which can in turn provide specific targets for
effective diagnosis. Imageological examination and biomarker detection are common
diagnose methods associated with the specific target in niduses.

2.1. In Vivo Examination

The in vivo methods mainly include AFB, EUS, CT, PET, MRI, which can reflect the
disease information by visual image. The anatomical structure and boundary range of
tumor can be seen clearly due to the ultrahigh resolution of MRI, but it was limited by
longer imaging time and the lack of molecular imaging information. Although PET imaging
showed high sensitivity and provided systemic lesions information, it is still limited by
insufficient spatial resolution and possible false positive caused by unsatisfactory specificity.
Low dose CT-scans provides information to indicate size, shape, and position of cancer
cells in lymph nodes, but it has the disadvantages of low sensitivity and low specificity
due to severe artifacts in pictures caused by internal organ motion and tattoos.

2.1.1. Single-Modal Imageological Examination-MRI

MRI is a high resolution and large-scale imaging technique facilitating the tumor
observation of anatomical structures and subtle features. Nevertheless, MRI cannot yet be
directly applied in the lung detection due to the motion artifacts, numerous susceptibility
gradients, and low proton density [42]. By combining with the optimized proton MRI
sequences based on ultrashort echo time (UTE), ultrashort echo-time magnetic resonance
imaging (UTE-MRI) can be applied in lung tissue imaging [43]. Gadolinium is clinically
used as the MRI contrast material, showing that non-invasive detection of non-small cell
lung cancer by UTE-MRI can be achieved via the orotracheal administration of nebulized
gadolinium nanoparticles with enhanced signal. Moreover, Gadolinium can be selectively
deposited in tumor tissues while removed by healthy tissues [44].

Accurate and detailed detection information can be obtained through simultaneous
usage of two MRI contrast agents [45–47]. MRI contrast agents can be divided into longitu-
dinal relaxation contrast medium (T1 contrast medium, such as Gd-DTPA, Mn-DPDP) and
transverse relaxation contrast medium (T2 contrast medium, such as superparamagnetic
iron oxide), among which T1 contrast medium can effectively decrease the T1 relaxation
time by the interactions with the neighboring T2 contrast medium [48]. The strong mag-
netic coupling between T1 and T2 contrast medium could disturb the relaxation effect of the
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paramagnetic T1 contrast medium, leading to an undesirable weakening and quenching of
magnetic resonance signal [49]. According to this, a smart MRI contrast agent with Fe3O4
nanoparticles in core (T2 contrast medium) and the silica shell containing water-soluble
Mn-porphyrin (T1 contrast medium) and anticancer drug DOX in shell was constructed
(Figure 1a). After the modification by poly (acrylic acid) (PAA) and c(RGDyK) peptides
(cRGD), the dual-mode MRI contrast medium was equipped with functions of tumor-
specific target and pH response (Figure 1b). When the contrast medium was internalized
by cancer cells, the tumor acidic microenvironment facilitated the release of porphyrin and
recovered the quenched signal caused by the combination of Fe3O4 and Mn-porphyrin
(Figure 1a) [31].

Figure 1. (a) Schematic illustration for the preparation, release, and imaging process of Fe3O4@SiO2

@PAA-cRGD as dual-mode MRI contrast medium. Reprinted from [31] with permission by Creative
Commons License. (b) UV–Vis spectra analysis of drug release: a pH-dependent drug release of DOX
and Mn-porphyrin in the nanoparticles in different physiological environments Reprinted from [31]
with permission by Creative Commons License. (c) Schematic illustration for the contrast agent
preparation and imaging mode of MRI/PET/PAI multi-modal imaging. This contrast agent can
internalize by tumor cell specifically due to the interaction between Oct and SSTR2 surface receptors
highly expressed in tumor cells. Reproduction from Ref. [32] with permission from The Royal Society
of Chemistry. (d) The gold nanoparticles that modified by various antibodies on the surface combine
with microarray for detecting various biomarkers simultaneously. Reprinted from Ref. [50] with
permission from Elsevier. (e) The gold nanoparticles were constituted into gold superparticles (GSPs)
by self-assembly to amplify the detection signal. Reprinted from [51] with permission of Wiley.
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2.1.2. Single-Modal Imageological Examination-PET

