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Abstract: X-ray photon correlation spectroscopy accesses a wide variety of dynamic phenomena at
the nanoscale by studying the temporal correlations among photons that are scattered by a material
in dynamical equilibrium when it is illuminated with a coherent X-ray beam. The information that
is obtained is averaged over the illuminated area, which is generally of the order of several square
microns. We propose here that more local information can be obtained by using nanobeams with
great potential for the study of heterogeneous systems and show the feasibility of this approach with
the support of numerical simulations.
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1. Introduction

Recent developments of synchrotron sources pursue the drastic reduction of the source emittance
and the increase of brilliance, which translates into a huge gain in the coherent photon flux at the
sample [1]. One of the experimental approaches that takes full advantage of this gain is X-ray
photon correlation spectroscopy (XPCS), a well established technique that provides access to the
dynamics of nano- to micro-scale materials in a wide range of time-scales, from hundreds of seconds
to sub-µs [2–10], and has recently been demonstrated at the ns scale [11]. Derived from the Dynamical
Light Scattering technique (DLS) [12–14], which uses coherent light from laser sources, XPCS exploits
the coherence properties of X-ray beams produced at 3rd and 4th generation sources to inspect
time-resolved interference patterns, also called “speckles”, from disordered samples. The fluctuation
of speckles in time, arising from the changing sample configuration, are analysed in terms of time
correlation functions. These give direct access to the characteristic times of the probed dynamics that
can be related to diffusion, relaxation, coalescence, phase transitions, etc. XPCS is complementary
to DLS and the time domain accessible with both techniques is similar [2,15]. However, while DLS,
due to the nature of the probe, is limited to the study of length scales > 100 nm, XPCS can explore
length scales that range from nanometers to atomic distances [16]. In addition, it can be used to
study systems that are opaque to visible light and is not affected by multiple scattering effects [2,16].
The capability of acquiring data at high time rate is a fundamental requirement for this technique,
the fastest dynamics accessible being limited by the shortest acquisition time achievable during the
experiment. This, along with the demand of high coherence, makes the number of scattered coherent
photons per unit time the parameter of largest relevance for an XPCS experiment—provided, certainly,
that the acquisition rate of the available detectors is not a bottle-neck—which in many cases is indeed
the case. Needless to say, stability of the whole setup, from the X-ray source to the detector, including
optics and sample environment, over all the measurement time is a conditio sine qua non.
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The field of application of XPCS has originally developed around the investigation of equilibrium
dynamics of meso-scale particle assemblies as colloids, gels and polymers [2,15] studied with small
angle scattering geometry (SAXS) and it has later extended towards out-of-equilibrium systems, such as
complex fluids and rheology [17,18] or ageing in self-organised systems [19,20]. The access to increased
coherent flux has opened the field to include atomic fluctuations or diffusion in hard-condensed matter
systems, such as ageing and phase transitions in metallic glasses [6,21], diffusion in alloys [22–24],
order-disorder fluctuations in crystals close to phase transitions [25] and even flow and diffusion
of “phase discontinuities” as defects in thin metal films [26] (see also [8] and references therein).
XPCS approaches have also been applied to the study of fluctuation of domains in magnetic [27–30]
and ferroelectric [31] materials, and to the study of charge density waves under current [32]. For many
of the mentioned systems, the relevant signal consists of diffuse scattering in the vicinity of Bragg
peaks, with intensity typically orders of magnitudes weaker, see for example [31] where the measured
intensity is ∼10−3 ph/s/pixel. For other systems, like magnetic materials, the scattering cross-section,
even exploiting enhancement effects at resonance energies [30], is smaller than the charge scattering by
3–4 orders of magnitude. This loss of intensity in the speckles limits strongly the accessible range of
time-scales for these studies. Therefore, in many reported cases, the system dynamics and characteristic
times have to be tuned (namely slowed down) with external parameters, like temperature, external
magnetic or electric field, applied currents, etc. for the benefit of the counting statistics of the experiment
performed. Repeating or extending the measurement time is also used to increase signal statistics,
when this is not in conflict with the intrinsic aging of the system and does not determine a loss of
information of the system behaviour. Therefore, any further development of the XPCS technique towards
the investigation of these material systems at the relevant time-scales relies heavily on the access to
increased coherent flux, along with the capability of adjusting the set-up to match the requirements of each
experiment. Free Electron Lasers–FELs offer in principle the ultimate increase in coherent flux and time
resolution for XPCS. As an example, the XPCS dedicated beamline of LCLS source can provide a coherent
flux of ∼1010 ph/s, in monochromatic mode in the energy range 5–10 keV—equivalent to ∼1012 photons
per pulse at ∼10−4 monochromator bandwidth and repetition rates of 120Hz, and a time-resolution
in the ms-scale [33]. However, beam jittering in energy, intensity and position still represent a strong
limiting factor and lots of effort is put into technological and methodological developments to overcome
these issues and make full use of the exceptional coherence and time-resolution of these sources [11].
Due to the intrinsic stability of the X-ray production process, synchrotrons are arguably the best sources
to perform XPCS.

