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Abstract: Analysis of systems and structures from their cross-sectional images finds applications in
many branches. Therefore, the question of content, quantity, and accuracy of information obtained
from various techniques based on cross-sectional views of structures is particularly important.
Application of conventional techniques for two-dimensional imaging on the analysis of structure
from a cross-sectional image is limited. The reason for this limitation is the fact that these techniques
use a fixed cross-sectional plane and therefore cannot check the 3D structural changes caused by
deformation. Geometric orientation of a grained structure must be considered when data, scanned
from a cross section, is processed in order to obtain information about local deformation in this
structure. The so-called degree of structure orientation in 3D can be estimated experimentally from
the cross-sectional image of the structure by the statistical (Saltykov) method of oriented testing lines.
Subsequently if the correlation between orientation and deformation were to be known a detailed
map of local deformation in the structure could be revealed. Unfortunately, exact theoretical works
dealing with the assessment of local deformation by means of change of structure orientation in 3D are
still missing. Our work seeks to partially remove this shortcoming. In our work we are interested in
how the transformation of the image of a grained structure in a cross-sectional plane reflects structure
deformation. An initial shape of grains is assumed which is transformed into a deformed shape
by analytic calculation. We present brief mathematical derivations aimed at the problem of single
grain-surface area deformation. The main goal of this work led to the design of a computationally
low consuming procedure for quantification of local deformation in a grained structure based on the
distortion of the image of this structure in a cross-sectional view.

Keywords: local deformation; plastic deformation; grained structure; grain shape; grain surface area;
degree of grain orientation; deformation tensor

1. Introduction

Final properties of components and systems prepared by means of forming technology are affected
by mechanical working of the material. Essentially the forming process is a general method based on
the deformation effects of external forces. These effects are macroscopic and do not reflect microscopic
changes in the structure of material in all their diversity. The macroscopic strain cannot reflect all
microstructural changes in the volume of deformed areas of the structure mainly in the case if only the
surface layers of the material are deformed. To obtain exact information about changes in microstructure
of materials in the whole volume of the bulk sample it is necessary to use suitable methods. Methods
based on acoustic wave emission, analysis of dislocation, microhardness measurement, slip band
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observation, micromeshes method or macroscopic screw method can be used for this purpose and
they are well developed. However, none of the mentioned available methods give analytical formulas
relating local values of structure parameters and strain in any position of structure. The mentioned
formulas are essential for a quantitative description of local changes induced by plastic deformation in
the microstructure.

Grain boundary (interface between grains) is the main microstructural parameter in polycrystalline
material. Grains have an isometric dimension when the grained structure is isotropic. The mean size
of grains (grains size distribution) and the specific surface area of the grain boundaries are sufficient
structural characteristics in this case. Grains have anisometric dimension when the grained structure is
anisotropic and it is necessary to describe their orientation in space in this case.

In this context the question is how the spatial orientation of the grains themselves can be defined
generally and exactly. It is possible to suspect intuitively that grain surface orientation in this sense can
be evaluated by the prevailing orientation of the grain surface area elements. The next question is how
can local deformation be estimated from the mentioned orientation of the grain surface.

Experimental observation and quantitative evaluation of shape and orientation of grains, domains
or cells in grained, foam and cellular structures have been at the centre of attention of several authors
already for some time [1,2]. Experimental observation has shown that the process of deformation is
closely associated with the character of the crystallographic structure. Analysis of experimental data
reveals that the grain boundaries and grain interactions during deformation play an important role in
the process of deformation [3–6]. Various experimental procedures to characterize size, deformation,
orientation, and position of single grain within the polycrystalline structure have been developed [7–11].
Most of these methods are already considered to be standard experimental techniques.

Calculation of grain boundary distortion during plastic straining has proven to be important in the
theory of crystal plasticity and stereology [12–16]. Modelling of single crystal plasticity by numerical
methods allows discussion of deviations of experimental results from ideal crystal behavior [17–19].
Information about the change of the grain surface area per unit volume as a function of deformation
parameters is important in the production of steels [20].The amount of grain surface and grain edge per
unit volume are parameters important in kinetic theory since both of them are heterogeneous nucleation
sites. Recently published works demonstrate that problems of geometrical orientation of structure and
distortion of structural units induced by deformation play an important role in different areas. We can
mention for example biology where it is essential to clarify the organlevel tissue deformation dynamics
to understand the morphogenetic mechanisms of organ development and regeneration. Construction
and geometrical analyses of quantitative whole-organ tissue deformation maps must be realized for
the evaluation of major morphogen and anisotropic tissue deformation along an axis [21].

2. Motivation and Aims

In recent years modern techniques and methods to observe crystal structure orientation have
become available. For example, the image correlation method [22,23] is widely applied now. There is
also a precise technique based on the triple points of grain boundaries [24,25] which can be followed
by an electron backscatter diffraction (EBSD) method [26]. However, these methods have significant
limitations (difficult sample preparation, requirement of conductive coatings, stability of electron
beam for best data acquisition, etc.). In addition, all these methods are based on 2D observations.
3D measurement can only be done by stereology and high-resolution computed tomography (CT
with nanofocus) could also handle 3D image reconstruction [27–29]. Stereological techniques provide
quantitative information about a three-dimensional material from data scanned from two- dimensional
planar sections of the structure. These techniques and methods are widely used today especially in the
investigation of the character of coarse-grained and foamed structures.

Previous work has shown that there are several ways to evaluate grain orientation experimentally.
However, the most acceptable way is the estimation of anisotropy based on stereological principle
enabling determination of the “degree of grain orientation”. An anisotropic microstructure consists of
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(planar or linearly) oriented components which can be easily evaluated using stereological methods.
We believe that results of such evaluation (degree of grain orientation in the volume of the plastically
deformed structure) can be converted to values of local parameters of deformation. Therefore, it is
sufficient to determine the degree of grain orientation to obtain a value of local strain.

We focus on the mathematical treatment of grain surface-deformation in our work. The problem of
a grain-surface distortion induced by plastic deformation has been solved. We start with mathematics
of grain behavior during linear deformation while we search for a formula enabling calculation of
grain surface area change caused by deformation of grain using deformation tensor. Next, we propose
a quantity for evaluation of degree of grain surface area orientation with respect to a certain vector in
3D space and discuss the correlation of this quantity with deformation parameters. Our contribution
finishes with a brief commentary on the suggested technique of quantitative analysis, and outlines
some key areas where further study is recommended.

We emphasize that strictly geometric orientation of the grain in 3D space is discussed in our work.
The crystal structure within the grain is not analyzed (even though the concept of grain orientation is
usually related with crystallographic orientation). A quantity κ is defined to evaluate the degree of
orientation of the grain surface in relation to any direction. The presented work is focused on finding a
correlation between the change in the degree of geometrical orientation of a grain and the deformation
experienced by it. The case of a grain subjected to plastic deformation is studied in detail. The obtained
results were applied for the particular case of a randomly oriented grained structure.

We present only a mathematical model for describing the deformation of a fictional, simplified grained
structure—no real material is specified, nor is the actual deformation process described. We contribute
thereby to the theoretical works on this topic published in the past [30–34]. A purely theoretical approach
is presented. However, it has been shown that the discussed deformation mechanism, i.e., elongation (or
the shortening) of grains under applied load, exists in a real-world material [35,36].

