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Abstract: An analytical investigation focusing on the concrete damage progress of the PBL shear
connector under the influence of various lateral pressures, employing a coupled RBSM and solid
FEM model was carried out. The analytical model succeeded in simulating the test shear capacities
and the failure modes adequately. The internal failure process was also clarified; the two horizontal
cracks occurred near the top of the concrete dowels through the hole of the perforated steel plate,
and afterward, the two vertical cracks also initiated and propagated along with the shear surface. In a
low lateral pressure case, the shear strength was determined by the vertical cracks propagated along
the shear surface. While as the amount of applied lateral pressure increased, the shear strength of the
two vertical cracked surfaces was enhanced, and the shear strength of the PBL was characterized by
the occurrence of the splitting cracks and caused the splitting failure into the side concrete blocks.
Moreover, the combined effects of lateral pressure and hole diameters were also evaluated numerically,
and it was found that the increase in shear strength was more in a large diameter case subjected to
high lateral pressure because of the wide compressive regions generated around the concrete dowel.

Keywords: coupled RBSM and solid FEM model; PBL shear connector; shear strength; lateral
pressures; failure mechanism

1. Introduction

In recent years, the use of concrete-steel composite construction has been adopted widely and
extensively, contributing toward the superior structural response (strength, stiffness, resistance against
seismic and monotonic loadings, and provision of reduced member sizes, etc.) and the ease of
construction. The critical aspect of the concrete-steel composite structures involves the existence
of a load-transferring element (shear connector) between steel and concrete. The composite action
between concrete and steel in the composite construction heavily depends on the mechanical behavior
of the shear connectors. Therefore, the efforts are always devised and proposed for the structural
improvement of the shear connectors in concrete–steel composite construction.

The perfobond rib shear connector [Perfobond Leiste in German (PBL)], firstly introduced and
developed by the German consultants, was being practiced in concrete–steel composite structures
(hybrid girder joints, hybrid truss joints, the hybrid pylon joints, and the anchorage joints between
the suspenders and the girders) [1–6]. It behaved as a key and transferred the large internal forces
between concrete and steel; it provided advantages related to ease of installation, economic reliability,
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ductility, and the excellent bearing capacity and the anti-fatigue behavior, etc. [7–9]. A typical PBL shear
connector is composed of a perforated steel plate, which is attached with a steel section with transverse
reinforcement within the rib perforations and the concrete passing through the rib perforations and
forming the concrete dowels. The shear capacity of a typical PBL shear connector is mainly comprised
of: (1) the shear resistance of the concrete dowel, (2) the shear resistance of the transverse reinforcement,
(3) the concrete end bearing resistance and (4) the frictional and the bond effects between concrete–steel
interfaces [10,11], as shown in Figure 1.
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Figure 1. Representation of force-resisting components of a typical perfobond rib shear connector
[Perfobond Leiste in German (PBL)] shear connector.

Over the years, the researchers performed numerous studies to investigate the shear resistance
of the PBL shear connector under the influence of various connection parameters and structural
conditions. It was mentioned that the shear resistance of the PBL shear connector was dependent
on the diameter of transverse reinforcement inside the hole of the PBL, the diameter of the hole,
the thickness of the perforated steel plate, and the stress state in the vicinity of the concrete of the
PBL [12]. The experimental investigation [13] revealed that the shear resistance was influenced by the
laterally applied varying amounts of pressures to surrounding concrete blocks of the PBL in the simple
push-out test, and the shear capacity was increased with the increased amounts of the applied lateral
pressures. Similarly, the influence of the lateral constraints, concrete compressive strength, the diameter
of transverse steel in the rib hole, and the bond between concrete–steel plate interfaces on the bearing
mechanism of the PBL in push-out tests were also investigated experimentally [14]. Furthermore,
an experimental study was performed to evaluate the shear resistance capacity and the failure behavior
of the PBL under the effect of mechanical properties of concrete and the different rib arrangements,
and a shear capacity equation was proposed that took into account the influence of the rib height, the rib
spacing, and the rib arrangement [15]. Similarly, experimental and parametric-based studies were also
carried out to observe the effect of different types of rib patterns, rib hole configurations, including the
varying number of drilled holes in the rib, and the transverse rebar effect inside the rib hole, etc. on the
shear response, the modes of failure, and the slip response of the PBL [16,17]. Furthermore, it was
reported that the shear resistance and the failure modes (local shear failure and splitting failure) of the
PBL shear connector were also dependent on the concrete sizes of the adjoining concrete blocks of the
PBL in the simple push-out test [18]. Considering the PBL shear connector relatively more effective
concerning the structural integrity compared with the conventional shear connectors (head studs and
group studs etc.), the shear resistance of the PBL was also studied in various concrete–steel composite
structural elements, e.g., slab, slim floor steel beams, and the diaphragm walls, etc. [19–21].

