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Abstract: The bismuth layer-structured ferroelectrics (BLSFs) materials have potential for
high-temperature piezoelectric applications. Among these piezoelectric materials, the CaBi4Ti4O15

(CBT) piezoelectric ceramic with a high decomposition temperature of about 1250 ◦C attracts a lot of
attention. Achieving a CBT single crystal is a significant way to improve its piezoelectric properties.
For this purpose, the flux system for growing CBT crystal was explored in this study. The optimum
flux composition ratio was found to be PbO:B2O3:CBT = 3:3:1 in mol%, where the PbO–B2O3 mixtures
were used as a flux system. Millimeter size flake-shaped CBT crystals were obtained using the
spontaneous growth process for the first time. The relationship between the crystal structure and
flake growth habit was analyzed. In addition, the bandgap was evaluated by the combination of
transmittance spectrum and first-principle calculations. Besides, the piezoelectric property was
predicted from the perspective of polyhedral distortion, which indicated the potential of CBT crystal
for piezoelectric applications.

Keywords: CaBi4Ti4O15; single crystal growth; flux method; dipole moments

1. Introduction

Since the discovery of the piezoelectric effect, piezoelectric materials have been widely explored
as sensors, transducers, actuators, energy harvesting devices, etc. Recently, piezoelectric materials
that can maintain the electromechanical and piezoelectric properties at high temperatures and even
harsh environments are needed, especially in aerospace industries, oil exploitation, and power plant
fields [1–3]. The ever-increasing demands on operational temperature have stimulated a great deal of
research effort on exploring piezoelectric materials with a high curie temperature (TC) or high melting
point, prior to which the electromechanical and piezoelectric properties should be maintained.

To date, several kinds of piezoelectric crystals with high melting points have been studied as the
candidates for high-temperature piezoelectric applications [4–6]. For example, the modified langasite
type crystal Ca3Ta(Ga1−xAlx)3Si2O14 (CTGAS) with a melting point above 1400 ◦C was determined to
possess a relatively high piezoelectric coefficient (d11 = 4.6 pC/N) and electromechanical coupling
factor (k12 = 14.4%) [4]. The low-cost calcium aluminate silicate Ca2Al2SiO7 (CAS) crystal with
moderate piezoelectric activity was explored for high-temperature pressure sensing [5]. Furthermore,
the RECa4O(BO3)3 (ReCOB) crystals with good temperature stability and high electrical resistivity were
studied for high-temperature vibration sensing applications [6]. Through the success fabrication of different
prototypes of piezoelectric sensors, the sensitivity is expected to be further enhanced, which encourages
the exploration of new piezoelectric crystals with strong piezoelectric response. Bismuth layer-structured
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ferroelectrics (BLSFs), also known as Aurivillius-type ferroelectrics, have attracted much attention due
to their strong piezoelectric response and ultrahigh Curie temperature TC (600–900 ◦C). Among this
type of piezoelectric material, the orthorhombic CaBi4Ti4O15 (CBT) compound with a point group of
2 mm is believed to be a promising candidate for high-temperature piezoelectric applications, due to the
merits of low electric conductivity, low dielectric loss, relatively large piezoelectric coefficient, and ease
of fabrication by using the conventional solid-state reaction method [7–9]. However, the practical
applications of CBT piezoelectric material at elevated temperatures are still restricted. The piezoelectric
activity (d33 = ~7 pC/N) and stability need further improvement [10,11]. Many efforts have been made to
improve the electromechanical and piezoelectric properties—for example, preparing the CBT-textured
ceramics or conducting ion doping, etc. The piezoelectric coefficient d33 of CBT ceramics prepared
by the reactive templated grain growth (RTGG) method with tape casting is reported to be as high as
45 pC/N [12]. However, the achieved improvement in piezoelectric activity for CBT ceramics has the
problems of aging easily and grain boundaries. Single crystallization might be a good means to solve the
above drawbacks and enhance the piezoelectric properties of CBT compounds. This strategy has been
successfully performed on other piezoelectric ceramics. For example, (K0.5Na0.5)NbO3 (KNN) ceramics
possessed a low piezoelectric coefficient d33 < 100 pC/N, while the piezoelectric coefficient of the KNN
crystal reached about 150 pC/N [13,14].

