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Abstract: We have developed a reinforcement learning (RL) model to control the melt flow in the
radio frequency (RF) top-seeded solution growth (TSSG) process for growing more uniform SiC
crystals with a higher growth rate. In the study, the electromagnetic field (EM) strength is controlled
by the RL model to weaken the influence of Marangoni convection. The RL model is trained through
a two-dimensional (2D) numerical simulation of the TSSG process. As a result, the growth rate under
the control of the RL model is improved significantly. The optimized RF-coil parameters based on
the control strategy for the 2D melt flow are used in a three-dimensional (3D) numerical simulation
for model validation, which predicts a higher and more uniform growth rate. It is shown that the
present RL model can significantly reduce the development cost and offers a useful means of finding
the optimal RF-coil parameters.

Keywords: SiC crystal growth; TSSG method; flow control

1. Introduction

Silicon carbide (SiC) crystal is a promising semiconductor material of power devices and the
radio-frequency (RF) top-seeded solution growth (TSSG) method that has been used to produce
high-quality SiC crystals. However, the unstable growth and slow growth rates of SiC crystals prevent
the utilization of the TSSG method to grow large single crystals in industrial setups. In the RF-TSSG
process, maintaining the uniform growth rate along the seed within a certain range can stabilize crystal
morphology, and the melt flow during the crystal growth plays an important role in the change of
growth rate. To improve the quality of SiC crystals, we have conducted numerical simulations to shed
light on the phenomena governing the SiC growth in this process [1–5]. Most studies have carried out
simulations of the melt flow using a particular condition, that is, under certain control parameters of
the TSSG system, such as a fixed input power for the RF-coil, prescribed boundary conditions, the
magnetic field strength, and seed rotation rate.

It is standard for a design parameter in a crystal growth system to be optimized one by one
through numerical simulations. However, the design parameters involved are many and may have
a combined effect on the melt flow. Thus, it would be inefficient and expensive to optimize the
whole system by means of numerical simulations alone. For instance, in the TSSG process of SiC
crystals with the control of static magnetic fields, Takehara et al. [6] applied a Bayesian optimization to
determine the optimal set-up of a cusp magnetic field and seed rotation for high- and uniform-crystal
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growth rates. However, with the increase of control parameters to be taken into account, this approach
becomes costly because the algorithm requires a large amount of data set. To this end, a fast and proper
design of the TSSG system for an optimal control of the growth rate is required. To the best of our
knowledge, the optimization and control models developed previously were only for the Czochralski
growth process. The first-principle is used to establish a prediction model that relates input design
parameters to output crystal parameters [7–11]. Some studies have focused on developing a model
that represent the relationship between the changes of the crystal radius and the crystal slope angle at
the meniscus section [12–14]. A proportional integral derivative (PID) design has been used to control
the growth process based on the developed models [15,16]. Basically, all those models introduced
earlier are based on a series of differential equations but do not fully involve the physics of fluid
mechanics. In a more complicated crystal growth process, however, the improvement of the accuracy
of the models remains a challenge, and PID control still has deficiencies in dealing with nonlinear and
high-dimensional problems.

In recent years, the application of machine learning has received a notable attention in fluid control
problems. This is because this approach allows to examine completely different cases and gets results
faster. The combination of appropriate machine learning tools and fluid mechanics knowledge can be
used to directly optimize the control strategy, to reduce or even eliminate the artificial control modeling
and design, and to change the traditional approach. In the field of crystal growth, Dropka et al. [17]
designed and trained artificial neural networks (ANNs) in directional solidification of silicon to identify
the relation and the optimum combination of magnetic fields and growth parameters through the
data of 2D CFD simulation. As expected, the accuracy of the model naturally depends on the amount
and accuracy of the available data set in a given system. On the other hand, Reinforcement Learning
(RL), which is one of the machine learning tools recently widely utilized in the field of optimal control
of fluid flows [18–21], can automatically discover the optimal control strategies without any prior
knowledge. This approach presents itself as a powerful tool in general in modelling, and would
naturally be beneficial for modelling crystal growth techniques. To this end, in the present study,
we introduce the RL technique to the TSSG system to control the melt flow during the SiC crystal
growth process. In the RL model, an ’agent’ tries to learn the policy to maximize a ’reward’ function
through an certain ‘environment’. The environment can be any stochastic process. For example,
the numerical simulation of the SiC melt flow can be taken as the ’environment’ in this study. The
agent first obtains the state of the simulation (environment). Then the agent performs ‘actions’ to affect
the time evolution of the simulating melt flow (environment). After receiving the reward from the
state of the environment controlled by actions, the agent completes one control loop. In the TSSG
process, maximizing both the growth rate and its uniformity simultaneously is essential for growing
high quality crystals. This is the main objective of the present study.