Stereological Method Based on Oriented Testing Lines

Direction of grain boundary orientation is the same as the direction of deformation. If the
deformation scheme is known, grain boundaries can be decomposed into isotropic, planar, and linear
oriented components using stereology method oriented test lines according to Saltykov [1] on propeller
oriented metallographic prepared cutting planes. Grain boundaries are surfaces in volume and relative
surface area, the average surface area to unit volume is measured—the isotropic, planar, and linear
oriented parts of relative surface area. Intersections of cutting plane and the grain boundary surfaces
are lines in the cutting plane. The average number of intersections per unit length of oriented test lines
with grain boundaries PL in the cutting plain is measured.

(a) Linear orientation of grain surface in sample volume

In the case of linear orientation of surfaces, the volume cutting plane, on which analysis is realized,
must be parallel with the direction of orientation. In the perpendicular plane no orientation is observed.
Test lines oriented parallel with the direction of orientation (1) intersect only the isotropic part of the
surfaces in volume, test lines oriented perpendicular with direction of orientation (2) intersect isotropic
and oriented part of surfaces in volume (see Figure 1). For the isotropic part of the relative surface area
is as follows:

(SV)IS = 2(PL)P (1)

where subscript IS means isotropic-randomly oriented and P means parallel orientation of test lines
with direction of orientation. For the linear oriented part of the relative surface area it is as follows:

(SV)OR =
π
2
[(PL)O − (PL)P] (2)

where OR means oriented and subscript O perpendicular (orthogonal) orientation of test lines to
direction of orientation. Total relative surface area is carried out by the sum of both parts:
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(SV)TOT =
π
2
(PL)O +

(
2−

π
2

)
(PL)P, (3)

where subscript TOT means total.
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(b) Planar orientation of grain surface in sample volume

In the case of planar orientation of surfaces in the volume cutting plane on which analysis is
realized it must be perpendicular to the orientation plane. In the parallel plane no orientation is
observed. Test lines oriented parallel to the plane of orientation (1) intersect only the isotropic part of
the surfaces in volume, test lines oriented perpendicular to plane of orientation (2) intersect isotropic
and oriented part of surfaces in volume (see Figure 2). For the isotropic part of the relative surface area
it is as follows: (

SV

)
IS
= 2(PL)P (4)

where subscript IS means isotropic-randomly oriented and P parallel orientation of test lines with
plane of orientation. For the planar oriented part of the relative surface area it is as follows:(

SV

)
OR

= (PL)O − (PL)P (5)

where OR means oriented and subscript O means perpendicular (orthogonal) orientation of test lines
to the plane of orientation. Total relative surface area is carried out by the sum of both parts:(

SV

)
TOT

= (PL)O + (PL)P (6)

where subscript TOT means total.
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(c) Linear–planar orientation of grain surface in sample volume
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In the case of linear–planar orientation of surfaces in volume the orientation is observed in all
three orthogonal cutting planes, because the axis of linear orientation is perpendicular to the direction
of the plane of orientation (direction of plane is normal to this)—see Figure 3. Each orientation
component—planar and linear must be analyzed independently. Measurement must be realized on
minimally two cutting planes. There are three possible cutting planes: cutting plane parallel with
direction of linear orientation and parallel with plane of orientation, cutting plane perpendicular to
direction of linear orientation and perpendicular to plane of orientation and cutting plane parallel with
direction of linear orientation and perpendicular to plane of orientation.

The cutting plane parallel with the direction of linear orientation parallel with the plane of
orientation test line, parallel with the direction of linear orientation (1) (see Figure 3) intersects only the
isotropic part of the surfaces in volume (parameter (PL)PP), test lines oriented perpendicular with the
direction of orientation (2) intersect the isotropic and linear oriented part of the surfaces in volume
(parameter (PL)OP). For the isotropic and linear oriented part of the relative surface area it is:(

SV

)
IS
= 2(PL)PP (7)(

SV

)
ORL

=
π
2
[(PL)OP − (PL)PP] (8)

where subscript ORL means linear oriented. The cutting plane perpendicular to the direction of
linear orientation and perpendicular to the plane of the orientation test line parallel with the plane of
orientation (6) intersects the isotropic and linear oriented parts of the surfaces in volume (parameter
(PL)OP) (identical to test line 2), test lines oriented perpendicular to the plane of orientation (5) intersect
the isotropic, linear and planar oriented parts of the surfaces in volume (parameter (PL)OO). For the
planar oriented part of the relative surface area it is as follows:(

SV

)
ORP

= (PL)OO − (PL)OP (9)

where subscript ORP means planar oriented.
On the cutting plane parallel with the direction of linear orientation and perpendicular to the

plane of orientation test line parallel to the direction of linear orientation (the same as parallel to the
plane orientation) (3) intersects only the isotropic part of the surfaces in volume (parameter (PL)PP)
(identical to test line 1), the test line oriented perpendicular to the plane of orientation (4) intersects
the isotropic, linear, and planar oriented parts of the surfaces in volume (parameter (PL)OO) (identical
to test line 5). It is necessary for the determination of the quantitative parameters of the surfaces in
volume with linear–planar orientation to use the system of three tested lines on two cutting planes
and it is possible to form different combinations of tested lines (according to the identification in
Figure 3)—(2 or 6) and (4 or 5) and (1 or 3).Crystals 2020, 10, x FOR PEER REVIEW 6 of 31 
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(d) Experimental Quantification of degree of grain orientation

The degree of grain boundary orientation O can be estimated experimentally by means of formula:

O =

(
SV

)
OR(

SV

)
TOT

(10)

The degree of linear orientation surface (2D) in volume (3D) OL of the linear orientated system of
the surfaces in volume and degree of planar orientation OP of planar orientated system of the surfaces
in the volume are as follows:

OL = 1− 2

 (PL)P
π
2 (PL)O +

(
2− π

2

)
(PL)P

 (11)

OP = 1− 2
{

(PL)P

(PL)O + (PL)P

}
For the linear–planar oriented system of surfaces the degree of linear orientation OLP, degree

of planar orientation OPL, and degree of total orientation OTLP can be calculated by the following
formulas:

OLP = 1− 2
{

2(PL)PP+(PL)OO−(PL)OP
4(PL)PP+π[(PL)OP−

π
2 (PL)PP]+2[(PL)OO−(PL)OP]

}
OPL = 1− 2

{
(PL)PP+

π
4 [(PL)OP−

π
2 (PL)PP]

2(PL)PP+
π
2 [(PL)OP−

π
2 (PL)PP]+(PL)OO−(PL)OP

}
OTLP = 1− 2

{
(PL)PP

2(PL)PP+
π
2 [(PL)OP−

π
2 (PL)PP]+(PL)OO−(PL)OP

} (12)

In the following text we deal with the theoretical analysis of the change of spatial orientation of
grain during deformation and the possibilities of generalization of the mentioned relations (11) to (12).

3. Transformation of Grain-Surface Area at Linear Deformation

When a mechanical loading is applied most of the grains in a structure are submitted to a
deformation. The deformation occurs according to the different orientations and influences from
neighboring grains. If the grain is deformed a change in orientation and size of grain surface area are
induced which leads to local heterogeneous plasticity. This is evident in the case where the typical
grain prolongation in the direction of the loading force is visible (see Figures 4 and 5).

This section provides an improved mathematical analysis of grain surface area transformation
during linear grain deformation. Here we offer mathematical expressions usable in some models
requiring the quantification of the deformed grain boundary surface. Relationships between coefficients
of deformation tensor and change of grain surface are discussed. Results show how the specific area of
the grain boundaries changes during local straining.