There existed two major investigation techniques or approaches for the shear response evaluation
of the PBL, firstly through the experimental studies by conducting model tests and secondly through
the numerical analyses using the finite-element method (FEM). On the one hand, most of the past
studies were experimental based, which evaluated the structural performance of the PBL under various
loading conditions and test parameters as mentioned above [22–29].
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On the other hand, the past numerical simulation studies utilized the finite element analyses
mainly focused on capturing the test shear strength and the macroscopic load–displacement response
under the influence of several test parameters that affected the shear capacity of the PBL and mostly
addressed the shear resistance (deformation, stress contours, and strain distributions) of the steel
plate [30–36]. In contrast to focusing on the steel plate, few simulation studies [37,38] were conducted
aimed at verifying the reproducibility of crack propagation behaviors and the failure modes of
concrete. The investigation and understanding regarding the detailed internal failure mechanism are
important and essential for establishing rational design methods and reinforcement details. Therefore,
it is required to analyze the internal failure behavior of concrete comprehensively using numerical
simulation analyses.

The current research aims to investigate the effect of lateral pressures on the shear strength of the
PBL shear connector and also highlights the detailed failure process of concrete, especially the internal
crack propagation behavior and stress distributions, through simulation analyses, which has not
been discussed efficiently in past research studies, using a coupled Rigid Body Spring Model (RBSM)
and the nonlinear solid Finite Element Method (FEM). Furthermore, the current research primarily
focuses on determining the shear resistance solely of the PBL shear connector without presenting
the comparison related to shear performance for different types of shear connectors. The coupled
RBSM and solid FEM model combines the use of 3D-RBSM and the nonlinear solid FEM that was
proposed by authors [39,40]. The 3D-RBSM has been referred to as an effective numerical approach
for the evaluation of nonlinear fracture behavior of concrete (internal crack initiation, propagation,
and orientation), quantitatively [41]. In the current study, firstly, the analytical approach based on
a coupled RBSM and solid FEM model is presented; then, the validation of the numerical model is
carried out for the test shear capacities and the failure modes of the PBL shear connector specifically
under the influence of the various amounts of the lateral pressures applied to the surrounding concrete
of the PBL. After the validation of the numerical model, the detailed internal crack propagation process
and the failure mechanism of concrete influenced by the varying amounts of the lateral pressures are
highlighted and discussed. Furthermore, the combined effects of the varying lateral pressures and the
diameters of the holes on the shear resistance of the PBL shear connector are also evaluated.

2. Numerical Modeling of Concrete, Steel, and Concrete–Steel Interface

In the coupled Rigid Body Spring Model (RBSM) and the nonlinear solid Finite Element Method
(FEM) model, the concrete is modeled using 3D-RBSM, and the steel embedded in concrete is modeled
using eight-noded nonlinear solid finite elements utilizing the actual geometrical features of the steel.
The modeling of the concrete, the steel, and the concrete–steel interface is described in this chapter.

2.1. Modeling of Concrete Using 3D-RBSM

The 3D-RBSM is comprised of an assemblage of rigid elements. The rigid elements are
interconnected by employing normal and tangential springs along with their interfaces of boundaries.
The 3D-RBSM has been proved to be an effective and an efficient numerical approach for the quantitative
evaluation of the nonlinear mechanical response of concrete, such as crack propagation behavior, shear
transfer behavior of cracked surfaces, and compression failure assessment inclusive of localization
and constraint pressure dependence [42,43], developed by the authors at the Concrete Engineering
Laboratory of Nagoya University, Japan. The cracks initiate and propagate through the interfaces
of boundaries of rigid elements and are strongly influenced by the mesh design of the concrete in
numerical analyses. In order to overcome this fact, the random geometry of rigid particles has been
adopted by using Voronoi diagram, as shown in Figure 2. The response of the spring model represents
an insight into the interaction between the rigid particles. Each rigid particle involves the three
rotational and the three translational degrees of freedom assigned at the geometric centroid that
characterize the particles according to the Voronoi diagram, as illustrated in Figure 2.
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Figure 2. Depiction of 3D-RBSM (Rigid Body Spring Model) for modeling of concrete; (a) Discretization
of concrete using Voronoi diagram; (b) Illustration of integration points on the boundary interface of
rigid particles; (c) Representation of normal and shear springs [44].

The springs are defined on the integration points as depicted in Figure 2. The integration points
are produced through the division of the surface of rigid particles into sets of triangles. As shown in
Figure 2, the geometric centroid of each triangle is corresponding to one integration point. Furthermore,
the induction and arrangement of integration points and springs in such manner as shown in Figure 2
automatically develops the effects of flexural and torsional behavior without the need to introduce
any additional rotational springs. The complete detail regarding the formulation of the 3D-RBSM
employed in the current study is available in previous research [44].