2. Methodology

2.1. Computational Fluid Mechanics Model

Figure 1 shows the whole computational domain, Dimensions in the figure are in mm. The present
simulation of SiC crystal growth in the RF-TSSG process is based on an Integrate Process Model (IPM)
developed by Gresho and Derby et al. [22,23]. The IPM solves the process in three steps: (i) the
coil-induced electromagnetic field; (ii) heat generation and heat transfer in the furnace; and (iii) the
melt flow in the crucible. A 2D numerical simulation for the melt flow was taken as an interactive
environment in the reinforcement learning process as explained later.
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Figure 1. Schematic view of the computational domain used for the TSSG system. Dimensions in the
figure are in mm.

2.1.1. Electromagnetic Field

In RF-heating, the frequency of the electric current in the coil is too high to resolve the time
resolution by numerical simulations. Thus, IPM uses period-averages for calculating the densities of
the Lorentz force and heat generation. The Lorentz force and heat generation are calculated by:
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where ω is the frequency of electric current in the coil, σe is the electric conductivity, and J0 the peak
current in the coil, C and S are time-independent in-phase and out-phase amplitudes of the magnetic
stream function.

2.1.2. Heat Transfer in the Furnace

The steady-state conductive and radiative heat transfers are considered for computing the
temperature field in the furnace. The associated governing equations are given by:

∇ · (k∇T) + Q = 0. (3)

Ji − (1− εi)∑
j

Fij Jj = εiEb,i

qi
Ai

= εi(Eb,i −∑
j

Fij Jj)
(4)

where k is the thermal conductivity, T temperature, Q the Joule heat generation density, Ji the radiosity,
εi emissivity, Fij the view factor, Eb,i the emissive power of a black body and qi/Ai the heat flux.
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2.1.3. The Melt Flow

The governing equations of the melt flow are the well-known continuity, momentum balance,
energy balance, and mass transport equations that take the following forms,

∇ · u = 0, (5)

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ν∇2u + a

FE

ρ
− gβ(T − Tref), (6)

∂T
∂t

+ u · ∇T = α∇2T +
Q

ρCp
, (7)

∂c
∂t

+ u · ∇c = D∇2c, (8)

where u is the flow velocity vector, ρ density, p pressure, µ the kinematic viscosity, a represents the
control value that will be explained later, g the gravitational acceleration, β the thermal expansion
coefficient, Tre f reference temperature, α thermal diffusivity, Cp the specific heat, D the diffusion
coefficient, and c the carbon concentration. The initial and boundary conditions of the melt flow are
obtained from the results of the heat transfer simulation in the furnace, and the overall simulation is
actually coupled with the computation of electromagnetic field, heat transfer in the furnace, which are
described in Sections 2.1.1, 2.1.2 and 2.1.3. The physical properties and boundary conditions are
referred to [1].

2.2. Reinforcement Learning

Reinforcement learning involves an agent built by ANNs interacting with an environment. In this
study, numerical simulation is regarded as the interactive environment through three steps: the agent
makes an observation of the state st (an array of fluid flow variable obtained from the simulation),
imposes the action at on the simulation, and computes a reward rt from the controlled simulation.
Here, t is the discrete time step when the interaction takes place. The optimal control problem is aiming
to learn an optimal policy that maximizes the expected cumulative reward.