Let us discuss isotropic, linear elastic material with a grained structure. The parametrization
of the surface of any single grain in 3D lies in the determination of the coordinates of each point on
the surface:

Xi = Xi(u, v) (13)

where i = 1, 2, 3 and u, v are parameters that changes in appropriate intervals. Then the position vectors
of each point on the surface of the grain with any possible shape in undeformed configurations are
as follows:

→

R(u, v) = [X1(u, v), X2(u, v), X3(u, v)], u ∈ 〈u1, u2〉v ∈ 〈v1, v2〉 (14)

Position vectors of each point on the surface of the same grain in the deformed state are as follows:

→
r (u, v) = [x1(u, v), x2(u, v), x3(u, v)], u ∈

〈
u′1, u′2

〉
v ∈

〈
v′1, v′2

〉
(15)
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In the general case, any 3D deformation can be described by a 3 × 3 deformation tensor:

→
→
ε =


ε11 , ε12 , ε13
ε21 , ε22 , ε23
ε31 , ε32 , ε33

. (16)

The deformation of grain for a small strain is linear. Therefore, using the notation mentioned above
the deformation of the grain can be described by the following anisomorphic linear transformation:

→
r =

→
→
ε ·
→

R or xi = εi jX j (17)

where i, j = 1, 2, 3 and εij are coefficients of the deformation tensor (16). It is no problem to verify that
εij = δij in the undeformed case (where δij is the Kronecker symbol). We used the typical Einstein’s
summation convention in the second formula in (17) whereby when an index variable appears twice in
a single term it implies summation of that term over all the values of the index.

For simplicity this convention is used in all the following text.
The surface element vectors for undeformed grain are determined as follows:

d2
→

Sunde f or =

(
∂X2

∂u
∂X3

∂v
−
∂X3

∂u
∂X2

∂v

)
→

i −
(
∂X1

∂u
∂X3

∂v
−
∂X3

∂u
∂X1

∂v

)
→

j +
(
∂X1

∂u
∂X2

∂v
−
∂X2

∂u
∂X1

∂v

)
→

k (18)

One of these vectors is shown in Figure 6. Using transformation (17) the vector of any surface
element of the grain in the deformed state (see Figure 7) can be determined:

d2
→

Sde f or = ε2 jε3k

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
→

i − ε1 jε3k

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
→

j + ε1 jε2k

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
→

k , (19)

where i, j, k = 1, 2, 3.
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After suitable re-indexing of the sums in Formula (19) the change of the mentioned vector of the
surface element during deformation can be written as follows (please see details in Appendix A):

d2
→

Sde f or =
→
→
σ · d2

→

Sunde f or (20)

where
→
→
σ can be introduced as a tensor of grain surface deformation. Coefficients of this tensor are

related to the coefficients of the deformation tensor.

σwm = (−1)w+mdet

→→εmw

 (21)

where det

→→εmw

 is the subdeterminant of the matrix of the deformation tensor
→
→
ε . This subdeterminant

is determined from the matrix of tensor
→
→
ε by deleting the m-th row and w-th column. So, it is easily

shows that coefficients of the tensor of grain surface deformation can be found as follows:

σwm = εikε jn − εinε jk, (22)

where indexes:

i =
9− 2w− (−1)w

4
, j =

15− 2w + (−1)w

4
(23)

k =
12− 2m−

{
3 + (−1)m

}
(−1)m+w

4
, n =

12− 2m +
{
3 + (−1)m

}
(−1)m+w

4
, w, m = 1, 2, 3. (24)
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Then the size of the vector (20) of the deformed surface element is given as follows (please see
details in Appendix B): (

d2Sde f or
)2

= Γ jnks
∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
, (25)

where coefficients:
Γ jnks =

∑
V([p, q]), p , q
p, q ∈ {1, 2, 3}

εpjεqk

(
εpnεqs − εqnεps

)
(26)

Notation under the summation symbol in (26) means the sum over all variations of indexes p,
q while p , q. The entire surface area of the deformed grains can be determined by formula:

Sde f or =

v2∫
v1

u2∫
u1

√
Γ jklm

∂X j

∂u
∂Xk
∂v

∂Xl
∂v

∂Xm

∂u
dudv. (27)

where j, k, l, m = 1, 2, 3. We note, that we permanently use Einstein’s summation convention and the
sum of 81 members is under the square root in Formula (27).

4. Quantitative Analysis of Grain Orientation: Projection Factor

In this section we define a novel scalar variable κ for quantification of the degree of grain- surface
area orientation. First, there is briefly described motivation for such a way of introducing this variable.
We believe that the variable κ helps to evaluate the grain orientation in a topological sense that is
recognizably determined by the grain-surface area shape.

Orientations of surface elements of the grain in 3D are determined by the vectors d
→

S . These vectors
are perpendicular to the grain-surface everywhere. Topologically the grain-surface area is considered
to be a closed 2D manifold. Therefore the following holds:∫

(sur f ace)

d
→

S =
→

0 (28)

Grain boundaries are very important for energy balance of the grained structure. A special type
of perturbance of this balance is induced by the loading force and for this reason a certain direction
of orientation of the grain-surface elements becomes preferred under load. However, Formula (28)
remains satisfied under load even in the unloaded condition. Atthe center of our attention is the
question how could the correlation between the preferred orientation of the grain surface elements and
the local structure deformation parameters be quantified.

Due to the planar character of the infinitesimal surface element dS there is no problem to define

the orientation of this element in 3D just by means of the vector d
→

S . Then quantitative evaluation of
the degree of orientation of this single surface element to the direction determined by the unit vector

→
τ

can be performed using absolute value of scalar product:∣∣∣∣∣→τ · d→S ∣∣∣∣∣ = dS
∣∣∣cos(α)

∣∣∣ = dSp (29)

where α is the angle between vectors
→
τ and d

→

S . The size of projection of the surface element dSp to the

plane perpendicular to the vector
→
τ is determined by quantity (29). Let S be the surface area of the

whole grain. Then the quantity (29) calculated per unit surface area of the grain, i.e.:

dS
∣∣∣cos(α)

∣∣∣
S

(30)
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can determine a contribution of the element dS to the degree of whole grain-surface orientation to the
direction determined by the unit vector

→
τ . We need to introduce a variable κ enabling evaluation of

the degree of whole grain-surface orientation to the direction determined by the unit vector
→
τ which

would be also appropriate for quantitative analysis of grain surface distortion. The contribution rate of
the surface element dS to the variable κ can be intuitively proposed by generalization of the quantity
(31) as follows:

dκ =
dS
S
ξ(α), (31)

where ξ(α) is a value depending only on the angle α. Function ξ(α) must be designed in accordance
with the requirement that the value κ corresponds to the quantities obtained from stereological
measurements. In our work this function has been chosen in such a way that the limit of the values
of variable κ correspond to values obtained in procedures realized on analysis of particle orientation
using the Saltykov method (see Section 2 for an understanding of the principles). Consistent with this
method we require:

lim
α→π/2

κ = 1, lim
α→0

κ = −1 (32)

So the following function can be used in this case:

ζ(α) = 1− 2
∣∣∣cos(α)

∣∣∣ (33)

and contribution (31) can be written in the following form:

dκ =
{
1− 2

∣∣∣cos(α)
∣∣∣}dS

S
=

dS
S
− 2

∣∣∣∣∣→τ · d→S ∣∣∣∣∣
S

. (34)