The numerical simulation analyses for the nonlinear behavior of concrete in 3D-RBSM greatly
depend on the constitutive models assigned to the springs. The combination of the constitutive models
as well as the distribution of the springs over the boundary surfaces together facilitates the reproduction
of the nonlinear mechanical response of concrete. The formation of cracks in concrete is expressed by
the failure of these springs. The models that can capture the localization and softening behavior under
various stress states are proposed and applied to the constitutive models of the springs. The material
constitutive models for the tension, compression, and shear of concrete are presented in Figure 3.
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Figure 3. The constitutive models of normal and shear springs for concrete in 3D-RBSM: (a) Tension
model for normal spring; (b) Compression model for normal spring; (c) Model for shear spring;
(d) Softening coefficient for shear spring; (e) Mohr–Coulumb criterion for shear spring.
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The calibrated material parameters of the constitutive models for normal and shear springs are
shown in Tables 1 and 2, respectively. The calibration of material parameters of the constitutive models
has been conducted through the parametric analyses (specimen size, shape, mesh size, and compressive
strength of concrete) comparing with the macro stress–strain test relationships including the softening
part subjected to uniaxial compression, hydrostatic compression, triaxial compression, and uniaxial
tension [42,43]. After calibration of the material parameters as shown in Tables 1 and 2, the applicability
of the calibrated model parameters in 3D-RBSM has been confirmed through the initiation and
propagation of the cracks in the concrete under various structural and mechanical behaviors, e.g., shear
response evaluation of reinforced concrete (RC) deep beams [45], RC wall panels subjected to cycling
loading [46], numerical evaluation of localization and softening behavior of the concrete confined
by steel tubes [44], the investigation of internal crack propagation behavior due to corrosion [47–50],
the simulation of the bond behavior between steel and concrete [51], etc. Furthermore, the compression
model of a normal spring does not include the softening behavior and the failure of the normal springs.
However, the compressive failure response including the confinement effect and localized failure
behavior can be reproduced by means of the combination of a normal and shear spring.

Table 1. Calibrated model parameters for normal spring.

Elastic Modulus Tensile Response Compressive Response

E
(N/mm2)

σt
(N/mm2)

gf
(N/mm)

σc
(N/mm2) εc2 αc1 αc2

1.4 E* 0.65 ft* 0.5 GF* 1.5 fc’* −0.015 0.15 0.25

* The macroscopic material parameters obtained from the concrete specimen’s test. E*: Young’s Modulus, ft*: Tensile
Strength, gf*: Fracture Energy, fc’*: Compressive Strength.

Table 2. Calibrated model parameters for shear spring.

Elastic Modulus Fracture Criterion Softening Behavior

G
(N/mm2)

c
(N/mm2)

ϕ
(degree)

σb
(N/mm2) β0 βmax χ κ

0.35 E 0.14 fc’* 37 1.00 fc’* −0.05 −0.025 −0.01 −0.3

* The macroscopic material parameters obtained from the concrete specimen’s test. fc’*: Compressive Strength.

2.2. Modeling of Steel Using Solid FEM

The steel is modeled using eight-noded nonlinear solid finite elements. The Von Mises plasticity
model with strain hardening is used for the constitutive model of the steel for reproducing the
elastoplasticity of the steel elements in the coupled RBSM and solid FEM model.

The perforated steel plate of the PBL shear connector between side concrete blocks is modeled
considering the nonlinear solid finite elements, taking into account the actual geometrical features.
The 3D model for the perforated steel plate of the PBL used in the current study is shown in Figure 4.

2.3. Concrete–Steel Interface

The concrete elements (3D-RBSM) and the steel elements (solid FEM) have been connected through
the coupling of boundary interfaces of concrete and steel elements utilizing link elements. The coupling
approach of boundary interfaces through link elements using springs on the boundary interfaces
between constituent materials in 3D discrete macroscopic element modeling was also adopted by the
other researchers. In the numerical evaluation of out-of-plane behavior of brick masonry infill wall
panels [52–54], the nonlinear interaction of the frame and masonry infills was modeled by 3D discrete
nonlinear interface link elements. The structural behavior of integrally attached timber plates [55] and
the simulation of the progressive collapse of RC frame structures [56] were also performed through
nonlinear springs and beam elements on the interfaces.
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Similarly, in a coupled RBSM and solid FEM model, each link element on the interface between
the RBSM element and nonlinear solid FEM element consists of two shear springs and one normal
spring, as shown in Figure 5. The deformation of each spring of the link element is obtained by the
relative displacement between the surfaces of the RBSM element and the nonlinear solid FEM element,
subsequently converting it to the local coordinate system. Furthermore, the constitutive models of
normal and shear springs on the boundary interface are assumed to be the same as that for modeling
of the concrete in 3D-RBSM (Figure 2, Tables 1 and 2). However, the model parameters of constitutive
models for normal and shear springs on the boundary interface have been changed considering the
friction between steel and concrete on the boundary interface [57,58].
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The numerical model couples the RBSM elements and the solid FEM elements regardless of
the position of nodes of the FEM elements; additionally, the numerical model has the capability to
reproduce the link elements arbitrarily on the boundary interface between concrete and steel elements,
which consequently reduces the analytical computational cost. The numerical model employs the
same coupling technique for combining the RBSM elements and the solid FEM elements as applied by
the past researcher for coupling of the RBSM elements and the shell FEM elements [44,59], based on
the Inverse-Mapping algorithm using Taylor expansion.
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3. Validation of Coupled RBSM and Solid FEM Model