Rmax = maxE
[ τ

∑
t=0

γtrt|at = πΘ(st)

]
(9)

where γ is a discount factor, πΘ is the policy function described by ANN (Θ is the weights).
The current RL model training is based on an episode, which means that the model will learn

active control strategy in a limited time before analyzing the obtained results and resume learning
with a new episode. The sketch in Figure 2 presents the one episode of the learning process, interacted
with the simulation of fully developed melt flow (started from 700 s [1]) in the TSSG process. The RL
agent interacts with the 2D melt flow simulation via a state inquiry, and an action decision is made at
every T = 0.25 s during the simulation, and one episode training lasts 5.0 s. The states in the current
simulation are the supersaturation near the seed with 50 sample points, which are shown in Figure 2.
Wang et al. [5] reported that the melt flow can be controlled by the RF-coil induced electromagnetic field,
and the contribution of electromagnetic field is described as a source term in Equation (6). The value of
a in the initial case without control is equal to 1.0. To simplify the calculation process, a reference case
(at the RF-coil frequency 25 kHz and current 360 A) that performed in [1] is directly used as an initial
case in the present study. According to the computational results of the effect of electromagnetic field
in [5], applying the Lorentz force twice in magnitude (compared to the initial case) is detrimental
to crystal growth. Therefore, the output action range a is limited between 0 and 2 when the model
training is carried out. It should be noted that the parameters of the RF-coil control the electromagnetic
field, and change the heat generation and temperature boundary conditions. For simplicity, we set
the control value a representing the parameters of the RF-coil that ideally control electromagnetic
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field strength, and the heat generation and temperature boundary conditions are assumed not to be
changed in the training process, the solution of the changing of temperature boundary condition under
control during the training process is discussed in later Section 3.2.

Figure 2. Sketch of the reinforcement learning process in simulation environments for one episode.

Due to the aim of improving the growth rate, the instantaneous reward function, rt, consists of
two contributions: the growth rate gradient (uniformity) and the growth rate,

rt = −0.001〈|Gx|〉T +
〈
|vg|

〉
T . (10)

vg = −DMSiC
ρSiC

n · ∇c (11)

Gx =
∂vg

∂x
(12)

where T is the per action duration time, vg is the growth rate, MSiC is the molar weight of SiC, ρSiC
is the crystal density, and Gx is the growth rate gradient along the seed interface. The growth rate
of the reference case around the seed edge is extremely high compared with those on the other
interface positions [1], and thus calculating Gx through the full seed radius makes the training
process very difficult to converge. Thus, a partial growth interface (0–3 mm) is used in Equation (12).
To balance the growth rate contribution, a factor of 0.001 is set in Equation (10) due to the large order
difference between Gx and vg. The agent consists of simple feed-forward ANNs with a hidden layer of
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512 neurons. The discount factor γ is set as 0.95. Proximal Policy Optimization PPO algorithm [24] is
used to update the agent, it belongs to the policy gradient class. The details of the policy gradient can
be found in the article [25].

3. Results and Discussion

3.1. Growth Rate Improvement through Lorentz Force Control

By adapting the algorithm and hyperparameters mentioned in Section 2.2, we performed a robust
RL training. The reward of every training episode is shown in Figure 3. As seen, the reward increases
quickly after 40 episodes and it is converged after 100 episodes. Therefore, we consider that the policy
is the close to the optimal one can be obtained after 100 episodes. The policy at the 120th episode was
chosen to control the initial case over 50 s (which is 10 times longer than training time). Figure 4 shows
the value of the action a in 50 s. The red point in the figure is the initial case (a = 1.0). For the case with
control, it is clear that the Lorentz force was enhanced, the enhancement is about 1.5 times to 1.8 times
the initial value (a = 1.5 to a = 1.8). Meanwhile, there is no obvious pattern of the action sequences,
according to our previous study [3], the results may be due to the effect of the unstable flow generated
by electromagnetic and interfacial forces.