Then the degree of whole grain-surface orientation to the direction determined by the unit vector
→
τ can be evaluated by the integration of (34) over the entire grain surface:

κ = 1− 2
1
S

∫
(Sur f ace)

∣∣∣∣∣→τ · d→S ∣∣∣∣∣ (35)

In the following sections we examine how the quantity κ defined by (35) behaves during
deformation and whether it allows analysis of the grain-surface area distortion induced by deformation.
Namely if there is a vector

→
γ satisfying:

κ
(
→
γ
)
= κmax (36)

i.e., if the value of κ is maximal for vector
→
γ , this vector determines the preferred whole grain- surface

area orientation (or grain orientation in a topological sense).
The degree of whole grain-surface orientation to the direction determined by the unit vector

→
τ in

both deformed and undeformed configurations can be evaluated by Formula (35):

κunde f or = 1− 2

∫
(Sur f ace)

∣∣∣∣∣→τ · d→Sunde f or

∣∣∣∣∣∫
(Sur f ace)

∣∣∣∣∣d→Sunde f or

∣∣∣∣∣ , κde f or = 1− 2

∫
(sur f ace)

∣∣∣∣∣→τ · d→Sde f or

∣∣∣∣∣∫
(sur f ace)

∣∣∣∣∣d→Sde f or

∣∣∣∣∣ . (37)

Let
→
ρ be the unit vector parallel to the vector of the grain-surface element of undeformed grain,

d
→

Sunde f or =
→
ρdSunde f or i.e.,: where

∣∣∣∣→ρ ∣∣∣∣= 1.
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Taking into account the Formula (38) and considering the fact:

→
τ · d2

→

Sde f or =
→
τ ·

→→σ · d2
→

Sunde f or

 =
→→σT

·
→
τ

 · d2
→

Sunde f or, (38)

where
→
→
σ

T

is the transposed tensor to the grain surface deformation tensor
→
→
σ determined by (22),

Formulas (37) can be rewritten in the following form:

κunde f or = 1− 2

∫
(Sur f ace)

∣∣∣∣∣→τ · d→Sunde f or

∣∣∣∣∣∫
(Sur f ace)

∣∣∣∣→ρ ∣∣∣∣dSunde f or

, κde f or = 1− 2

∫
(Sur f ace)

∣∣∣∣∣∣∣
→→σT

·
→
τ

 · d→Sunde f or

∣∣∣∣∣∣∣∫
(Sur f ace)

∣∣∣∣∣∣→→σ ·→ρ
∣∣∣∣∣∣dSunde f or

(39)

As can be concluded from comparison of the above Equation (39), transformation of the value κ
during grain deformation can be realized as follows:

→
τ →

→
→
σ

T

·
→
τ ∧

→
ρ →

→
→
σ ·
→
ρ (40)

Equation (39) correspond to Formulas (11) to (12). They can be considered as a generalized
formula for the degree of grain orientation measured by the Saltykov method. As can be seen from (39)
the transformation of κ during grain deformation is relatively complicated. We will not examine the
properties of this transformation in detail. However, we want to point out the fact that that it is sufficient
to integrate over the surface of the undeformed grain in both of the Formula (39). So, to determine
the value κ in deformed configuration we need to know only the shape of the undeformed grain and
the coefficients of the deformation tensor εij. We believe, that κ is a scalar variable acceptable for the
quantitative evaluation of grain-surface distortion during local deformation of the grained structure.

5. The Case of Plastic Deformation

The fundamental assumption used to establish the theory of plasticity is that plastic deformation
is isochoric or volume preserving. Next, we apply the results obtained in previous sections to the case
of plastic grain deformation, i.e., deformation in which the change of volume of grain is zero.

Conservation of grain volume during the plastic deformation process can be described by
the formula:

Vundefor = Vdefor (41)

The Gauss formula can be used for determination of grain volume in both undeformed (Vundefor)
and deformed (Vdefor) configurations:

∫
(Sunde f or)

→

R · d
→

Sunde f or =
∫

(Vunde f or)

div
(
→

R
)
dV = 3Vunde f or,

∫
(Sde f or)

→
r · d

→

Sde f or =
∫

(Vde f or)

div
(
→
r
)
dV′ = 3Vde f or. (42)

A comparison of the Equation (42) shows:

∫
(Sunde f or)

→

R · d
→

Sunde f or =

∫
(Sde f or)

→
r · d

→

Sde f or =

∫
(Sunde f or)

→→σ
T

·

→→ε ·→R
· d→Sunde f or (43)
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where Formulas (17) and (20) were used. It is necessary to integrate over the same (but any) surface area
on both sides of the previous Equation (43). Therefore, for plastic deformations the following applies:

→

R =
→
→
σ

T

·

→→ε ·→R,
→
→
σ

T

=
→
→
ε

−1

respectively. (44)

As follows from Formula (44) the transposed tensor of the grain surface deformation tensor
is inverse to the deformation tensor in the case of plastic deformation. If we consider Formula
(43), the following equation can be written in the case of plastic deformation (please see details in
Appendix C):

{(
ε1nε2 jε3k − ε2nε1 jε3k + ε3nε1 jε2k

)
−

(
δ1nδ2 jδ3k − δ2nδ1 jδ3k + δ3nδ1 jδ2k

)}(∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
Xn = 0. (45)

Equation (45) must be satisfied for any function Xi = Xi(u, v) in the case of grain volume
conservation during plastic deformation. If (45) is expanded without further assumptions, this leads to
the following 27 equations:

ε1n
(
ε2 jε3k − ε2kε3 j

)
− ε2n

(
ε1 jε3k − ε1kε3 j

)
+ ε3n

(
ε1 jε2k − ε1kε2 j

)
−

− δ1n
(
δ2 jδ3k − δ2kδ3 j

)
+ δ2n

(
δ1 jδ3k − δ1kδ3 j

)
− δ3n

(
δ1 jδ2k − δ1kδ2 j

)
= 0 . . .∀ n, j, k (46)

i.e., the following equation must be satisfied in the case of plastic deformation (please see details in
Appendix D):

det

→→ε  = 1 (47)

Next, the conditions for the deformation tensor can be considered in the case of plastic deformation
of a homogeneous and isotropic grained structure:

ε ji = 0 for all i , j , k ∧ det

→→ε  = εiiε j jεkk = 1. (48)

Elements of the deformation tensor are directly related to grain prolongation (contraction) δ (−1 <

δ <∞) in this case. If the loading force is applied in the direction of the x-axis the following holds:

ε11 = δ+ 1, ε22 = ε33 =
1

√
δ+ 1

(49)

and due to Formula (44) the degree of grain surface area orientation (39) can be modified to the
following form:

κde f or = 1− 2

∫
(Sur f ace)

∣∣∣∣∣∣∣
→→ε−1

·
→
τ

 · d→Sunde f or

∣∣∣∣∣∣∣
∫

(Sur f ace)

∣∣∣∣∣∣∣
→
→
ε

−1

·
→
ρ

∣∣∣∣∣∣∣dSunde f or

9. (50)

Detailed information about the shape of the grain is necessary for the practical application of the
result (39) and (50) because integrals in these formulas are integrated over the entire surface of the grain.
However, there is no possibility to determine the real shape of each grain in the material structure
exactly. Therefore, deformation of the model of the grained structure is usually investigated. Models
of the grained structure consist of grains with various idealized shapes. For instance, deformation of
spheres can be considered since spheres are not space filling and have no edges. Deformation of cubes
can be also investigated, and mathematical analysis can be simplified, but cubes are unfortunately
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clearly poor for approximations to the shapes of real grains. The tetrakaidecahedronal shape of the
grain is very suitable for modeling because it is space filling and approximately identical with the
shape of real grains observed metallographically in the undeformed state [37,38].