We propose here that the use of nanobeams for XPCS (nXPCS) combines the benefits of a
stable X-ray source and a dramatic increase of coherent flux, with the added value of a reduction
of the size of the illuminated volume that introduces a nanometre-range lateral resolution until
now unexploited. In this manuscript, we discuss how the reduction of the beam size, by using
nano-focusing optics, allows access to local information at the nanoscale, with excellent spatial
resolution, and how this, combined with lateral translation of the sample in the beam, benefits
the study of spatially heterogeneous systems. We demonstrate the power of using nanobeams with
the support of simulations, awaiting experimental setups to match the appropriated—scaled, stability
levels. We note here that for beam sizes comparable with particles size or inter-particle distances,
this approach requires a modification of the standard theoretical framework to account for particle
number fluctuations within the volume [34]. Here, we stay far from these limits, and concentrate
onto the conditions that will get all the benefits of decreasing the beam size, while preserving the
applicability of the standard XPCS analysis.

2. XPCS Theory

We include here a brief theoretical description of the mathematical background for the XPCS analysis.
Comprehensive introductions and relevant references can be found in Ref. [2,5,7]. In conventional XPCS
experiments, a monochromatic and coherent X-ray beam impinges on a sample and the scattered
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signal—speckle pattern [35]—is recorded on a detector placed in the far field. Speckles appear due to the
propagation of the X-ray beam through a medium with random fluctuations of the electronic density or
by the reflection from a rough surface. In a dynamical medium where spontaneous electronic density
fluctuations occur in time (either by changes of the electronic density or movements of the constituting
particles of the medium), the intensity of the speckles will also fluctuate. In XPCS, speckle intensity
correlation functions are employed to obtain information about the dynamics of the system. g(2) (Q, τ),
the normalised intensity correlation function of the speckles is defined as:

g(2) (Q, τ) =
〈It It+τ〉T
〈It〉2T

=

〈
E∗t E∗t+τEtEt+τ

〉
T〈

|Et|2
〉2

T

(1)

The superscript (2) indicates that g(2) is a temporal correlation function of order two [36]. It is
short for I (Q, t), the intensity at time t and at momentum transfer Q. τ is the time delay. The angle
brackets indicate an average over the acquisition time T.

The Siegert relation connects g(2) (Q, τ) and the intermediate scattering function (ISF) of the
sample S (Q, τ) [13,37]:

g(2) (Q, τ) = 1 + β(Q)

[
S (Q, τ)

S (Q)

]2
(2)

The optical contrast β (Q) = σ2

〈I〉 is a factor that is used to account for the degree of spatial

coherence of the incident radiation and is given by the variance of the intensity (σ2) divided by its
mean value [38]. S (Q) is the static structure factor. The ISF (S (Q, τ)) is the spatial Fourier transform of
the density correlation function and the time Fourier transform of the dynamical structure factor [39].
The time dependence of the electronic density correlations in the sample can be deduced from the ISF.
However, this is usually a very complicated function to get. Equation (2) is not general: it is valid if the
range of spatial correlations in the system is much smaller than the linear dimension of the scattering
volume [13]. In that case, the central limit theorem of statistics can be applied and all the correlation
functions can be expressed in terms of the lowest order ones [40]. However, when nanobeams are
used, it is rather likely that the spatial correlations are of the order of the illuminated volume and
that a straightforward association between g(2) (Q, τ) and the ISF through the Siegert relation should
be abandoned. Nevertheless, one can always resort to using simulations to relate the ISF and the
intensity fluctuations. For the results presented here, the spatial correlations are smaller than the
illuminated volume.