It is of great significance to perform single crystallization for CBT ceramic and evaluate the
electro-elastic properties for potential high-temperature piezoelectric applications. Since the CBT
compound is incongruent and would decompose at temperature near 1250 ◦C, the flux method can be
attempted to perform the single crystal growth. The flux method is a convenient, universal, and simple
means to cultivate single crystals, and it has been widely used to grow various crystals with incongruent
melting points, for example, KNN [14] and KBe2BO3F2 (KBBF) crystals [15], etc. Although there have
been extensive studies on the flux growth of functional crystal materials, the investigations on the
single crystal growth of a CBT compound are very scare [16], and the search for a suitable flux system
for growing CBT single crystal is still on the way.

For this purpose, the flux systems suitable for CBT crystal growth were investigated. The CBT
single crystals with dimensions up to millimeter size were grown for the first time using the PbO–B2O3

mixed flux agents. In addition, the relationship between crystal growth morphology and crystal
structure was analyzed. The transmittance spectrum and the theoretical calculations of the CBT
compound were reported, and the crystal polyhedral distortion and net dipole moment were discussed
by theoretical calculation.

2. Materials and Methods

2.1. Polycrystalline Preparation

Prior to single crystal growth, the CaBi4Ti4O15 polycrystalline compound was synthesized by a
solid-state reaction method. High-purity CaCO3 (4N, Alfa Aesar, Haverhill, MA, USA), Bi2O3 (4N,
Aladdin, Shanghai, China), and TiO2 (4N, Alfa Aesar, Haverhill, MA, USA) powders were selected
as the starting raw materials, which were weighed according to the stoichiometric ratio. In order to
compensate the evaporation of Bi2O3 during the solid-state reaction process, an excess amount of
Bi2O3 (1 mol%) was added to the raw materials. For ensuing the synthesis of the CBT polycrystalline
phase, we used two-step sintering. Firstly, all the raw materials were fully mixed, ground, and sintered
at 800 ◦C for 10 h to decompose the CaCO3 completely; then, they were ground again, pressed into
cylindrical blocks, and sintered at 1000 ◦C for 20 h.

2.2. Flux Selection and Growth of CBT Crystal

According to the principle of selecting the flux agent, we studied the fluxing behaviors of two
kinds of flux systems for crystallizing CBT crystal, i.e., Bi2O3 and PbO–B2O3 flux systems. The Bi2O3

and PbO–B2O3 flux systems have been successfully applied to the growth of other single crystals [16,17].
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To avoid the introduction of impurities, we first consider the self-melting system. Hence, Bi2O3 was
selected and used as the flux agent. The prepared CBT polycrystalline powders with the extra added
Bi2O3 flux agent were mixed in different mole proportions (Bi2O3:CBT = 3:1, 4:1 and 5:1), heated,
and melt at 1000–1100 ◦C for 20 h and then slowly cooled down to room temperature. In addition to
the Bi2O3 flux agent, PbO–B2O3 was chosen as the mixed flux system for crystallizing CBT crystal.
PbO and B2O3 have their own merits for crystal growth using the flux method; reports indicate that
PbO is an effective solvent used for many oxides and complex perovskites [18–24]. The B2O3 can
reduce the melting temperature, increase the solubility of the melt, and create an optimum degree of
complex formation and optimum viscosity [25]. Besides, because of its low melting point and high
viscosity, B2O3 can also form a sealing layer to prevent the evaporation of PbO in the molten state
at elevated temperatures. Based on the above considerations, the PbO–B2O3 mixed flux system was
attempted for CBT single crystal growth. Firstly, the prepared CBT polycrystalline powders were
mixed with the PbO–B2O3 flux systems in different mole proportions (PbO:B2O3:CBT = 2:2:1, 3:3:1,
4:4:1, 5:1:1, and 5:3:1) to perform the comparative experiments. Secondly, the mixed compounds were
heated and melt at 1000–1100 ◦C for 20 h; then, they were slowly cooled down to room temperature to
find the expected crystal phase.