Models of grained structures based on the specific idealized shape of grains allow examination of
the relationship between grain orientation and local deformation but the problem of non-zero grain
orientation in the case of zero value of initial deformation of the structure often arises from such
models [39,40].

Our method presented in the next section does not evaluate the orientation of one idealized grain
placed in the structure but investigates the orientation of all grain boundaries localized in a certain area
of the grained structure. Integrals in the Formulas (39) and (50) must be integrated over the surface of
all grain boundaries in this area. The relationship between grain orientation in this local area and local
deformation can be determined from these formulas in this case.

6. Random Matrix Approximation

In this section we explain the applicability of results presented above in the modelling of local
deformations in grained structures. Integrals in (39) should be integrated over the entire surface of the
grain boundaries when the degree of orientation of the whole grained structure κ is evaluated.

For computational purposes, integrals in the Formula (39) can be written in the form of summation
over the infinitely small areas placed around the wholegrain boundary surface (see Figures 8 and 9).
A cross-sectional image of such a model of a granular structure is shown in Figure 10. So, we obtain
the following:

κde f or ≈ 1− 2

N∑
i=1

∣∣∣∣∣∣∣
→→σT

·
→
τ

 ·→S (i)

unde f or

∣∣∣∣∣∣∣
N∑

i=1

∣∣∣∣∣∣→→σ ·→ρ (i)
∣∣∣∣∣∣S(i)

(51)

where
→
τ = [τ1, τ2, τ3] is any unit vector (i.e., τ2

1 + τ2
2 + τ2

3 = 1) and
→
ρ
(i)

is unit vector perpendicular to
the i-th grain-surface element of undeformed grain:

→

S
(i)

unde f or =
→
ρ
(i)
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Vector
→
ρ
(i)

can be written in the form:

→
ρ
(i)

=
[
sin

(
η(i)

)
cos

(
χ(i)

)
, sin

(
η(i)

)
sin

(
χ(i)

)
, cos

(
η(i)

)]
while η(i) and χ(i) are angles which determine the orientation of the i-th grain-surface element. Then the
following applies:

→

S
(i)

unde f or =
[
S(i)

1 , S(i)
2 , S(i)

3

]
=

[
S(i)sin

(
η(i)

)
cos

(
χ(i)

)
, S(i)sin

(
η(i)

)
sin

(
χ(i)

)
, S(i)cos

(
η(i)

)]
(53)
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Figure 10. A view of a cross-section of the model of the grained structure. The scheme demonstrates
cross-sectional images of small flat areas on the grain surface.

If we use result (22) and notation (53), the sums in the Formula (51) can be determined as (please
see details in Appendix E):

N∑
i=1

∣∣∣∣∣∣∣
→→σT

·
→
τ

 ·→ρ (i)
S(i)

∣∣∣∣∣∣∣ =
=

N∑
i=1

∣∣∣∣{[(ε22ε33 − ε23ε32

)
sin

(
η(i)

)
cos

(
χ(i)

)
+

(
ε23ε31 − ε21ε33

)
sin

(
η(i)

)
sin

(
χ(i)

)
+

(
ε21ε32 − ε22ε31

)
cos

(
η(i)

)]
τ1+

+
[(
ε13ε32 − ε12ε33

)
sin

(
η(i)

)
cos

(
χ(i)

)
+

(
ε11ε33 − ε13ε31

)
sin

(
η(i)

)
sin

(
χ(i)

)
+

(
ε12ε31 − ε11ε32

)
cos

(
η(i)

)]
τ2+

+
[(
ε12ε23 − ε13ε22

)
sin

(
η(i)

)
cos

(
χ(i)

)
+

(
ε13ε21 − ε11ε23

)
sin

(
η(i)

)
sin

(
χ(i)

)
+

(
ε11ε22 − ε12ε21

)
cos

(
η(i)

)]
τ3

}
S(i)

∣∣∣∣
(54)
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N∑
i=1

∣∣∣∣∣∣→→σ ·→ρ (i)
∣∣∣∣∣∣S(i) =

=
N∑

i=1

[{(
ε22ε33 − ε23ε32

)
cos

(
χ(i)

)
sin

(
η(i)

)
−

(
ε21ε33 − ε23ε31

)
sin

(
χ(i)

)
sin

(
η(i)

)
+

(
ε21ε32 − ε22ε31

)
cos

(
η(i)

)}2
+

+
{(
ε13ε32 − ε12ε33

)
cos

(
χ(i)

)
sin

(
η(i)

)
−

(
ε13ε31 − ε11ε33

)
sin

(
χ(i)

)
sin

(
η(i)

)
+

(
ε12ε31 − ε11ε32

)
cos

(
η(i)

)}2
+

+
{(
ε12ε23 − ε13ε22

)
cos

(
χ(i)

)
sin

(
η(i)

)
−

(
ε11ε23 − ε13ε21

)
sin

(
χ(i)

)
sin

(
η(i)

)
+

(
ε11ε22 − ε12ε21

)
cos

(
η(i)

)}2
] 1

2
S(i)

(55)

The degree of whole grained structure orientation κ to the direction determined by the unit vector
→
τ was calculated by means of the Formula (51) while the sums in the numerator and denominator in
the second member on the right side of this formula were determined by (54) and (55).

Any randomly oriented surface element on the grain boundary S(i) in the given bulk grained
structure can be considered in the calculation of κ if the corresponding parameters η(i) and χ(i)

are applied. Therefore, random values of angles η(i) and χ(i) should be substituted step by step
into Formulas (54) and (55) during the calculation progress. This procedure of determination of
the parameter κ can be formulated using the following random matrices directly pertaining to the
deformation tensor only:

Ã(i)
1 =


sin

(
η(i)

)
cos

(
χ(i)

)
, sin

(
η(i)

)
sin

(
χ(i)

)
, cos

(
η(i)

)
ε21 , ε22 , ε23
ε31 , ε32 , ε33

 (56)

Ã(i)
2 =


ε11, ε12, ε13

sin
(
η(i)

)
cos

(
χ(i)

)
, sin

(
η(i)

)
sin

(
χ(i)

)
, cos

(
η(i)

)
ε31 , ε32 , ε33

 (57)

Ã(i)
3 =


ε11, ε12, ε13
ε21, ε22, ε23

sin
(
η(i)

)
cos

(
χ(i)

)
, sin

(
η(i)

)
sin

(
χ(i)

)
, cos

(
η(i)

)
 (58)

Matrix Ã(i)
n is a matrix-valued random variable, i.e., it is a matrix whose elements can be random

variables. So, the problem of grained structure orientation can be formulated asa random matrix
problem for calculation purposes. In this sense, the Formula (51) can be rewritten in the following form:

κde f or ≈ 1− 2

N∑
i=1

(
S(i)

∣∣∣∣∣∣ 3∑
n=1

τndetÃ(i)
n

∣∣∣∣∣∣
)

N∑
i=1

S(i)

√
3∑

n=1

(
detÃ(i)

n

)2


. . . n = 1, 2, 3 (59)

where detÃ(i)
n is a determinant of the random matrix Ã(i)

n . Eventually a random 3 × 3 × 3 tensor with
the following elements:

˜̃Λ(i)

nmk = εmk(1− δm,n) +
1
2δm,n

{[
1 + (−1)αk

]
sin

(
η(i)

)
cos

(
χ(i)

)
+

[
1 + (−1)k

]
sin

(
η(i)

)
sin

(
χ(i)

)
+

+
[
1 + (−1)βk

]
cos

(
η(i)

)}
where : αk =

k∑
ν=1

1 + (−1)ν

2
,βk =

k∑
ν=1

1− (−1)ν

2
, . . . n, m, k = {1, 2, 3} (60)

can be imposed and smartly used in the formal mathematical notation as well as in the numerical
implementation of the mentioned approximation approach.
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7. Algorithmic Issues for the Numerical Treatment of Orientation κ as a Function of
Deformation δ

In the previous section the random matrix approximation was presented where grain boundaries
are considered to be a large number of planar surface elements. Therefore, all derivatives with respect
to parameters u and v in Formulas (19) and (27) are simply constants. The mentioned constants are
different for each planar surface and the integrals can be replaced by sums. Random variables η(i),
χ(i) and S(i) actually represent the orientation and size of i–th planar surface in the structure.