In this chapter, the numerical model is validated by utilizing the already published experimental
investigations focusing on the shear resistance of the PBL under a simple push-out test. For validation
of the model, the test investigations corresponding to the most fundamental-type PBL specimens
with a single hole in the steel plate are selected so that the shear resistance, internal failure process,
and mechanism of concrete can be discussed comprehensively and clearly. Specifically, the validation
is performed for capturing the test shear capacities and the failure modes under the influence of the
varying lateral pressures applied to the surrounding concrete of the PBL [13].

3.1. Test Overview and Numerical Modeling

The shear capacity of the PBL is influenced by the amounts of lateral pressures applied to
the surrounding concrete of the PBL [12,13]. In steel–concrete hybrid construction, the presence of
transverse prestressing tendons in the concrete causes the generation of a varied stress state around the
PBL, and the concrete is loaded to varying levels of compressive forces. In the test, the mechanical
response of a single PBL under simple push-out tests was investigated considering the influence
of varying amounts of lateral pressures applied to surrounding concrete blocks. The main varying
parameter in the test was the amount of the lateral pressures (1 MPa, 2 MPa, 3 MPa, 4 MPa, 6 MPa, 8 MPa,
and 10 MPa) applied to two opposite faces of concrete blocks using mechanical jacks. The diameter of
the hole and the thickness of the perforated steel plate were maintained constant. The test specimens
were embedded with a perforated steel plate (230 × 150 × 12 mm3) having a hole of 50 mm diameter
between two side concrete blocks. All the test specimens had the rectangular geometry, with the size
of 212 × 200 × 150 mm3. The geometrical details of the test specimens are presented in Figure 6.
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The Teflon sheet was placed at the bottom of the test specimens between steel loading plates and
concrete, and the grease was used on the surface of the perforated steel plate in order to eliminate the
frictional and bond effects between steel plates and surrounding concrete blocks. The simple push-out
tests were performed by applying a vertical load on the top of the perforated steel plate loaded under
the influence of the varying amounts of lateral pressures, which were applied to two opposite surfaces
of the surrounding concrete blocks simultaneously. The specimens subjected to lateral pressures of
1 MPa, 2 MPa, 3 MPa and 4 MPa had a concrete compressive strength around 42.2 MPa, while the
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specimens with lateral pressures 6 MPa, 8 MPa, and 10 MPa had a concrete compressive strength
around 45.2 MPa.

The numerical models corresponding to a single PBL shear connector, subjected to the varying
amounts of lateral pressures, are illustrated in Figure 7. The proper numerical modeling of concrete in
the circular region (concrete dowel) between two side concrete blocks requires adopting an average
mesh size less than the thickness (12 mm) of the perforated steel plate, as the crack propagation
behavior in the concrete dowel region depends on the selection of average mesh size. The crack
propagation can occur inside the hole or along with the shear surface; therefore, the mesh size in the
concrete dowel region is selected in such a manner so that the internal failure process of the concrete
dowel can be captured effectively in numerical simulations, whereas a relatively large mesh size has
been selected near the ends of concrete blocks to minimize the analytical computational cost, as shown
in Figure 7a. Therefore, the average mesh size in the circular region (concrete dowel) is set as 3 mm
(less than the thickness of the perforated steel plate: 12 mm), and then, the mesh size is gradually
increased from the circular region to the side concrete blocks. In this regard, the average mesh size
in numerical simulations incorporated for the numerical modeling of the concrete approximately
ranges between 3 and 13 mm. The mesh size dependency of the numerical model is also investigated
numerically through the mesh sensitivity analysis ranging between the mesh sizes selected for the
numerical modeling. The difference of results is found to be negligible and also confirms that the
numerical model does not have mesh size dependency.
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and the side blocks; (b) Modeling of the perforated steel plate; (c) Representation of concrete and steel
elements on the concrete–steel interface; (d) Analytical model of the PBL shear connector.
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The numerical modeling of the test boundaries is elaborated here. It was reported that the shear
capacity of the PBL shear connector was influenced by the friction between the concrete blocks and
the test bed, which was loaded in the simple push-out test [60]. In the same manner, the preliminary
numerical simulations also highlighted the dependency of shear response of PBL on the sensitivity of
material parameters; tensile strength (σt), cohesion (c), and angle of internal friction (ϕ) were selected
for the modeling of test boundaries. As mentioned earlier, the grease was applied on the surface of the
perforated steel plate, and a Teflon sheet was placed between the bottom loading plates and the concrete
blocks in the test. In this regard, the test boundary conditions were modeled in simulation analyses
of the PBL by adopting the minimal material parameters of the constitutive models (σt = 0.01 MPa,
c = 0.01 MPa, and ϕ = 2 degrees) for the normal and shear springs (Tables 1 and 2) between the steel
plate and the concrete. The different amounts of lateral pressures to the surrounding concrete blocks
were applied by the load control of a pressure plate consisting of one RBSM element. The vertical shear
load was applied by the displacement control of solid FEM nodes on top of the perforated steel plate.