Experimental Considerations

The speckle intensity determines the shortest and the longest time-scales accessible during the
experiment. For samples with low scattering power (i.e., small volume and/or scattering cross-section),
the total measurement time T needed to acquire enough statistics can be up to orders of magnitude
larger than the accumulation time τa. One way to improve statistic is by acquiring simultaneously a
large number of speckles Nsp, which is routinely done by using 2D pixel detectors. These mentioned
quantities contribute to the figure of merit used to estimate XPCS data quality, i.e., the signal-to-noise
ratio s/n defined as [41]

s
n
= I0β

√
τaTNsp (3)

where I0 and β represent the intensity of the incoming beam and the fraction of coherent beam (in %),
respectively. The need of an intense coherent radiation explains why this technique has been developed
at synchrotron sources and is now pursued also at FEL facilities. The coherence properties of the X-ray
beam produced are often expressed in terms of transverse (or lateral) and longitudinal (or temporal)
coherence lengths, respectively ζr (with r = x, y in the plane of propagation of the X-ray beam) and



Crystals 2020, 10, 766 4 of 16

ζt, which depend on the wavelength used (λ), the size of the source along the relevant direction (Σr),
and its distance (d) from the measurement point in the following way:

ζr =
λd
2Σr

, ζt =
λ2

∆λ
. (4)

Dedicated beamlines at 3rd generation synchrotron sources typically provide a fully coherent
photon flux of the order of 1–5·108 ph/s in the photon energy range of 6–15 keV, and transverse
coherent lengths of the order of few to few tens microns. The temporal coherence length depends on
the monochromaticity of the X-ray beam ∆λ/λ, typically of the order of 10−4 with a standard Si(111)
monochromator. Slits or pinholes are generally used to reduce the lateral size of the X-ray beam to
match its transverse coherent lengths, so that the conditions of coherent illumination of the sample are
satisfied. Because XPCS is based on the visibility of the speckles and is therefore quite forgiving on
small compromises on the degree of coherence of the X-ray beam, a further increase of intensity can be
obtained by using larger pinholes and accepting larger portions of the incoming beam. The increased
brilliance of the 4th generation Diffraction Limited Storage Rings (DLSR) is expected to result in
up to 100-fold increase of coherent flux in the same energy range, when combining the increase of
flux density due to the reduction of the beam divergence, and the increase of transverse coherence
length due to a reduction of the source size Σr (cf. Equation (4)). From Equation (3), this can result
in a 1002-fold decrease of τa with an obvious benefit for the study of systems with faster dynamics.
However, this increase of the size of the coherent beam has a strong impact on the experimental setup.
Like all coherent scattering experiments, the intensity speckles measured in XPCS are well described by
the square of the Fourier transform of the electronic distribution of the illuminated sample—multiplied
by the complex illumination function, at each measurement time. This results in a relation of inverse
proportionality between coherent beam size ζr and speckle size wr measured at a distance D:

wr =
Dλ

ζr
. (5)

The detectors most used for XPCS measurements are photon-counting pixel detectors,
which nowadays can provide pixels of the order of 50–100 µm in size and acquisition rates of
the order of few kHz (up to 22 kHz if operated in burst mode [42]). It is widely accepted that a
detector pixel matching the size of the speckle is the most efficient way of measuring XPCS data [43].
It results, from Equation (5), that setups typically developed for XPCS in the hard X-ray regime,
with λ ∼ 10−10 m, are rather bulky and include sample-detector distances of the order of several
metres. The beams produced at DLSR and FELs provide an even larger transverse coherence length,
which pushes further the demands on the setup. Moreover, because the information obtained in XPCS
experiments is ensemble averaged over the illuminated volume, the use of larger beams, while certainly
benefiting the measurement statistics of laterally uniform systems, is disadvantageous for systems
confined in small spaces (i.e., small volumes) and for those with intrinsic lateral heterogeneity. X-ray
nanobeams are routinely produced at dedicated beamlines, with lateral dimensions ranging from
few tens to a couple of hundred nanometres. Therefore, nXPCS experiments can overcome both
the above-mentioned issues, by keeping the needed sample-detector distance within one metre and
allowing an efficient measurement of systems confined in small volumes, with the further benefit for
the study of heterogeneous samples.

3. Simulations

In order to show the effect of using a small beam, we have carried out simulations using
2D matrices with particles in Brownian motion, which is a rather typical model system for XPCS.
First, we study three different but interrelated model systems and their results together (Figure 1):



Crystals 2020, 10, 766 5 of 16

• Model 1 (M1) consists of a number N1 of particles in Brownian motion with diffusion constant η1,
unconfined, i.e., free to move within the whole matrix (Figure 1, left inset). This represents the
ideal ergodic system for XPCS analysis.

