

Article

Design, Synthesis, and Evaluation of X-ray Crystal Structure, Biological Activities, DFT Calculations, and Molecular Docking of Phenyl Imidazolidin-2-One Derivatives

Xile Deng¹, Can Jin¹, Yong Xie^{2,*}, Junbo Gao³ and Xiaomao Zhou^{1,*}

- ¹ Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Agricultura Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; chemdxl@163.com (X.D.); jin_can@hnu.edu.cn (C.J.)
- ² State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R & D Co. Ltd., Shenyang 110021, China
- ³ College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; gaojb_0618459@zju.edu.cn
- * Correspondence: yongxie@cau.edu.cn (Y.X.); zhouxm1972@126.com (X.Z.); Tel.: +86-024-8586-9116 (Y.X.); +86-0731-8469-2799 (X.Z.)

Supplementary Materials

Table S1. Dihedral angles of phenyl or substituted phenyl ring and imidazolinone ring of calculatedstructures of compound 3a-h.

Compounds	Angle (°)	Compounds	Angle (°)
3a	22.96	3e	26.21
3b	23.88	3f	21.69
3c	16.25	3g	21.36
3d	26.18	3h	23.81

Compounds	D-H···A	d(D–H)/(A)	d(D…A)/(A)	<(DHA)/(°)
3a	ASP84(C)-ASP84(O)…3a (H-N)	1.01	2.91	171.2
	TYR269(C)-TYR269(O)… 3a (H-C)	1.08	3.24	153.0
3f	3f (C)– 3f (O) ··· (H–C) ASN61	1.01	2.84	159.4
	ASN81(C)–ASN81(O)…3f (H–C)	1.08	3.07	119.3
3c	ASN81(C)-ASN81(O)…3c(H-C)	1.08	3.16	122.3
	3c (C)– 3c (O)···ASN61 (H–C)	1.01	2.80	158.7
	3c (C)– 3c (O)…PHE290 (H–C)	1.08	3.43	121.7
DPMF	ASP84(C)-ASP84(O)…DPMF (H-N)	1.02	2.84	172.0
	TYR269(C)–TYR269(O)…DPMF (H–C)	1.07	3.00	94.3

Table S2. Hydrogen bond geometry.

Figure S1. Steric effects of **3a–h** influencing the ΔE values (**a**), insecticidal activities against *P. xylostella* (**b**), and fungicidal activities against *P. infestans* (**c**), *P. capsic* (**d**), *P. litchi* (**e**), and *P. sojae* (**f**). (Steric effects show the following pattern: -C₂H₅>-OC₂H₅>-OCH₃; -Br >-Cl >-F >-H).

Figure S2. Electron donation/withdrawing properties of **3a–h** influencing the \triangle E values (**a**), insecticidal activities against *P. xylostella* (**b**), and fungicidal activities against *P. infestans* (**c**), *P. capsic* (**d**), *P. litchi* (**e**), and *P. sojae* (**f**). (Electron donation property shows the following pattern: -OC₂H₅> -OCH₃> -C₂H₅> -CH₃; Electron withdrawing property shows the following pattern: -Br < -Cl < -F).

100 90 f1 (ppm)

1-(4-methyl)imidazolidin-2-one (3b)

10 0

¹H NMR spectrum

1-(4-ethylphenyl)imidazolidin-2-one (3c)

¹H NMR spectrum

10.5

1-(4-methoxyphenyl)imidazolidin-2-one (3d)

¹H NMR spectrum

1-(4-ethoxyphenyl)imidazolidin-2-one (3e)

¹H NMR spectrum

1-(4-chlorophenyl)imidazolidin-2-one (3f)

¹H NMR spectrum

1-(4-bromophenyl)imidazolidin-2-one (3g)

¹H NMR spectrum

1-(4-fluorophenyl)imidazolidin-2-one (3h)

¹H NMR spectrum

 $\begin{array}{c} 7.58\\ 7.57\\ 7.57\\ 7.55\\ 7.56\\ 7.17\\ 7.15\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.13\\ 7.12\\$

¹³C NMR spectrum