3.2. Results and Discussions

Since the reference test [13] only provided the information about the concrete compressive
strength (fc’), the tensile strength (σt), elastic modulus (E), and fracture energy (gf) as the model
parameters required in Tables 1 and 2 were assessed from the compressive strength of the concrete
using the conversion formulae proposed in the standard specifications of Japan Society of Civil
Engineers for concrete structures (JSCE) [61]. However, the experimental investigations reported that
the tensile strength of concrete was influenced by many factors; e.g., water–cement ratio, type and
size of aggregates, curing and storage (moisture) conditions of the specimen, size of the specimen,
and conditions of testing (splitting test, uniaxial test, and flexural test), etc., and tensile strength
might be reduced. In this regard, an approximately 30% reduction only for the tensile strength (σt)
was incorporated in the numerical simulations, while all the other remaining material parameters
(Tables 1 and 2) were kept the same for the modeling of concrete.

Figure 8 illustrates the analytical load and relative displacement (between the bottom of the steel
plate and mid-height) relationships and the influence of lateral pressures on the shear capacity of
the PBL. In the test, it was observed that the shear capacity increased as the applied lateral pressure
increased, as shown in Figure 8b. In the same manner, the numerical simulation results also exhibit the
increase in shear capacity with the increase in the lateral pressures applied to side concrete blocks.
Figure 8b shows the slight deviation and overestimation of the numerical shear capacities compared
with the test results; however, it captures the tendency for an increase in shear capacity against
increased lateral pressure, which is consistent with the test investigations. In the test, mainly two types
of failure modes were observed: (1) local shear failure along with the edge of the hole of the perforated
steel plate, and (2) the splitting failure of side concrete blocks perpendicular to the thickness of the
perforated steel plate, as shown in Figure 9.

The test photos show the damage and cracking at the steel–concrete contact surface, which was
parallel to the thickness of the steel plate. Figure 9 also presents the analytical failure modes considering
the cut section near the hole of steel plate parallel to the thickness of the plate, in the post-peak region
for low (2 MPa) and high (10 MPa) lateral pressures applications corresponding to 1.2 mm and 2.1 mm
displacements, as marked in Figure 8a, respectively. The comparison of the test and the analytical
failure modes are found to be in good agreement. The dominant failure mode corresponding to
low lateral pressure applications (1 MPa and 2 MPa) was shear failure, while the splitting failure
mode was investigated for all the remaining pressures applications (3 MPa, 4 MPa, 5 MPa, 6 MPa,
8 MPa, and 10 MPa), as it can be confirmed through the load–displacement relationships in Figure 8a.
The specimens subjected to low lateral pressure applications (1 MPa and 2 MPa) exhibit the ductile
failure behavior, whereas all other specimens reproduce the splitting failure mode and load decreases
after the peak due to the occurrence of the splitting crack. The validation of the numerical model is
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confirmed and highlighted for the test shear capacities and the failure modes, while the detailed failure
process and mechanism are discussed in the next chapter.
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4. Investigation of Failure Process and Mechanism

After validation of the numerical model, the detailed failure process and mechanism is evaluated.
The deformation response including internal crack patterns and normal stress distribution along with
height and width (direction of lateral pressure application) for low (2 MPa) and high (10 MPa) lateral
pressures with different failure modes are investigated, as shown in Figure 9. In order to highlight the
discussion, the quantitative shear response in numerical simulations at various stages is selected on
load–displacement relationships, as marked in Figure 10.