• Model 2 (M2) consists of two types of particles in Brownian motion with same shape: N1 particles
with diffusion constants η1 and N2 with diffusion coefficient η2, both unconfined (Figure 1, middle
inset). It is an elementary representation of a system with heterogeneous dynamics but which is
spatially homogeneous.

• Model 3 (M3) contains two types of particles, as for M2, but at time t = 0, the N2 particles
are confined in a small region in the center of the box (Figure 1, right inset). In other words,
at time t = 0, the central region has a high concentration of slow particles that are free to move.
This model is a simple representation of a spatially heterogeneous system or a confined system
because, for the total time used in our simulations, the slow particles stay in a region close to the
matrix centre. It is clearly a non-ergodic system.

Model 1

R
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l S
p

ac
e

Model 2 Model 3

R
ec

ip
ro

ca
l S

p
ac

e

Figure 1. Matrices representing the real space configuration (top row) and the reciprocal space speckles
(bottom row), in logarithmic scale, of the three different models in the initial conditions: (left) Real
space representation of Model 1, where one type of particle is uniformly distributed in the 2D matrix
at time t = 0; (middle) Model 2: two types of particles of same shape and different diffusion constant
are uniformly distributed in the matrix; (right) Model 3: one type of particle is uniformly distributed
in the 2D matrix and and a second type of slower particles are confined (in time t = 0) in a small area
in the middle of the matrix. The green squares on the top row images represent the different mask
sizes that have been applied (masks 1, 2 and 3 in the main text). The circles on the bottom row figures
indicate the distances (in reciprocal space) at which the OTCFs have been extracted (250, 350, & 450 in
the main text—These correspond respectively to Q values of 0.11, 0.15, and 0.20 nm−1 for a particle of
80 nm diameter).

A fourth model (M4), where three types of particles in Brownian motion and different diffusion
constants are spatially separated at time t = 0, will be presented in Section 4.3.

Simulation Details

Each model is represented, for simplicity, by a 2D matrix of dimension N × N which corresponds
to the projection of a 3D volume along the beam direction. In analogy, spherical particles are
approximated in 2D by a circular shape. For M1 & M2, the distribution of particles is random
and homogeneous in the 2D matrix, while for M3 the N2 particles with slower dynamics (η2 = 0.1× η1)
are initially concentrated in a 128× 128 pixel area (Figure 1). For the simulations shown here, it is
N = 1024, N1 = 1024 and N2 = 512. Round particles were assigned to each position, approximated
by 5× 5 pixels with the four corner pixels removed. The pixel values of all particles are set to 1.
Using other shapes did not alter the results. The same shape was selected for all types of particles and
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the dispersity index for each type of particle is set to 0 to shun any artifact arising from different form
factors and that might be echoed on the correlation functions. For each model, four XPCS synthetic
data-sets have been produced, simulating different illumination conditions of the systems: the first
corresponding to a large beam, where the whole 2D matrix is contributing to the scattering signal,
and the other three with beams of progressively reduced size (masks 1, 2 & 3, green squares in Figure 1).

The simulations were done using MATLAB [44]. Trajectories with 500 points for a total time of
10 s, starting from the origin and following Brownian motion were created for a number Np of particles,
with Np = N1 + N2 for M2 & 3 and Np = N1 for M1. Each individual trajectory was calculated using J.
Burkardt’s GNU-LGPL licensed code [45]. A normally distributed spatial step size s = 2dη∆t, where d
is the dimensionality (d = 2 in our simulations), η the diffusion constant and ∆t time step (∆t = total
time/number of points) was used. Random starting points were then selected for the particles 1 (2)
within an area A1 (A2) inside a N × N grid according to the requirement of each model (cf. Table 1),
and each trajectory was shifted to these starting positions.

Snapshots of the real space N × N grid were calculated for each time step. Three different masks
were subsequently applied to each snapshot to simulate the use of nanobeams of different sizes, and the
illumination of progressively smaller portions of the sample (see Figure 1, top). The masks consisted
of a N × N matrix with pixels set to zero everywhere but in a central M×M area , with M = 400, 200,
133 for masks 1, 2 & 3, respectively. The size of the masks was chosen to progressively reduce the
illuminated portion towards the area of the “confined” sample A2. This way of proceeding allows one
to use the same trajectories for the different masks and study the sole effect of reducing the beam size
on the synthetic data-sets. The masked snapshots were subsequently fast-Fourier transformed and
squared to calculate the intensity distribution in reciprocal space (Figure 1, bottom). This operation
implies a full coherence of the incoming beam. Besides this, no specific assumptions are made about
the X-ray energy or the intensity of the impinging beam, and no noise was added to the dataset
obtained, as our study is not concerned about the quality of the signal, and assumes that the scattered
intensity is enough to provide a good signal-to-noise ratio.