If the random homogeneous grained structure is considered, the single grain may be of any shape
and can have also any orientation. The size and orientation of the mentioned small flat surfaces in the
structure are random variables in the approximation. Random matrix approximation is not limited by
a particular shape of the grain.

When Formulas (48) and (49) are considered in the homogeneous and isotropic case then results
(54) and (55) can be simplified to the following form:

N∑
i=1

∣∣∣∣∣∣∣
→→σT

·
→
τ

 ·→ρ (i)
S(i)

∣∣∣∣∣∣∣ = N∑
i=1

S(i)
∣∣∣∣ 1
(δ+1) sin

(
η(i)

)
cos

(
χ(i)

)
τ1 +

√
δ+ 1sin

(
η(i)

)
sin

(
χ(i)

)
τ2 +

√
δ+ 1cos

(
η(i)

)
τ3

}∣∣∣∣, (61)

N∑
i=1

∣∣∣∣∣∣→→σ ·→ρ (i)
∣∣∣∣∣∣S(i) =

N∑
i=1

S(i)

√{
1

(δ+1) cos
(
χ(i)

)
sin

(
η(i)

)}2
+

{√
δ+ 1sin

(
χ(i)

)
sin

(
η(i)

)}2
+

{√
δ+ 1cos

(
η(i)

)}2
, (62)

where N is the number of random variables (i.e., number of planar grain boundaries in the random
matrix model of the considered grained structure). If the vector

→
τ = [1, 0, 0] (out of plane deformation),

we obtain the following formula by means of substituting (61) and (62) into (51):

κde f or = 1−
2

N∑
i=1

S(i)
∣∣∣∣sin

(
η(i)

)
cos

(
χ(i)

)∣∣∣∣
N∑

i=1
S(i)

√
cos2

(
χ(i)

)
sin2

(
η(i)

)
+ (δ+ 1)3

{
sin2

(
χ(i)

)
sin2

(
η(i)

)
+ cos2

(
η(i)

)} (63)

Orientation to direction determined by unit vector
→
τ which is parallel to the direction of

deformation force is evaluated in this simple case by means of Formula (63). Parameters η(i), χ(i) and
S(i) should be randomly generated and substituted in Formula (63) during the numerical simulation of
the function κdefor(δ). In addition, orientation of the grained structure in the undeformed configuration
must be taken into account during the simulation. Prolongation δ = 0 in the undeformed case and then
the following holds:

κunde f or = 1−
2

N∑
i=1

S(i)
∣∣∣∣sin

(
η(i)

)
cos

(
χ(i)

)∣∣∣∣
N∑

i=1
S(i)

(64)

So random values η(i), χ(i) and S(i) must be generated in a such way as to meet the initial condition
(64). Considering (63) and (64) we get:

κde f or = 1−

(
1− κunde f or

) N∑
i=1

S(i)

N∑
i=1

S(i)
√

cos2
(
χ(i)

)
sin2

(
η(i)

)
+ (δ+ 1)3

{
sin2

(
χ(i)

)
sin2

(
η(i)

)
+ cos2

(
η(i)

)} (65)

It is advantageous to evaluate the orientation of the grained structure by means of the Formula
(55) in cases when an extension of this structure is observed caused by the deformation force, i.e.,
if 0 < δ.
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In the case where there is contraction of the structure under the deformation force, i.e., −1< δ < 0,
we consider it appropriate to evaluate orientation κ in relation to any vector oriented perpendicular to
the deformation force. Vector

→
τ = [0, cos(θ), sin(θ)] (66)

where 0 < θ < 2π must be considered in this case of squeezing the structure (in plane deformation) and
Formulas (54) and (55) take the form:

N∑
i=1

∣∣∣∣∣∣∣
→→σT

·
→
τ

 ·→ρ (i)
S(i)

∣∣∣∣∣∣∣ =
N∑

i=1

S(i)
∣∣∣∣√δ+ 1sin

(
η(i)

)
sin

(
χ(i)

)
cos(θ) +

√
δ+ 1cos

(
η(i)

)
sin(θ)

}∣∣∣∣ (67)

N∑
i=1

∣∣∣∣∣∣→→σ ·→ρ (i)
∣∣∣∣∣∣S(i) =

N∑
i=1

S(i)

√{
1

(δ+1) cos
(
χ(i)

)
sin

(
η(i)

)}2
+

{√
δ+ 1sin

(
χ(i)

)
sin

(
η(i)

)}2
+

{√
δ+ 1cos

(
η(i)

)}2
. (68)

Applying (66), (67), and (68) in Formula (51) we get:

κ′de f or = 1− 2

N∑
i=1

S(i)
∣∣∣∣√δ+1sin(η(i))sin(χ(i))cos(θ(i))+

√
δ+1cos(η(i))sin(θ(i))

}∣∣∣∣
N∑

i=1
S(i)

√{
1

(δ+1) cos(χ(i))sin(η(i))
}2
+

{√
δ+1sin(χ(i))sin(η(i))

}2
+

{√
δ+1cos(η(i))

}2
. (69)

Therefore, in undeformed configuration it holds that:

κ′unde f or = 1−
2

N∑
i=1

S(i)
∣∣∣∣sin

(
η(i)

)
sin

(
χ(i)

)
cos(θ) + cos

(
η(i)

)
sin(θ)

∣∣∣∣
N∑

i=1
S(i)

(70)

and we obtain the following formula for the calculation of the degree of orientation κ:

κ′de f or = 1−
(δ+ 1)

√
δ+ 1

(
1− κ′unde f or

) N∑
i=1

S(i)

N∑
i=1

S(i)
√

cos2
(
χ(i)

)
sin2

(
η(i)

)
+ (δ+ 1)3

{
sin2

(
χ(i)

)
sin2

(
η(i)

)
+ cos2

(
η(i)

)} . (71)

The Monte Carlo method was used to find functions κdefor(δ) and κ’defor(δ). Results of the applied
stochastic calculations are shown in graphs in Figures 11 and 12. Individual points of graphs were
found by successive application of N = 107 randomly chosen triples of variables {η(i), χ(i), S(i)} in
Formulas (65) and (71). It was shown that with increasing number of applied random variables N
the calculated values κdefor and κ’defor converge to some expected value of the degree of the whole
grain- surface orientation for every value δ. This means that the computational stability of the Monte
Carlo algorithm has been confirmed in the simulation of the relationship between orientation and
deformation of the structure.