Figure 3. Illustration of the reward in the learning process.

Figure 4. The control a of Lorentz force intensity for the 2D case (red point a = 1 is initial case).
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The growth rate uniformity and its value for the initial and controlled cases are compared in
Figure 5. Although the growth rate gradient in the case without and with control partially overlaps
during the simulation time, the gradient in the case with control is generally smaller than that in the case
without control. The smaller growth rate gradient indicates that the uniformity is improved. On the
other hand, the value of growth rate in the case with control increased significantly (almost twice)
compared with that in the case without control, as seen in Figure 5b. The results indicate that the
present policy for the Lorentz force can increase the growth rate and improve its uniformity at the
same time.

Figure 5. Time evolution of the growth rate gradient (a) and growth rate value (b).

Figure 6 shows the time-averaged temperature field in the melt without and with optimal control.
The hottest part is located at the bottom corner of the crucible wall and the lowest temperature
region is near the seed. In the case with control, the temperature field beneath the seed is flatter.
The time-averaged flow velocity and supersaturation in the melt are presented in Figure 7, which more
directly shows the comparison between the initial and controlled cases. In the computations,
the supersaturation S is calculated by using (c− ceq)/ceq, where ceq is the equilibrium concentration [1].
The flow patterns of the two cases are very similar, which are characterized as the electromagnetic
convection induced by Lorentz force in the main region of the melt and Marangoni convection along
the free surface [4]. The directions of Marangoni convection are towards the crystal and crucible on
the free surface due to the low temperature region in the vicinity of the crystal and upper corner of
the crucible wall as seen in Figure 6. In the initial case, the Marangoni effect gives rise to a strong
downward flow near the seed. This is the reason we predict non-uniform growth rate and a lower rate
in this case. In the case with control, the downward flow is weakened significantly by the effect of
the upward flow induced by the Lorentz force. Thus, as seen in Figure 7, we predict a more uniform
supersaturation distribution below the seed.

The surface supersaturation along the crystal radius is quantitatively plotted in Figure 8.
The predicted results of the cases without and with control are presented. We see that, after applying
the by trained RL model, the supersaturation value and uniformity are apparently improved. It should
be noticed that the growth rate non-uniformity in the 2D simulation is overestimated compared to
that in the 3D simulation [1,3]. Thus, the result of optimal control in Figure 8 could be different in
3D simulations.
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Figure 6. Time-averaged temperature field in the melt for the 2D case (a) without control and (b) with
optimal control.

Figure 7. Time-averaged velocity vectors and supersaturation distribution in the melt for the 2D case
(a) without control and (b) with optimal control.

Figure 8. Time-averaged supersaturation profile along the crystal radius for the 2D case.
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3.2. Discussion of the Optimal Control

In the previous section, RL is trained to optimally control the melt flow by directly adjusting the
Lorentz force strength. If we consider a real case about changing the Lorentz force, the natural way
is to change the frequency and current of the RF-coil. Figure 9 shows the relationship between the
Lorentz force, heat generation density, and the frequency and current of the RF-coil. We can input
different parameters with time according to the action of Figure 4. However, it arises some problems.
For instance, adjusting the RF-coil not only changes the electromagnetic field but also changes the
heat transfer in the furnace, which cannot ensure the accuracy of the control model. More importantly,
the input parameters are usually fixed values before carrying out the crystal growth, which means the
real-time control of the Lorentz force is quite difficult. Therefore, we implemented a compromised
method to guarantee the same temperature boundary condition and a constantly optimized parameter.
As in Figure 4, the optimized a fluctuates between 1.5 and 1.8, so that optimal electromagnetic field
strength should in the range of 1.5 and 1.8 times the initial electromagnetic strength. Due to the reason
that Marangoni induced downward flow is overestimated in 2D simulation, here, the minimum value
of a = 1.5 is chosen as the optimized parameter in the 3D case. Figure 9 shows the frequency and
current dependency of Lorentz force and heat generation. The value of heat generation should be
close (Qmax ≈ 1.32× 107 W/m3) for keeping the similar boundary condition between the initial and
optimized case, and Lorentz force is 1.5 times the initial case (Femax ≈ 29,000 N/m3). According to the
calculation results in Figure 9, the optimized input parameters were then estimated:

(1) The initial case (at 25 kHz the coil frequency, 360 A the coil current).
(2) The optimized case (at 18 kHz the coil frequency, 390 A the coil current).