All the parameters used for the simulations are summarised in Table 1. To give a measure
of the corresponding experimental conditions in a real-life experiment, for a particle size of 30 nm,
our simulations correspond to a full beam of lateral size 6× 6 µm2 and to beams of lateral dimensions of
2.4× 2.4 µm2, 1.2× 1.2 µm2 and 800× 800 nm2, respectively, for the masks 1, 2 & 3. The corresponding
increase in flux density is a factor of 6, 23 and 53 assuming an efficiency of the focusing optics of
90%, a realistic value for KB mirror optics. The flux increase corresponds to 0.6, 2.6 and 6 times, for a
focusing optics efficiency of 10%, typical value for Fresnel Zone Plates in the hard X-ray regime, as an
example. As we use 2D matrices for the simulations, it is more adequate to consider an area fraction
(Φ) instead of a volume fraction. In M1, M2 and M3, Φ1 ∼ 0.02, and in M2 & M3, Φ2 ∼ 0.02. In M3,
the N2 particles are concentrated or confined in a small region in the centre. If only that region is taken
as the area, then Φ2 ∼ 1.3. However, we note that our 2D matrix is a projection of the scattering volume
along the beam direction, so this apparently unrealistic value, translated into a volume fraction in a 3D
experiment is Φ2 ∼ 1.3/128 ∼ 0.01.

One time correlation functions (OTCF) were calculated for each pixel and averaged for all the
pixels with equivalent Q-value (circles in Figure 1, bottom). These correspond respectively to Q
values of 0.11, 0.15 and 0.20 nm−1 for a particle of 80 nm diameter. In the rest of the manuscript,
these values are referred to as “distance” measured in pixels from the center of the intensity matrix.
The time evolution of the four models and the simulation of XPCS data in the different conditions are
detailed in Section 4. For M4, we followed the same procedure except that the mask size was fixed to
(101× 101) pixels and its position was displaced along one of the diagonals of the matrix, to give the
clearest graphical representation of the raster scan. Rastering the beam horizontally on M4 yields the
same results.
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Table 1. Simulation parameters for models 1, 2 & 3 and for the masks. Nomenclature, with subscripts
1 and 2 indicating fast and slow particles, respectively: N1,2: number of particles; A1,2: initial area
(in pixels) on which the particles are positioned; η1,2: diffusion constant.

Model 1 Model 2 Model 3

N1 1024 1024 1024
A1 1024× 1024 1024× 1024 1024× 1024
η1 64 64 64
N2 — 1024 1024
A2 — 1024× 1024 128× 128
η2 — 0.1η1 0.1η1

Mask 1 Mask 2 Mask 3

M 400 200 133

4. Results

4.1. Homogeneous vs. Heterogeneous Systems

By comparing the OTCFs of the three models M1, M2 & M3 using different beam sizes (Figure 2),
we observe that, in the case of the two spatially homogeneous systems (M1 & M2), the reduction in
beam size does not change the one-time correlation functions appreciably: when reducing the beam
size—provided that the beam size is not so small that number fluctuations become significant (see [34]
and the discussion)—the particles’ relative contributions to the scattered signal decrease by the same
amount. This is a manifest consequence of the uniformity of these systems, which, observed at different
spatial scales—but still large in comparison with the particle size—look alike. In contrast, for the
spatially heterogeneous system M3, the measured correlation function shows a strong dependence on
the beam size and the illuminated area.
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Figure 2. One-time correlation functions for the different models at distances 250, 350 & 450, for different
masks. This representation stresses the effect of adding masks for each model.

Interestingly, and rather obviously too, for a heterogeneous system, there is also a dependence on
the decaying times with the beam size. This can be observed in Figure 3, where the OTCFs of the three
models are plotted together again, but for different masks (beam sizes) and distances. When a large
beam is used (Figure 3, top row), the OTCFs and thus the time constants that are obtained for each
model show only subtle differences. By progressively reducing the beam size (Figure 3 from top to
bottom row), the results stay the same for M1 & M2, while changing dramatically for the heterogeneous
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system M3: the small beam size increases sensitivity to the slow moving particles by increasing their
relative contribution with respect to the fast moving ones. We can therefore posit that large beams are
rather insensitive to spatial heterogeneities and that one needs beams that are comparable to the size
of the heterogeneities to examine their dynamical behaviour.
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Figure 3. Equivalent representation to that of Figure 2 of the one-time correlation functions for the
different models at distances 250, 350 & 450, for different masks. This representation stresses the
differences in the OTCFs that are obtained for the different models.