Results of the numerical calculation confirmed that Formulas (65) and (71) can be successfully
applied for the conversion of the orientation represented by the quantity κ into local plastic deformation
characterized by δ in the case of plastic deformation of the grained structure. In addition graphs
κdefor(δ) and κ’defor(δ) obtained from these formulas using the Monte Carlo simulation demonstrate the
applicability of stereological methods for the modelling of local plastic deformation in grained structures.

However, Formulas (65) and (71) do not represent a general solution. These results can only be
applied to a particular case for which there is no rigid solid rotation of grains in the structure and the
axes chosen are principal axes of strain (therefore, there are no shear components present). In addition,
another limitation is imposed, which is that plastic deformation must be isotropic. Actually, it does not
seem that a grain with anisotropic behavior would give complications in the practical implementation
of our results.
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8. Discussion and Conclusions

In our work we briefly pointed out the possible application of quantities obtained from standard
stereological measurements. Our findings show that these quantities can be successfully applied
for the modelling of local plastic deformation in grained structures. Our approach is based on the
assumption that the grain, as it appears in a two-dimensional cross section, will change its shape and
geometric orientation in 3D during plastic deformation. We applied and discussed our results for a
homogeneous and isotropic grained structure.
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The application is quite simple in the case of plastic deformation. The local plastic deformation
in an isotropic and homogeneous grained structure can be evaluated by means of the value of grain
elongation (or contraction) δ. However, the grain elongation (contraction) in the real structure cannot
be measured directly. Conversely the measurement of the degree of grain orientation κ is available
using stereological methods. One of the main benefits of our work is that we found the correlation
between the degree of grain orientation κ and grain elongation (contraction) δ (see Formula (65) for
elongation or (71) for contraction). A model of random grained structure was established and the
mentioned correlation was investigated.

We note that by applying the Formulas (65) and (71), the correlations δ(κ) can be easily determined
for various initial grained structure orientations represented by values κundefor. The initial orientation
of a randomly selected grain in an undeformed random grained structure is arbitrary and κundefor = 0
in isotropic cases. However a relatively broad database of graphs {δ(κ, κundefor)} for the various κundefor
could be calculated and recorded when using a computer technique. Subsequently, the value of grain
elongation δ for corresponding κ can be found from the relevant graph. However, before this the graph
for the quantification of δ must be selected from the database using the value κundefor measured for the
undeformed configuration of the grained structure.

Therefore, if a deformation map of the plastically deformed homogeneous and isotropic grained
structure is to be investigated in the future, we propose using the results obtained above by the
procedure consisting of the following steps:

1. The degree of grain orientation κ in some local area in the given i-th position in the grained
structure must be measured in both undeformed (κi

undefor) and deformed (κi
defor) configurations.

For example, the Saltykov stereological method is applicable for this purpose.
2. Graph δ(κ) for a given model of grained structure must be identified so as the following is applied:

δ (κi
undefor) = 0. We found the graph for the random model of homogeneous and isotropic grained

structure by applying the random matrix approximation (see Formulas (65) or (71)) and using
Monte Carlo simulation (see Figures 11 and 12). κi

undefor = 0 was applied for the homogeneous
isotropic case.

3. Value δi corresponding to the measured value κi
defor must be found only from the graph δ (κ).

The search procedure is easy: δi = δ (κi
defor). Finally, this value δi represents the grain elongation

in the i-th position in the structure and allows the local strain in the given i-th position to
be evaluated.

However if we have to discuss how the obtained results can be applied to the study of plastic
deformation we must also note that the limitations imposed on Formulas (65) or (71) are often too
strong to make the presented method useful to study real deformation processes. Namely, also rigid
solid rotations of grains must be taken into account in general. Moreover, in order to be applicable in
the field of crystal plasticity, the case of anisotropic grain behavior should be discussed. A more general
method must be designed which does not lead to ambiguities in the interpretation of the change in
the degree of grain orientation. In the general inhomogeneous and anisotropic case, the Formula
(9) resulting from random matrix approximation should be used. This formula allows us to find the
relationship between the measurable quantities κi

defor and the coefficients of the deformation tensor
εqm in the local area of the grained structure. However the degree of the grain orientation κ in the
given local area of the grained structure will have to be measured in relation to more different vectors
→
τ

k
(oriented in various directions) so that we get the appropriate number of equations corresponding

to the number of unknown coefficients εqm. This means the next system of equations must be solved in
the inhomogeneous and anisotropic case:
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κk
de f or ≈ 1− 2

N∑
i=1

(
S(i)

∣∣∣∣∣∣ 3∑
n=1

τk
ndet

[
Ã(i)

n

({
εqm

})]∣∣∣∣∣∣
)

N∑
i=1

S(i)

√
3∑

n=1

(
det

[
Ã(i)

n

({
εqm

})])2


q, m = 1, 2, 3, k = 1, 2, 9 (72)

Local values of the coefficients of the deformation tensor εqm can be determined from the system
(73). In the case of plastic deformation one of the equations in the system () may be replaced by
the Equation (47). Generally, the verification of the practical applicability of the suggested idea to
determine local plastic deformation in a structure requires development of a suitable technique for
experimental determination of κdefor. Besides that, it is necessary to develop some numerical methods
suitable for software processing that allow coefficients εqm to be found satisfying a system of Equation
(73). System (73) quantified for εqm = δqm characterizes the initial orientation of the grained structure

in relation tothe direction given by vectors
→
τ

k
in the undeformed configuration and represents the

initial conditions:

κk
unde f or ≈ 1− 2

N∑
i=1

(
S(i)

∣∣∣∣∣∣ 3∑
n=1

τk
ndet

[
Ã(i)

n

({
εqm = δqm

})]∣∣∣∣∣∣
)

N∑
i=1

S(i)

√
3∑

n=1

(
det

[
Ã(i)

n

({
εqm = δqm

})])2


q, m = 1, 2, 3, k = 1, 2, 9 (73)

This initial condition must be considered in Equation (73) in the case of the deformed configuration
and the deformation characteristics represented by tensor εqm in the local area of the grained structure
can be searched by solving this system.

In conclusion, we dealt with the problem of applicability of stereological methods to determine
local plastic deformation in a grained structure. One can easily understand that there is a correlation
between the change in the grain orientation and grain deformation. This correlation was mathematically
demonstrated in our work. Indeed, the expression (50) allows one to investigate this correlation. If the
quantity κ clearly corresponds to the degree of grain orientation measured by the Saltykov method,
the analysis of local deformation could be realized experimentally on the basis of our results. As an
illustration we showed the applicability of our results for a random model of a grained structure.
This specific model was used here because of its simplicity but we believe that our method can be
applied also for other models.

During the loading process the κ changes and reflects deformation phenomena in the structure.
On-line scanning of grain orientation could be of great help for in-situ investigation of the deformation
dynamics. In this respect new methods for 3D object imaging may be helpful. Procedures for the
practical realization of our method suggested above will have to be modified in this case and this
modification will be the subject of a future work. However, we think that the mathematical principles
of the method presented in our work will remain the same.
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Appendix A. Transformation of a Grain Surface Element Vector During Deformation

Using the notation (14) and (15) the vector of deformed grain surface element can be written as:

d2
→

Sde f or =
(
∂
→
r
∂u ×

∂
→
r
∂v

)
dudv i.e., in coordinate form :

d2
→

Sde f or = d2Sde f
x
→

i + d2Sde f
y
→

i + d2Sde f
z
→

k =

=
{(
∂x2
∂u

∂x3
∂v −

∂x3
∂u

∂x2
∂v

)→
i +

(
∂x1
∂v

∂x3
∂u −

∂x1
∂u

∂x3
∂v

)→
j +

(
∂x1
∂u

∂x2
∂v −

∂x2
∂u

∂x1
∂v

)→
k

}
dudv.