In this study, the CBT crystal was finally grown by the spontaneous nucleation method using
PbO–B2O3 as flux. The CBT polycrystalline powders, high-purity PbO (4N, Aladdin, Shanghai, China)
and B2O3 (4N, Alfa Aesar, Haverhill, MA, USA), were weighed in a certain mole proportion (the proportion
for CBT and PbO–B2O3 mixed flux was PbO:B2O3:CBT = 3:3:1). The powders were mixed thoroughly,
ground, and placed into platinum crucibles in a growth furnace, after which the crucible was slowly
heated to 1000 ◦C and maintained at this temperature for 20 h to make the solution melt completely and
mix homogeneously. After that, the crucible was cooled slowly to 500 ◦C with a very low rate of 2–5 ◦C/h
and then to room temperature at 10 ◦C/h. When the spontaneous crystallization process was finished,
the crucible was boiled with nitric acid to separate the flux from the crystallized CBT crystals.

2.3. Transmission Spectra Measurement and Phase Characterization

The transmission spectra of polycrystalline CBT were measured with a Nicolet IS 10 (Thermo Fisher,
Waltham, MA, USA) over the wavelength range of 400 to 4000 nm at room temperature. The crystal
phase of the solidified CBT solution obtained by using different flux systems and different proportions
was identified by using the Bruker AXS D8 Advance X-ray diffractometer (XRPD, Bruker-axs, Karlsruhe,
Germany) at room temperature.

2.4. Theoretical Calculations

The band structure calculations of CBT compound employed the Vienna ab initio Simulation
Package (VASP 5.3.5) [26,27] implementation of density functional theory (DFT) in conjunction with
the projector-augmented wave (PAW) [28] method. Thereby, the Ca 4s2, Bi 6s26p3, Ti 3d24s2, and O
2s22p4 states were treated as valence electrons. The electronic wave functions were expanded in plane
waves using an energy cutoff of 400 eV. The electron exchange and correlation (XC) within the General
Gradient Approximation (GGA) of the Perdew, Burke, and Ernzerhof (PBE) [29] functional was used
to optimize the configurations, and the force convergence criterion for the structural relaxation was set
to 0.01 eV/Å. The electronic properties were performed by the screened hybrid functional of Heyd,
Scuseria, and Ernzerhof (HSE06) [30,31]. 4 × 4 × 4 and 2 × 2 × 2 Monkhorst-Pack [32] k-point meshes
were employed to sample the Brillouin zones for PBE and HSE06 calculations, respectively.

3. Results and Discussion

3.1. XRPD Analysis and Crystallization

The polycrystalline CBT compounds were synthesized in a stoichiometric ratio with an excess
amount of Bi2O3 (1 mol%) added for compensating the evaporation of Bi2O3 during the solid-state
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reaction process. There were individual impurity peaks (TiO2 component) observed in the compounds
obtained by sintering the stoichiometric raw materials using the solid-state reaction method, as shown
in Figure 1a. In addition, experimental results proved that the CBT crystalline phase was difficult to
obtain solely using Bi2O3 or PbO as flux agents. When using Bi2O3 as the flux agent (Bi2O3:CBT = 3:1,
4:1 and 5:1), the main compound was Bi12TiO20, and no CBT phase was detected using XRPD (Figure 1b).
Similarly, when using PbO as the flux agent (PbO:CBT = 2:1, 3:1 and 4:1), the impurity phase is mainly
PbxBiyTizO(2x + 3y + 4z)/2 (x, y, z ≥ 0) compounds (Figure 1c). In contrast, when using the mixed
PbO–B2O3 flux system and selecting the ratio of PbO:B2O3 to be 1:1, the CBT single crystal phase could
be achieved. However, when the ratio deviated from 1:1, the impurity phases such as the Pb5B8O17

and Bi12TiO20 might be formed, as presented in Figure 1d.
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Figure 1. X-ray diffractometer (XRPD) patterns of the crystalline CaBi4Ti4O15 (CBT) compounds:
(a) XRPD pattern of the synthesized polycrystalline powder; (b) XRPD pattern of the polycrystalline
using Bi2O3 as flux; (c) XRPD pattern of the polycrystalline using PbO as flux; (d) XRPD pattern of
polycrystalline using PbO–B2O3 as flux.