The detailed failure process in a specimen subjected to low lateral pressure (2 MPa) corresponding
to various slip stages is shown in Figure 11. Figure 11 presents the surface-deformed behaviors, internal
crack patterns at the cut sections perpendicular and parallel to the thickness of steel plate, and the
normal stress distribution along with height (y-axis: direction corresponding to the application of
push-out force) and width (z-axis: direction corresponding to the application of lateral pressure) at a
cut section perpendicular to the thickness of the steel plate. The crack widths indices for the internal
cracks are highlighted through the variation of colors, from blue (0.001 mm) to red (0.75 mm). Similarly,
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the variation of normal stresses in concrete is shown by the indices, from 2 MPa (pink: tensile stress) to
−50 MPa (red: compressive stress).
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From the internal crack pattern and normal stress distribution at the cut section defined near to
mid-depth perpendicular to the thickness of the steel plate at slip stage (a), it can be observed that
firstly, the two horizontal cracks initiate near the top of the concrete dowel through the hole of the
perforated steel plate, and compressive stresses (σy) occur on the top of the concrete dowel. Afterward,
at slip stage (b), the horizontal cracks further propagate, and the two vertical cracks also initiate and
propagate around the shear surface against a slightly increased shear force, and the compressive
stresses (σy) also transfer from top to almost mid-height of the concrete dowel. After slip stage (b),
the slope of the load–displacement curve changes because of the propagation of the vertical crack
along with the shear surface and tends to become milder after slip stage (c). From the internal crack
patterns and the normal stress distribution along with the y-axis (σy), at slip stages (c) and (d), it can
be recognized that the vertical crack penetrates completely to the bottom of the hole and causes the
shear slip on the vertical cracked surface, and the compressive stresses are concentrated in the concrete
dowel region.

In the case of low lateral pressure application, the shear strength of the PBL is characterized by
the shear failure of two cracked surfaces along with the edge of the hole in the steel plate, consequently
causing the failure of the concrete dowel, the same as observed in the test, as illustrated in Figure 9.
The distribution of the normal stress along with the y-axis (σy) clearly depicts the transmission of large
compressive stress (red color) from the top to bottom of the concrete dowel with the increase of shear
force, while along with the z-axis (σz), the large compressive stresses are only concentrated on the
top edge of the hole of the steel plate. The surface crack patterns shown in Figure 11 also reveal that
no splitting crack occurs perpendicular to the thickness of the perforated steel in the surrounding
concrete blocks in the low lateral pressure application case, the concrete dowel mainly resists the
vertical push-out force, and the stresses along with the y-axis and z-axis are mainly localized in the
circular region between the side concrete blocks.

Similarly, the detailed failure process and the mechanism for high lateral pressure (10 MPa)
application captured by the numerical analyses is also discussed and presented in Figure 12. In high
lateral pressure application, the initial internal crack propagation process near the steel plate hole
follows the same failure mechanism as observed in the low lateral pressure case, i.e., the occurrence of
two horizontal cracks near the top of concrete dowels. Afterward, the initiation and propagation of
vertical cracks around the shear surface causes the transformation of compressive stresses from the
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top to bottom of the concrete dowel. However, the vertical crack propagation is restrained by the
application of high lateral pressure, as shown in Figure 12. It can be confirmed from the comparison of
internal crack patterns for low and high pressures applications corresponding to slip stages (a), (b),
and (c) as shown in Figures 11 and 12, respectively.
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Figure 11. Detailed failure process and mechanism for low lateral pressure case: (a) 
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Figure 11. Detailed failure process and mechanism for low lateral pressure case: (a) Surface-deformed
behaviors (×5); (b) Internal crack patterns at cut sections perpendicular and parallel to the thickness of
the steel plate; (c) Normal stress distribution along with height (y-axis: direction corresponding to the
application of push-out force) and width (z-axis: direction corresponding to the application of lateral
pressure) at a cut section perpendicular to the thickness of the steel plate.
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Figure 12. Detailed failure process and mechanism for high lateral pressure case: (a) Surface deformed
behaviors (×5); (b) Internal crack patterns at cut sections perpendicular and parallel to the thickness of
the steel plate; (c) Normal stress distribution along with height (y-axis: direction corresponding to the
application of push-out force) and width (z-axis: direction corresponding to the application of lateral
pressure) at the cut section perpendicular to the thickness of the steel plate.