4.2. Particle Concentration in a Heterogeneous System

To investigate the possible influence of particle concentration on the heterogeneous system M3,
we have performed simulations with three different concentrations of slow moving particles (Figure 4)
and apply the same masks as in Figure 3.

When the full beam is used (no mask: Figure 4, topmost row), similar OTCFs are obtained with
the three concentrations. If the beam size is reduced, the OTCFs deviate gradually (Figure 4, going
from top to bottom row). We have extracted the the decay rates of each OTCF in Figure 4, at distance
450 (right column) by fitting the curves to a Kohlrausch–Williams–Watts (KWW) function of the
form f (t) ∝ exp−(Γt)γ, with Γ and γ being the decay rate and the KWW exponent in the decay
function, respectively. γ > 1 (γ < 1) implies that the decay is faster (slower) than purely exponential.
The KWW function appears frequently in XPCS studies of non-equilibrium systems and heterogeneous
dynamics [38]. The decay rates for the different concentrations vs. mask size (Figure 5) have a similar
trend and decrease when the beam size is reduced because the relative concentration of slow moving
particles with respect to the fast moving ones in the illuminated volume is enhanced. The decay rate is
also slower for higher concentrations of slow particles, as foreseeable. Still, the behaviour of the KWW
exponent does not follow such a systematic trend (Figure 5, right column). Importantly though, for all
beam sizes, the KWW exponent is smaller than 1, proving that M3 yields slower-than-exponential
correlation functions. We note that during our simulations we have observed that the exact value of
the exponent is rather dependent on the fitting procedure and further and more extensive calculations
are needed to clarify this issue. Some of the discrepancies may disappear by averaging over many
realisations (i.e., repeating many simulations and averaging them), but, nonetheless, a more exhaustive
study combining simulations and theory is still required and will be reported elsewhere.
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Figure 4. One-time correlation functions obtained with model 3 and three different concentrations
(i.e., number of slow particles, N2) in the confined area A2, at momentum transfer distances 250, 350
and 450, and for different masks.
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Figure 5. Decay rate (Γ) (left) and KWW exponents (right) for different masks and slow moving
particle concentration in model 3. The values have been extracted fitting the OTCFs of Figure 4 with a
KWW function (see text for details).

4.3. Raster Scanning

As a further practical example, we simulate a system with a lateral variation of dynamics that
could represent a liquid in confinement—although the dynamics we have employed, namely Brownian
motion, are professedly not correct for a liquid—and show that a small illumination can be combined
with a “raster” scan approach, in a similar way as is employed in scanning imaging approaches
to obtain a spatial map of the system dynamics with a resolution only limited by the beam size.
The system (Model 4, M4) is schematically presented in Figure 6 (left). All particles in the system
follow Brownian motion but with different diffusion constants (numerical parameters can be found in
Table 2). We have separated the system in five areas: the two areas close to the left and right borders
have the slowest diffusion constant. The central area contains the fastest particles and the particles in
the band bounded by the border and central bands have a diffusion constant in between. We have
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evaluated the OTCFs using a beam illuminating the whole system (no mask), and using a small beam
illuminating each band. The results are shown in Figure 6 (right).

Table 2. Simulation parameters for model 4. Particle types in the top row and related parameters in the
rows below with: N their respective number, A the initial area (in pixels) on which their are positioned
and η their diffusion constant.

Particles FAST MEDIUM SLOW

N 1024 512 1024
A 320× 1024 196× 1024 160× 1024
η 3ηslow 2ηslow 64

mask 101× 101

When the beam is rastered from left to right, from the region with slow particles towards the
region richer in fast particles, the OTCF decay accelerates until it reaches it maximum decay rate in
the central part of M4. Past the fast region and going towards the medium and slow motion regions,
the OTCFs’ decay slows down again. If the system were illuminated fully, an “average” OTCF with a
decay rate amidst the fastest and the slowest one is obtained (yellow line on the right inset of Figure 6).
Thus, a small beam does indeed allow for exploring and mapping the various dynamics on the model.
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Figure 6. Schematic representation of model 4 (left) and OTCFs extracted rastering the beam along
the diagonal (right). The squares indicate the position at which the OTCFs have been extracted.
The corresponding OTCs follow the same colour and line style (solid or dashed). The yellow solid line
corresponds to the OTCF extracted using the full beam (i.e., illuminating the whole system).