Considering that the PbBi4Ti4O15 (PBT) compound has the same symmetry with CBT crystal,
further XRPD analysis was performed to identity the crystalline CBT phase. Figure 2a gives the
XRPD patterns of crystalline CBT with different flux ratios and compared with the PBT phase. It is
observed that the diffraction angle of the main peak at approximately 30.54◦ for CBT is higher than
that of PBT (ICSD No.173544). However, the main peaks in the patterns of crystalline CBT with
different flux ratios (PbO:B2O3:CBT = 2:2:1, 3:3:1 and 4:4:1) are kept the same with standard CBT (ICSD
No. 99500), supporting that the obtained crystal phase is CBT rather than PBT. Experimental results
indicate that when the flux ratio is 2:2:1, the mixed compounds are difficult to solute, while when
the ratio is 4:4:1, the solubility is relatively low. Therefore, the optimum flux ratio was obtained to
be PbO:B2O3:CBT = 3:3:1. In order to evaluate the purity of crystalline CBT compounds obtained by
using the mixed PbO–B2O3 flux agents (PbO:B2O3:CBT = 3:3:1), the refined crystal structure by the
Rietveld method for the powder X-ray diffraction was performed. Results are shown in Figure 2b. It is
indicated that the differences between the pristine data and the refined data are very small, showing a
good agreement with the measurements.
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Figure 2. (a) XRPD patterns of crystalline CBT with different flux ratios (PbO:B2O3:CBT = 2:2:1, 3:3:1,
and 4:4:1) and compared with the PbBi4Ti4O15 (PBT) phase; (b) XRPD patterns of crystalline CBT
compounds obtained after refinement.

The CBT single crystals with millimeter dimensions were successfully grown by using the
spontaneous nucleation process using the mixed PbO–B2O3 flux agents (PbO:B2O3:CBT = 3:3:1).
The crystalline state in the platinum crucible and the photographs of as-grown flake-shaped CBT
crystals are shown in Figure 3a,b, respectively.
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Figure 3. (a) Top-view of the as-cooled Pt crucible showing the grown CBT crystals by spontaneous
nucleation process; (b) Selected flake-shaped CBT crystals crystallized from mixed flux agents
(PbO:B2O3:CBT = 3:3:1).

3.2. Structure–Morphology Relationships

The crystal structures of the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A = Ca, Sr,
Ba, and Pb) were reported by B.J. Kennedy et al. [33], but they lack descriptions in detail about the
CBT crystal with a bismuth-layered structure. The relationship between the crystal structure and
morphology was analyzed based on the refined structure data by the Rietveld method. The results
are shown in Figure 4. The CBT crystal structure is composed of Bi2O2 layers and TiO6 octahedrons
arranged alternately along the crystallographic c-axis, where 0.6Bi(2)/0.4Ca(1) and 0.7Bi(3)/0.3Ca(3)
atoms are occupied in the intervals among TiO6 octahedrons. The flake-shaped morphology is closely
related to the bismuth layer structure of CBT crystal. It is believed that the flake-shaped morphology is
associated with the Bi2O2 layer in the CBT crystal. Generally speaking, the bonding strength decreases
with the increase of bond length, and large bond lengths are easy to break. It is found that the bond
distance of the Bi(1)–O is about 2.55 Å and 2.69 Å, which is much longer than that of the Ti–O bond
(1.77 Å and 1.89 Å), as presented at Figure 4b. Therefore, the CBT crystal is relatively difficult to grow
along the crystallographic c-axis due to the weak chemical bonding, but it is relatively easy to grow
along the a- and b-axes. In addition, it is found that the axis ratio c/a for CBT crystal reached 7.5065,
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exhibiting strong structural anisotropy. There are the reasons why the CBT crystal grown along the
crystallographic c-axis shows a flake growth habit.
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(b) projected along the crystallographic a-axis in space (the unit in Å).

3.3. Piezoelectric Activity Evaluation

CaBi4Ti4O15 crystal belongs to the 2 mm point group; thus, it has a non-centrosymmetric structure,
which determines that the CBT crystal has piezoelectric properties. In order to explore its potential
applications in piezoelectric fields, preliminary evaluations were conducted.