At slip stage (b) in Figure 11, the vertical crack initiates along with the shear surface, while in
Figure 12, there is no initiation of vertical crack. Similarly, the internal crack pattern corresponding to
slip stage (c) in Figure 11 shows that the vertical crack completely propagates along the shear surface,
whereas in high pressure application, only the initiation of a vertical crack occurs. After the initiation of
a vertical crack at slip stage (c), the load tends to further increase (Figure 10) and exhibits an increasing
slope of the load–displacement curve because of the restraining effect of the shear dilatancy behavior
by the externally applied high lateral pressure, in contrast with the low lateral pressure application.
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Afterward, at slip stage (d) in Figure 12, the splitting cracks initiate under the concrete dowel, into
the inner surfaces of the surrounding concrete blocks, in the perpendicular direction to the thickness
of the perforated steel plate, and the compressive stresses along the y-axis (σy) and z-axis (σz) are
induced in the side concrete blocks. Furthermore, the normal stresses along with height (σy) and
along with width (σz) in the side concrete blocks almost have the same damage zone as that of the
splitting crack propagation region in the side concrete blocks in contrast with the low lateral pressure
application case, where the normal stresses (σy and σz) are only localized around the concrete dowel
region, as shown in Figure 11c. At the peak stage, the splitting cracks propagate the surface of the
surrounding concrete blocks, and they consequently cause the splitting failure behavior post-peak,
which is consistent with that observed in the test. In high lateral pressure application, the shear strength
of the PBL is determined by the occurrence of splitting failure behavior perpendicular to the thickness
of the perforated steel plate in the surrounding concrete blocks.

It is pertinent to mention here that the distribution of normal stresses along with height (σy) and
width (σz) in Figures 11 and 12 clearly highlights the difference of the internal resistance mechanism.
The normal stresses along with height (σy), in the low lateral pressure application case, show that
the compressive stresses are concentrated around the concrete dowel region because of shear failure,
whereas in the high lateral pressure application case, the concrete in surrounding blocks and under
the concrete dowels also undergoes compressive stresses. Moreover, the normal stresses along with
height (σy) in Figures 11c and 12c also highlight the difference of the shear resistance behavior of the
concrete dowel concerning the varying amounts of lateral pressures applied. The damage zone of the
concrete dowel in the low lateral pressure application case experiencing large compressive stresses,
as shown in Figure 11c, is less compared to the high lateral pressure application case, as shown in
Figure 12c. The shear resistance of the concrete dowel is enhanced because of the high lateral pressure
application, and the damage zone of the concrete dowel also extends in the side concrete blocks.
Similarly, the normal stresses along with the width (σz) show that in the low lateral pressure application
case, the large compressive stresses only concentrate on the top edge of the hole, while in high lateral
pressure application case, the compressive stresses are observed in the complete concrete dowel region.
Furthermore, the envelope of the compressive stresses induced in the side concrete blocks as shown
in Figure 12c is more than the low lateral pressure application case shown in Figure 11c because of
splitting crack propagation. It is also observed that as the amount of lateral pressure applied to the
side concrete blocks increases, consequently, the envelope of the compressive stresses also expands
more, and the shear resistance of the PBL shear connector is improved.

The detailed internal failure process and mechanism revealed in Figures 11 and 12 captured by
the numerical model efficiently highlight the difference of the internal shear resistance mechanism of
the PBL subjected to varying amounts of lateral pressures. The numerical model not only highlights
the internal failure mechanism but also reproduces the transformation of failure modes (local shear
failure in low lateral pressure and splitting failure in high lateral pressure) with respect to the amounts
of lateral pressures applied to concrete surfaces, which is consistent as observed in the test.

5. Evaluation of Combined Effects for the Lateral Pressure and Hole Diameter

After the validation of the numerical model and clarifying the detailed failure process and the
mechanism in low and high lateral pressures as shown in Figures 11 and 12 respectively, the numerical
evaluation is performed to investigate the combined effects of the various lateral pressures and the
holes’ diameters on the shear capacity of the PBL shear connector. Although the diameter of the hole is
one of the main connection parameters of the PBL shear connector, only the individual effect of each
parameter on the shear capacity has been studied yet [12,13]. For numerical evaluation in this regard,
the specimen with the same geometrical dimensions as those in Section 3 (Figure 6) is simulated,
where only the hole diameter is changed from 50-mm to 75-mm and the lateral pressures of 2 MPa,
6 MPa, and 10 MPa are also applied. The analytical model of the PBL shear connector with a hole of
75-mm diameter is shown in Figure 13.
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The analytical relationships of the shear capacities corresponding to the combined effects of the
lateral pressures and the holes’ diameters are shown in Figure 14. It is noticed through the numerical
investigations that the specimen with the hole of 75-mm diameter subjected to a lateral pressure of
2 MPa reproduces the shear failure mode, while the specimens with applied lateral pressures of 6 MPa
and 10 MPa exhibit the splitting failure modes, which are found to be consistent as obtained for the
50-mm hole diameter specimen (chapter 4).
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(a) Modeling of the concrete dowel and the side blocks; (b) Modeling of the perforated steel plate;
(c) Analytical model of the PBL shear connector.
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Figure 14 shows that the shear capacity increases with the increase in the lateral pressures and the
holes’ diameters, exhibiting the same trend against the individual effect of each parameter, as observed
in the past research studies [12,13]. However, it should be emphasized that there is a clear existence of
the combined effects against the shear capacities, as the relationship for the 50-mm hole diameter and
75-mm hole diameter are not parallel to each other, as shown in Figure 14. Specifically, the increase in
the shear capacity for a specimen with a hole of 75-mm diameter was found to be more in high lateral
pressure compared with a lateral pressure of 2 MPa. The combined effects of the lateral pressures and
the holes’ diameters can also be efficiently examined through the internal cracking behavior and the
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normal stress distribution shown in Figure 15, considering the advantage of the reliable numerical
approach. Figure 15 shows the internal crack patterns and the normal stress distribution along with
height (σy) for both diameters of the holes under lateral pressures of 2 MPa and 10 MPa at the peak
stage. The normal stress distribution along with height (σy) in Figure 15 shows that as the diameter
of the hole is increased from 50-mm to 75-mm, the envelope of compressive stresses and the region
of the large compressive stresses around the concrete dowel and in the side concrete blocks are also
expanded more for both lateral pressures (2 MPa and 10 MPa).
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Figure 15. Comparison of the failure behaviors for low and high lateral pressures against 75-mm
and 50-mm diameters of the holes at the peak stage: (a) Internal crack patterns at the cut section
perpendicular to the thickness of the steel plate; (b) Normal stress distribution along with height (y-axis:
direction corresponding to the application of push-out force) at the cut section perpendicular to the
thickness of the steel plate.