5. Discussion

The study presented here is purely speculative: our analysis is performed using synthetic data on
a model system, and therefore many important experimental implications are not taken into account
and should be discussed separately. While in principle rather easy to perform, XPCS measurements
are experimentally terribly demanding. The stability required for the setup will scale with both
the beam size and the minimum acquisition time. Another important aspect to consider is that the
dramatic increase of flux density has a devastating effect for systems that are sensitive to beam damage.
Nonetheless, focusing of X-rays with the aim to increase the available coherent flux has already been
used (see for example [46], and [7] for more references), while no investigation of systems with high
lateral resolution, as we propose, has been reported yet. Test experiments attempted until now by the
authors using 100 nm beam size (not shown here) have been strongly limited by the instability of the
available setups and the readout time of the used detectors.

Beside the archetypal exponentially decaying OTCFs which often arise in stochastic processes,
there are many dynamic systems that display other functional forms of OTCFs (see [47] for a
particularly relevant discussion). In most cases, these deviations result from the intrinsic dynamics
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or dynamical heterogeneities. Accessing dynamics with spatial resolution is especially appropriate
to study heterogeneous systems. A spatially homogeneous system where all local contributions are
equal to the ensemble averaged ones and a spatially heterogeneous system with locally different
dynamics can indeed present identical OTCFs if only macroscale or ensemble averaged (i.e., large
beam) information is extracted [48]. Our results in Section 4.1 show that a beam size comparable to the
heterogeneity size brings in new information that is generally concealed with a large beam. The caveat
is that this new information is not necessarily related in a straightforward way to the dynamics of
the heterogeneous part as different contributions can still concur even when only very small areas
are probed. However, for those instances too, collecting OTCFs at different areas on a sample may
turn essential to delimit the time scales present on the sample and construct reliable models to analyze
the data.

Using nanobeams is probably the most direct method to get information about the different
dynamics in heterogeneous systems but other approaches have been developed as well that we report
here for completeness. Andrews et al. [49] have nicely demonstrated that alternative ways used to
extract the different time scales of heterogeneous systems from DLS data can be extended and adapted
for XPCS too. Nevertheless, those methods will give information over the whole illuminated volume
and thus ensemble averaged and lacking the higher spatial resolution nanobeams provide. That is,
for the model introduced in Section 4.3 and applying such methods to the OTCF extracted using the
full beam (yellow solid line in Figure 6), one may determine the different timescales that contribute to
it (red, blue and green curves in Figure 6), but not which area of the sample they come from. For many
cases, that approach will suffice and may even be combined with data acquired with nanobeams.
The spatial distribution can be determined with raster scans.

Heterogeneous systems with nanoscale heterogeneities being ubiquitous, the number of studies
that could benefit from nXPCS is immense: liquids, glasses, self-organised systems, oscillatory chemical
reactions, magnetic spin ices, polymers or colloids in confinement, nanofluidics. To mention only
two types: (a) Similar studies to the one reported by Zhang et al. [50] on the spatially heterogeneous
dynamics in metallic glass forming systems can be envisaged, not with the spectacularly high spatial
resolution reported in that work, which has been obtained using electrons as probe, but on more
complex systems or environments that are not accessible with electron probes; (b) Using a sufficiently
small beam, it will be possible to probe the inter-island (or collective) and intra-island magnetic reversal
dynamics in artificial spin ice structures or magnetic domains [28–30,51]. Morley et al. have studied
square arrays of 30× 70 nm size magnetic islands, using a 10 µm diameter beam, at 9.6◦ incidence
angle [30]. The >6000 islands thus illuminated provide information about the collective dynamics
of the spin ice fluctuating magnetic configurations. A focused ∼100 nm beam with a flux density
1000-to-80,000 times larger could provide information about the spin fluctuations of fewer, or even
single, islands at similar time-scales (in this case, hundreds of seconds). This statement manifestly
passes over all the inherent technical difficulties arising from stability or sample damage. Specific
preparation and calculations are needed for each experiment to determine its feasibility. If studies on
individual islands are viable, then they could provide valuable local information about the dynamics
of tailored two-dimensional nano-magnetic systems [52,53].