PET is a diagnosis imaging technology with high sensitivity, temporal resolution, sys-
temic image quantitative analysis, and unlimited tissue penetration [52,53]. Radio isotope
used in PET imaging possesses a short half-life with 11C of 20 mins, 13N of 10 mins and 15O
of 2 mins. 64Cu was widely studied due to its half-life up to 12.7 h. Researchers found that
polyglucose nanoparticles consisting of cross linked dextrans and their derivatives (dextran
nanoparticles) had noteworthy affinity to tumor associated macrophages (TAMs) [54,55].
64Cu-labeled dextran nanoparticles by macrocyclic chelators can be applied in PET imag-
ing for clinical oncologic diagnosis. However, the poor stability of radiometal-chelator
complexes in vivo [56] greatly influenced the physicochemical properties of nanoparticles
in PET imaging. Hence, the chelator-free 64Cu nanoclusters were developed through a
simple one-pot chemical reduction method by employing bovine serum albumin (BSA) as
a framework for PET lung cancer detection to improve the stability and accumulation [57].
Although Cu-based radionuclide has been studied extensively and made some progress,
the blemishes of its instability and higher accumulation in the liver are still the focus of
lung diagnosis studies in the future.

2.1.3. Multi-Modal Imageological Examination

Compared to single-contrast medium imaging, multi-modal imaging with several
contrast mediums can provide complementary imaging information for cancer diagnosis.
Co-delivery of various contrast mediums without the imaging signal interference is a
great challenge. USRPs-Cy5.5 was constructed by covalently conjugating cyanine 5.5 on
nebulized gadolinium nanoparticles for fluorescence tomography and ultrashort echo-
time magnetic resonance imaging (UTE-MRI) to detect lung cancer non-invasively [58].
Melanin nanoparticles photoacoustic imaging (PAI) can be used as nanocarriers to co-
deliver 124I (PET contrast agent) and Mn2+ (MRI contrast agent) by an electrophilic substi-
tution reaction and a chelation reaction respectively, which is an ideal vector for tri-mode
imaging (Figure 1c) to improve the efficiency of lung cancer diagnosis at an early stage
effectively [32].

2.2. In Vitro Detection

Biomarker testing has been demonstrated as an effective method to analyze and diag-
nosis cancer, including proteins (carcinoembryonic antigen (CEA), cytokeratin 19 fragment
antigen 21-1 (CYFRA21-1), neuron specific enolase (NSE), dickkopf-1 (DKK1), etc.), nucleic
acids (DNA, RNA), cells (TAMs), and volatile organic compounds (aldehydes) [51,59–65].
The detection of biomarker allows for serial sampling by a non-invasive way, but unsatisfac-
tory specificity ascribe the vast inter-tumor heterogeneity [66,67]. The use of nanoparticles
can enhance the sensitivity and specificity prominently (Table 1).

Table 1. Nanoparticles for lung cancer biomarker detection.

Nanoparticles Cancer
Biomarkers

Limit of
Detection (LOD) Methods Ref.

Gold nanoparticles EGFR, CK, Nap — Fluorescence and surface
enhanced Raman scattering [68]

CEA, CYFRA21-1,
NSE, Dkk1 <1000 pg/mL Co-detection method based on

NPs and microarrays [50]

MiR-205 —- Localized surface plasmon
resonance [51]

MUC1 8 cells/mL Chronoamperometry [33]

Aldehydes 10 ppb Surface enhanced Raman
scattering [69]

Quantum dots CEA, CYFRA21-1,
NSE

CEA: 190 pg/mL;
CYFRA21-1:
970 pg/mL;

NSE: 370 pg/mL

Microarray immunoassay
(bead bases sandwich assay) [70]

CYFRA21-1 0.3 pg/mL Electrochemiluminescent
immunoassay [71]
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Table 1. Cont.

Nanoparticles Cancer
Biomarkers

Limit of
Detection

(LOD)
Methods Ref.

HER2 —
Western Blot, ELISA,

confocal microscopy, flow
cytometry

[72]

Carbon
nanomaterials CEA/EGFR 14 cells/mL Differential pulse

voltammetry [73]

Liposome TKTL1, TTF1 — TIRF and TLN biochip [15]
Fe0

nanomaterials ctDNA 0.1 pg/mL Inductively coupled plasma
mass spectrometry [62]

Fluorescent
nanoparticles EGFR —- Western Blot, confocal

microscopy, flow cytometry [14]

Fe3O4/Au/Ag
nanocomposites Adenosine —- Surface

enhanced Raman scattering [74]