Figure 9. (a) The maximum value of Lorentz force density in the melt at various frequencies and
current densities. (b) The maximum of the heat generation density in the whole calculation domain.

In order to validate the optimization method, the initial and optimized parameters are applied
in the 3D system. The computed Lorentz force density and temperature along the crucible for
the initial and optimized cases are shown in Figure 10. As seen from the comparison of those
two cases, the maximum value of Lorentz force density in the optimized case is 28,200 N/m3,
which is around 1.5 times that in the initial case 19,137 N/m3, this is in line with our proposed
optimization plan (a = 1.5). The temperature distributions along the wall and seed in Figure 10b,d
are similar, and the temperature difference between the seed and crucible walls is almost the same.
Thus, the thermocapillary numbers of the initial and optimized cases are very close, Reσ ≈ 4.8× 105 [3],
which means that at 18 kHz and 390 A, only the electromagnetic flow is enhanced without changing
Marangoni convection significantly.
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Figure 10. Lorentz force density (a,c) and temperature distribution (b,d) in the melt flow: (a,b) 25 kHz,
360 A; (c,d) 18 kHz, 390 A.

The time-averaged flow velocity and supersaturation in the 3D melt for the initial and optimized
cases are presented in Figure 11. As seen, the Marangoni induced downward flow is significantly
weakened in Figure 11b. In the enlarged view of the region below the seed, the flow velocity is
apparently weaker in the optimized case. Usually, as the Lorentz force gets stronger the flow becomes
more unstable. However, in this case, the flow is more stable for the stronger Lorentz force. This is
due to the competition between the Marangoni downward flow and the electromagnetically induced
upward flow. The results indicate that the effect of Marangoni flow is reduced, and the melt flow
becomes more stable under the optimized RF-coil parameters.

The supersaturation along the seed diameter is plotted in Figure 12. It is clear that in the optimized
case we predict more uniform supersaturation and higher supersaturation distribution on the crystal
surface. These results show the validation of the present optimization model. It should be noticed that
present optimized parameters are rough values that are close to the accurate optimal condition since
they were chosen based on an estimation of the optimal control strategy discovered by the RL model
in Section 3.1. It would be more accurate if we say that proposing EM/Reσ

2 is in the range of 0.006 and
0.0072 is an optimization range for the selection of input variables. Here, EM/Reσ

2 represents the ratio
of electromagnetic and Marangoni forces [5].
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Figure 11. Time-averaged velocity vectors and supersaturation distribution in the melt for the 3D case
(a) 25 kHz, 360 A and (b) 18 kHz, 390 A.

Figure 12. Time-averaged supersaturation profile along the crystal diameter for the 3D case.

4. Conclusions

A reinforcement learning model was developed to optimally control the top-seeded solution
growth (TSSG) process. The model was trained by the 2D numerical simulation, and it improved the
growth rate (supersaturation) of SiC crystal through the automatic control of electromagnetic field
strength. The model accuracy was validated using a constant optimized parameter value (at 18 kHz
and 390 A) to the 3D system according to the obtained optimal strategy range by the RL model in
the 2D TSSG process. The selected optimized parameter enhanced the electromagnetic field without
significantly changing the heat generation, and the supersaturation along the crystal diameter is
also improved.
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Based on the characteristics of the RL model that is capable of high-dimensional output,
other parameters such as seed and crucible rotations, RF-coil position, and external magnetic fields,
can be simultaneously optimized and the model needs to be validated by experiments in the future
work, to test the potential of RL in the field of crystal growth.
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