Most XPCS studies on surfaces [4] would benefit from a smaller beam. Surface studies are
performed with a beam impinging at very low angles. The beam projection onto the sample depends
on the incidence angle as α as Sv/ sin α, where Sv is the vertical size of the beam. By using strong
focusing along the vertical direction, the footprint on the sample surface can be made comparable to
the sample length in the beam direction, increasing the efficiency of the measurement. In addition,
given the importance that the surface morphology (kinks, steps, terraces...) has on surface properties
such as diffusion, reactivity, etc. [54] studies such as those reported in [55,56] may also profit from
reduced illumination.

As shrinking the beam results in larger speckles, focusing can incidentally be used to optimise
the sample-to-detector distance too [43]. Another feature of focused beams that can be exploited is
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the variation of their size along the beam propagation direction. nXPCS measurements can thus be
performed by placing the sample at different distances from the focal plane to change the beam footprint
on the sample and at the same time control the flux density on the sample. This can be extremely
useful to determine conditions for beam damage, or intrinsic physical behaviours, like determining if
it is the total flux or rather the flux density the factor controlling the pumping of atoms observed using
X-rays [57]. The high flux density nanobeams can provide, and which may potentially lead to beam
damage, will surely restrict nXPCS to samples not prone to radiation damage.

An extremely important point to remark is that, for nXPCS, the rather direct connection between
the intermediate scattering function and the intensity correlation function given by Siegert’s formula
(Equation (2)) has to be dropped out. One of necessary assumptions for the Siegert relation to be
valid is that the coherence volume contains a large number of independent scatterers [58] but that
condition is not necessarily met when using nanobeams. Voigt and Hess have distinctly shown
that deviations from the Siegert relation are caused by number fluctuations or local ordering [34].
The correct interpretation and extraction of physical parameters from the intensity correlation functions
in nXPCS experiments will require numerical simulations. This is not necessarily a drawback because
the illuminated volume is small and in certain cases simulations with a small number of particles
will be sufficient. However, for systems that use ’mesoscopic’ real space simulations to describe their
properties, very large matrices (or a high density of points in real space) may be necessary to extract
portions of these simulations with enough number of points and calculate the expected scattered
signal when using a nanobeam. Ion eroded surface or growth simulations are a good example of such
systems [59–61], and have also been investigated with conventional XPCS [19,20,61]. Simulations of
real systems must undoubtedly go beyond archetypal simulations. In most cases, full 3D simulations
that take into account the parameters controlling the intrinsic dynamics will be needed. The scattering
factors of the material under study and the X-ray energy, especially for resonant XPCS studies [28,30],
must be included. A marked difference with conventional XPCS is that, in nXPCS, the beam has a
particular intensity distribution and this should be built into the simulations too. In conventional XPCS,
one can consider that the intensity is constant across the whole beam but coherent nanobeams have a
more complex beam profile (see, for example, [62,63]). Gaussian beam profiles can be approximated
using analytic formulas, as it has already been done in DLS [58]. The beam waist and depth of focus
along the direction of beam propagation are also an important factor because, for thick samples (thicker
than the depth of focus), the effective illumination may be larger than the beam size at the focus.

Combining XPCS with nanobeams just starts to be realistic. We have performed a first
experimental trial at the NanoMAX beamline of MAXIV during the early phase of the beamline
commissioning. We used a 100 nm size beam with 0.09◦ divergence. The nanobeam was obtained
using KB mirror optics, with ∼180 mm focal length [63]. The flux at the sample was ∼3 × 109 ph/s.
Using a Pilatus 1M (pixel size: 175× 175 µm2 at 4.2 m from the sample, we could observe time-evolving
speckles from a SiO2 sample [64]. However, those changes of the speckle patterns we observed in
our test experiments were not fully due to the system dynamics [57], but to setup instabilities that
hampered nXPCS measurements as evidenced from the analysis of the two-time correlation functions
from a static system. Despite this temporary defeat, we are very confident that soon nXPCS will
become realizable.
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Abbreviations

The following abbreviations are used in this manuscript:

CCD Charge-coupled device
DLS Dynamic light scattering
DLSR Diffraction limited storage rings
FEL Free electron laser
KB Kirkpatrick–Baez
KKW Kohlrausch–Williams–Watts
M1, M2, M3 and M4 Models 1, 2, 3 and 4
nXPCS nano X-ray photon correlation spectroscopy
OTCF One-time correlation function
XPCS X-ray photon correlation spectroscopy
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