2.2.1. Gold Nanoparticles

Gold nanoparticles have been extensively used for cancer biomarker detection owing
to the surface plasmon resonance (SPR) effect, controllable particle volume and size, and
excellent biocompatibility. SPR effect was used to generate and magnify the detection
signal. The mucin 1 (MUC1) specific aptamer [75,76] was covalently conjugated with gold
nanoparticles through the self-assembly of 4-([2,2′:5′,2′ ′-terthiophen]-3′-yl) benzoic acid
(TTBA). This ultrasensitive cytosensing can prominently amplify the selective detection
signal of lung cancer with the detection limit of 8 cells/mL [33]. In order to control the
detection process, an enzyme was added to trigger the detection. The gold nanoparticles
were linked with dual-functional Raman active luciferin by a peptide linker, and the
peptide linker was engineered with a cathepsin B enzyme (CathB) cleavage site. Assisted
by these antibodies (epidermal growth factor receptor (EGFR), cytokeratin-19 (CK), and
napsin-A (Nap)) and CathB enzyme in vivo, the nanoprobes are endowed with multi-target
to lung cancer and enzyme-driven fluorescence imaging [68]. The gold nanocubes can
be used to test infinitesimal lung cancer biomarker miR-205 after modified by thiolated
single strand DNA (ssDNA), which can realize real-time monitoring of the slight LSPR
scattering peak displacement caused by the hybridization process of target miRNA with
ssDNA [51]. In order to improve the detection sensitivity, two nanoparticles were combined
for the detection of circulating tumor DNA (ctDNA). The amorphous Fe0 nanomaterials
are featured with excellent magnetic performances and high monodispersity, which allows
the separation and enrichment of the subtle ctDNA, and the Au nanoparticles enables
the prominent amplifying detection signal. Taking the detection of Kirsten rat sarcoma-2
virus (KRAS) mutation as an example, 0.1 pg/mL gene mutation can be detected by Fe–Au
nanoparticle, which refers to the stage I diagnosis. This method avoided the test deviation
caused by the amplification of traditional PCR [62].

Assisted with microarray technology, gold nanoparticles conjugated to detection
antibodies on microarrays can further enhance the amplifying detection signal through
immersing in a solution of HAuCl4 and H2O2, which can be used to detect four kinds
of markers (CEA, CYFRA21-1, NSE, DKK1) at the same time (Figure 1d) [50]. The gold
nanoparticles can constitute gold superparticles (GSPs) through self-assembly to amplify
the Raman signal (Figure 1e) [51]. Despite their ultrahigh sensitivity for lung cancer nonin-
vasive diagnosis in vitro, the potential toxicity of nanoparticles needs to be addressed [69].

2.2.2. Quantum Dots (QDs)

QDs were often used to establish electrochemical luminescence (ECL) sensor due to
its high fluorescence intensity, unique size-dependent electrochemical properties, long
fluorescence lifetime, strong photostability, and ECL parameter tenability [77–80]. The
detection limit based on QDs (0.3 pg/mL) was much lower than that of other detection
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method (0.65 pg/mL) [71]. A suspension and planar microarray system can be set up
based on the low cost and high throughput detection of multiple markers (CEA, CYFRA21-
1, NSE). Briefly, the suspension state was ground on the target proteins to constitute a
sandwich structure between the magnetic beads and the QDs through specific antibody–
antigen interactions [70]. Inherently, the modification of lung cancer-specific antibody on
the surface of QDs can realize the target detection theoretically. Undesirable issues came up
for practical applications, such as decreasing the detection sensitivity for intracellular tumor
biomarker due to the larger complexes formed between QDs and antibody as well as the
inactivity of the lung cancer-specific antibody engineered on the QDs surface. Fortunately,
the traditional antibody can be substituted by the single domain antibody (sdAb), which
can reduce the molecular weight prominently [72,81,82]. Although the surface modification
of QDs can be used to improve biocompatibility to alleviate the biological toxicity to cells,
the security and targeting specificity are still major obstacles that QDs face [83].

2.2.3. Carbon Nanomaterials

Carbon nanomaterials are potential candidates for constructing electrochemical biosen-
sors due to the large surface area, chemical, and thermal stabilities, excellent electrical and
thermal conductivity, extraordinary electron transport rate, tunable band gap, and great
mechanical strength [59,84,85]. Graphene oxide and ordered mesoporous carbon can be
deposited onto nano-carrier surface by two-step electropolymerization to improve electrical
conductivity and electrochemical effective surface area [86]. An electrochemical cytosen-
sor based on 3D carbon nanosphere was prepared through a microwave-hydrothermal
method, and then gold nanoparticles were self-assembled on its surface to detect CEA,
showing that the detection sensitivity was significantly improved and detection limit de-
creased to 14 cells/mL, due to the promotion of electron transfer caused by the synergism
of monodisperse colloidal carbon nanospheres and gold nanoparticles [73]. Single-wall
carbon nanotubes decorated by platinum-group transition metals were prepared as biosen-
sors to enhance the detection of toluene, which was a biomarker of the lung cancer in
the patients exhaled breath, and the effective detection contributed to the strong overlap-
ping between d orbital of the metal atoms and p orbital of C atoms in the benzene ring
of toluene [87].