3.3.1. Transmission Spectra

For high-temperature piezoelectric application, the electrical conductivity is an important factor
that influences the dielectric loss and temperature stability of the electro-elastic properties. Usually,
the electrical conductivity at high temperatures is associated with the bandgap. In this study,
the transmittance for CBT polycrystalline sample was measured at room temperature, and the band
structure was calculated. As shown in Figure 5, the transmittance from 910 to 4000 nm is about 90%
and gradually decreases below the wavelength of 910 nm and reaches zero at about 400 nm, indicating
that the transmission cut-off edge of the CBT is about 400 nm, which corresponds to the bandgap of
3.11 eV and is very close to calculated bandgap 3.17 eV. These results are basically consistent with the
value reported by Tanwar et al. (3.36 eV) [34].
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3.3.2. Dipole Moment Calculation

The piezoelectric activity is closely related to the polyhedron distortion and net dipole moment.
As for the polyhedron distortion in CBT crystal, there are several types of polyhedron distortions
(Figure 6a), among which the distortion ∆d for Bi(1)O6 octahedron was calculated by using the
following formula [35]:

∆d =

∣∣∣∣∣∣(Bi−O1)
∣∣∣− ∣∣∣(Bi−O4)

∣∣∣∣∣∣
|cos θ1|

+

∣∣∣∣∣∣(Bi−O2)
∣∣∣− ∣∣∣(Bi−O5)

∣∣∣∣∣∣
|cos θ2|

+

∣∣∣∣∣∣(Bi−O3)
∣∣∣− ∣∣∣(Bi−O6)

∣∣∣∣∣∣
|cos θ3|

(1)

where the O1–O6 are coordination oxygen atoms of the Bi(1)O6 octahedron, and θ1, θ2, and θ3

are bond angles. The distortion ∆d for the Bi(1)O6 octahedron was found to be 1.37 Å, which can
be identified as strong distortions according to the fourth category defined by Halasyamani [35].
Generally, the larger the polyhedron distortion, the stronger the piezoelectric activity of the crystals.
Besides the polyhedron distortion, the net diploe moments in CBT crystal were studied, according to
the bond-valence theory [36–40].

Table 1 summarizes the dipole moments of each polyhedron in CBT crystal. It was found that the
magnitude of the net dipole moment in the unit cell of the CBT crystal was about 37 Debye, which is
comparable with the α-BiB3O6 single crystal (35 Debye), of which the piezoelectric charge coefficient
d22 was determined to be in the order of 40 pC/N [41]. Additionally, the directions of the dipole
moment for the polyhedral and unit cell of the CBT crystal are identified and shown in Figure 6b,
where the net dipole moment direction of the CBT unit cell was negative along the crystallographic
c-axis. The calculated results indicated that the Bi(1)O6 octahedron showed a larger distortion and
contributed to the piezoelectric activity of the CBT crystal. Hence, it is predicted that the CBT single
crystal has excellent piezoelectric performances.
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Table 1. Dipole moments calculated for CBT single crystal.

Crystal Species ∆d (Å)
Dipole Moments

x (a) y (b) z (c) Debye ×10−4 edu·cm/Å3

CBT *

Bi(1)O6 1.37 −2.0168 −6.7630 −14.5406 16.16 541.46
Ca(1)/Bi(2)O8 0.60 −9.9685 −0.1447 0 9.97 333.99
Ca(3)/Bi(3)O7 - −8.2239 3.3904 10.8491 14.03 470.00

Ti(1)O6 0.44 4.3457 0.0852 −2.8455 5.20 174.04
Ti(2)O6 0.69 2.3948 −0.5329 −8.4905 8.84 296.07
Unit cell - 0 0 −37.35 −37.35 −312.78

* The crystallographic data of CBT was derived from the refined structure by the Rietveld method.

4. Conclusions

In summary, the flake-shaped CBT crystals in the millimeter range were grown by the flux method
using the mixed PbO–B2O3 agents for the first time. The optimum flux composition mole ratio was
found to be PbO:B2O3:CBT = 3:3:1. The flake-shaped growth habit of the CBT crystal was analyzed
from the perspective of a microcrystal structure. The structural distortions and the net dipole moment
of the CBT crystal were found to be 1.37 Å (Bi(1)O6 octahedron) and 37 Debye, respectively. The Bi(1)O6

octahedron showed the larger distortion and believed to contribute to the piezoelectric activity of the
CBT crystal. In addition, the transmittance spectrum of the CBT crystal was measured and found to
show a broad transmission range, where the bandgap was found to be near 3.11 eV. However, the main
problem encountered in CBT growth is the observed flake growth habit. In the following studies,
the large-size single crystal growth by using the top-seeded method with mixed PbO–B2O3 fluxes will
be performed.
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