Figure 15 highlights that in a low lateral pressure case (2 MPa), the internal crack patterns are
almost similar for both diameters, and the cracks propagate along the shear surfaces. In a 50-mm
diameter case, the large compressive stresses surround the complete dowel region, whereas in the
75-mm diameter of the hole, the large compressive stresses have been observed on the upper region of
the concrete dowel. However, since the region of the large compressive stresses exists almost up to
the mid-height of the concrete dowel between the vertical cracks along the shear surfaces, therefore,
the increment in shear capacity is limited in a specimen subjected to a lateral pressure of 2 MPa.
In high lateral pressure case (10 MPa), the internal crack propagation is less for the 75-mm diameter
hole because of its greater shear resistance against the applied shear load compared with the 50-mm
diameter. It is also evaluated that the region of the large compressive stresses in the 75-mm diameter
case progresses more in the side concrete blocks compared with the 50-mm diameter case, and as a
result, it contributes more toward the increase in shear capacity due to the wide regions of the large
compressive stresses compared with the lateral pressure of 2 MPa and consequently produces the
maximum shear capacity under the combined effects, as shown in Figure 14.
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6. Conclusions

The current research involves the numerical simulation analyses of the PBL shear connector
under the influence of the varying amounts of the lateral pressures applied to the side concrete
blocks employing a coupled Rigid Body Spring Model (RBSM) and the nonlinear solid Finite Element
Method (FEM) model, focusing on the damage progress (internal crack propagation behavior and stress
distribution) of the concrete. Furthermore, the detailed internal failure mechanism of a single PBL
shear connector in the simple push-out test is also revealed quantitatively. Additionally, the combined
effects of the various lateral pressures and the diameters of the holes on the shear capacity of the PBL
shear connector are also evaluated. Based on the outcomes of the current research, the conclusions
enumerated hereafter are drawn.

The numerical evaluation of the PBL shear connector using a coupled RBSM and solid FEM model
under a simple push-out test was carried out. The validation of the numerical model was confirmed
through the numerical simulations for quantitative shear strength evaluation and the reproducibility
of the failure modes of concrete under the influence of the varying amounts of lateral pressures.

It was confirmed numerically that the shear capacity of the PBL increased and the failure mode
changed from shear failure to splitting failure with the increased amounts of lateral pressure, which was
the same as the behavior shown with the test investigations.

In the low lateral pressure case, the vertical cracks propagated along with the shear surface,
the large compressive stresses (σy and σz) were concentrated only around the concrete dowel region,
and the shear strength of the PBL shear connector was determined by the shear failure of two cracked
surfaces around the edge of the hole in the steel plate.

While in the high lateral pressure application case, as the amount of the applied lateral pressure
was increased, the shear strength of the two vertical cracked surfaces along with the shear surfaces was
also enhanced, the splitting cracks propagated in the side concrete blocks perpendicular to the thickness
of the perforated steel plate, and the large compressive stresses (σy and σz) were also observed in the
concrete dowel region as well as in the side concrete blocks. In the high lateral pressure application
case, the shear strength of the PBL shear connector was characterized by the occurrence of the splitting
cracks in the surrounding concrete blocks.

Numerical evaluation of the combined effects of the lateral pressures and the diameters of the
holes revealed that there existed a clear combined effect and the increase in the shear strength was
more in the large diameter case subjected to high lateral pressure because of the wide compressive
regions generated around the concrete dowel region as well as in the side concrete blocks.
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