2.2.4. Others

Additionally, there are some other nanomaterials that have been studied and applied
to detect lung cancer biomarker. The lipid bilayer is composed of phospholipids and
cholesterol, which is similar to the cell membrane [59,88–94]. Hence liposomes have higher
biosafety and biocompatibility compared to other synthetic materials [95]. As the vehicles
of transketolase 1 (TKTL1) and thyroid transcription factor 1 (TTF1), liposomes can capture
circulating extracellular vesicles by electrostatic interaction to constitute a larger nanoscale
compound and detect RNA concentration in the plasma of lung cancer patients [15]. The
Fe3O4/Au/Ag nanocomposites and fluorescent nanoparticles have also been used in early
diagnosis due to the magnetism assisted surface enhanced Raman scattering (SERS) effect
of Fe3O4/Au/Ag nanocomposites, the advantages of highly efficient red emission, high
resolution, and excellent photostability of fluorescent nanoparticles [14,74].

3. Cellular Uptake of Nanomaterials

Understanding the lung cancer cells internalization pathway of nanomaterials is es-
sential to realizing the detection of lung cancer, particularly in vivo detection. Cellular
uptake is a dynamic process which is determined to a great extent by physicochemical
property of nanomaterials, such as size, shape, surface charge, hydrophilia/hydrophobicity,
and the specific ligand [96–98]. According to the characteristics of size and shape, several
common pathways for uptake mainly include phagocytosis, clathrin mediated endocy-
tosis, receptor-mediated endocytosis, caveolae-dependent endocytosis, and membrane
permeation. High specificity, low systematic side effects, and escaping from the capture of
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reticuloendothelial system permit pulmonary delivery to be widely used in pulmonary
disease treatment, as well as in lung cancer diagnosis. The inhalant 5 µm in diameter
can effectively deposit in the lungs, because the mission of phagocytosis is to transmit
larger particles greater than 200 nm [96,99]. The nanoparticles of ~100 nm in diameter
were commonly used as tumor agents (diagnosis or imaging) and carriers because of
their enhanced permeability and retention (EPR) effect in systemic delivery system. These
nanoparticles internalized not only through clathrin mediated endocytosis [100], but also
through receptor-mediated endocytosis after modified by lung cancer specific ligand [101].
Cellular uptake of nanoparticles about 50 nm was via caveolae-dependent endocytosis,
but these particles were not suitable for lung cancer detection due to the cumulation in
liver and kidney. The 2D morphology allowed nanomaterials to enter cells and bypass
the lysosome by a membrane permeation, such as black phosphorus nanosheets and 2D
graphene sheet [102]. In addition, nanoparticles with moderate positive charge can easily
enter cells with negative charge with the assist of electrostatic interaction, which can also
contribute to intracellular escape [103,104].

4. Conclusions

The challenges in application of nanomaterials for diagnosing lung cancer have been
widely summarized. Although various nanoparticles have been demonstrated for detecting
lung cancer and have already made significant progress in increasing detection limit,
sensitivity, simplifying the detection operations, and shortening the detection time, it
still needs to break through the limitations from the specificity and biosafety, detection
efficiency, diagnostic cost, and patient tolerance. Nanomaterials are expected to contribute
to overcoming the above challenges through increasing the internalization of diagnostic
reagent into lung cancer cells instead of normal cells, or specifically binding to lung cancer
biomarkers in vitro, due to the controllable sizes, shapes, physicochemical property (such
as thermal, magnetic, and optical properties), and the characteristics of modifiable surfaces.
Meanwhile, the combination of nanotechnology, array technology, and chip technology is a
good option to surmount the barriers of inefficiency and high expenditure in lung cancer
detection. The improvement of non-invasive detection methods should be paid more
attention, aiming to increase the detection efficiency without additional harm. In the future,
the combination of clinical diagnostic and biomedicine, nanotechnology, and material
science will contribute to overcoming the current challenges in lung cancer early diagnosis.
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