(A1)

Transformation (17) can be applied in (A1) and we get:

d2
→

Sde f or =
{(
ε2 jε3k

∂X j
∂u

∂Xk
∂v − ε2lε3m

∂Xl
∂v

∂Xm
∂u

)
→

i +
(
ε1 jε3k

∂X j
∂v

∂Xk
∂u − ε1lε3m

∂Xl
∂u

∂Xm
∂v

)
→

j +

+
(
ε1 jε2k

∂X j
∂u

∂Xk
∂v − ε1lε2m

∂Xl
∂v

∂Xm
∂u

)
→

k
}
dudv.

(A2)

After formal unification of index symbols in summations (A2) (indexes take the same values and
therefore we can change symbols m→ k, l→ j), the coefficients of deformation tensor can be excluded
before the brackets:(

ε2 jε3k

∂X j

∂u
∂Xk
∂v
− ε2lε3m

∂Xl
∂v

∂Xm

∂u

)
= ε2 jε3k

(
∂X j

∂u
∂Xk
∂v
−
∂X j

∂v
∂Xk
∂u

)
, (A3)

(
ε1 jε3k

∂X j

∂v
∂Xk
∂u
− ε1lε3m

∂Xl
∂u

∂Xm

∂v

)
= −ε1 jε3k

(
∂X j

∂u
∂Xk
∂v
−
∂X j

∂v
∂Xk
∂u

)
, (A4)(

ε1 jε2k

∂X j

∂u
∂Xk
∂v
− ε1lε2m

∂Xl
∂v

∂Xm

∂u

)
= ε1 jε2k

(
∂X j

∂u
∂Xk
∂v
−
∂X j

∂v
∂Xk
∂u

)
. (A5)

It is easy to show that sum (A3) can be written as:

ε2 jε3k

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
= ε21ε32

(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

)
+ ε22ε31

(
∂X2
∂u

∂X1
∂v −

∂X2
∂v

∂X1
∂u

)
+

+ε21ε33

(
∂X1
∂u

∂X3
∂v −

∂X1
∂v

∂X3
∂u

)
+ ε23ε31

(
∂X3
∂u

∂X1
∂v −

∂X3
∂v

∂X1
∂u

)
+ ε22ε23

(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
+

+ε23ε32

(
∂X3
∂u

∂X2
∂v −

∂X3
∂v

∂X2
∂u

) (A6)

where we have taken into account that contributions of members characterized by j = k are zero.
Formulas (A4) and (A5) can be re-written by the same way and coordinates of the vector of the
deformed grain surface element (A2) can be subsequently transformed to the following form:

d2Sde f
x = ε2 jε3k

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
dudv =

(
ε21ε32 − ε22ε31

)(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

)
dudv+

+
(
ε21ε33 − ε23ε31

)(
∂X1
∂u

∂X3
∂v −

∂X1
∂v

∂X3
∂u

)
dudv +

(
ε22ε33 − ε23ε32

)(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
dudv

(A7)

d2Sde f
y = −ε1 jε3k

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
dudv = −

(
ε11ε32 − ε12ε31

)(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

)
dudv−

−

(
ε11ε33 − ε13ε31

)(
∂X1
∂u

∂X3
∂v −

∂X1
∂v

∂X3
∂u

)
dudv−

(
ε12ε33 − ε13ε32

)(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
dudv,

(A8)
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d2Sde f
z = ε1 jε2k

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
dudv =

(
ε11ε22 − ε12ε21

)(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

)
dudv+

+
(
ε11ε23 − ε13ε21

)(
∂X1
∂u

∂X3
∂v −

∂X1
∂v

∂X3
∂u

)
dudv +

(
ε12ε23 − ε13ε22

)(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
dudv.

(A9)

Note that the vector of the same grain surface element in the undeformed configuration is:

d2
→

Sunde f or = d2Sunde f
x

→

i + d2Sunde f
y

→

i + d2Sunde f
z

→

k =

=
(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
dudv

→

i +
(
∂X1
∂v

∂X3
∂u −

∂X1
∂u

∂X3
∂v

)
dudv

→

j +
(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

)
dudv

→

k . (A10)

Comparing the corresponding coordinates of vectors (A2) and (A10) we get:

d2Sde f
x =

(
ε21ε32 − ε22ε31

)
d2Sunde f

z −

(
ε21ε33 − ε23ε31

)
d2Sunde f

y +
(
ε22ε33 − ε23ε32

)
d2Sunde f

x ,

d2Sde f
y = −

(
ε11ε32 − ε12ε31

)
d2Sunde f

z +
(
ε11ε33 − ε13ε31

)
d2Sunde f

y −

(
ε12ε33 − ε13ε32

)
d2Sunde f

x ,

d2Sde f
z =

(
ε11ε22 − ε12ε21

)
d2Sunde f

z −

(
ε11ε23 − ε13ε21

)
d2Sunde f

y +
(
ε12ε23 − ε13ε22

)
d2Sunde f

x

(A11)

and vector of the deformed grain surface element can be found as:

d2
→

Sde f or =
{(
ε21ε32 − ε22ε31

)
d2Sunde f

z −

(
ε21ε33 − ε23ε31

)
d2Sunde f

y +
(
ε22ε33 − ε23ε32

)
d2Sunde f

x

}→
i +

+
{
−

(
ε11ε32 − ε12ε31

)
d2Sunde f

z +
(
ε11ε33 − ε13ε31

)
d2Sunde f

y −

(
ε12ε33 − ε13ε32

)
d2Sunde f

x

}→
j +

+
{(
ε11ε22 − ε12ε21

)
d2Sunde f

z −

(
ε11ε23 − ε13ε21

)
d2Sunde f

y +
(
ε12ε23 − ε13ε22

)
d2Sunde f

x

}→
k .

(A12)

Next it is not difficult to show that:

d2
→

Sde f or =


(
ε22ε33 − ε23ε32

)
−

(
ε21ε33 − ε23ε31

) (
ε21ε32 − ε22ε31

)
(
ε13ε32 − ε12ε33

)
−

(
ε13ε31 − ε11ε33

) (
ε12ε31 − ε11ε32

)
(
ε12ε23 − ε13ε22

)
−

(
ε11ε23 − ε13ε21

) (
ε11ε22 − ε12ε21

)
 ·


d2Sund

x
d2Sund

y
d2Sund

z

. (A13)

So the grain surface element is transformed during the deformation according to the Formula (20).

Appendix B. Deformed Grain Surface Area

If we use the Formula (A2), the size of surface element area of the deformed grain can be found
as follows:(

d2Sde f or
)2

=
(
d2Sde f

x

)2
+

(
d2Sde f

y

)2
+

(
d2Sde f

z

)2
=

{(
ε2 jε3k

∂X j
∂u

∂Xk
∂v − ε2lε3m

∂Xl
∂v

∂Xm
∂u

)2
+

+
(
ε1 jε3k

∂X j
∂v

∂Xk
∂u − ε1lε3m

∂Xl
∂u

∂Xm
∂v

)2
+

(
ε1 jε2k

∂X j
∂u

∂Xk
∂v − ε1lε2m

∂Xl
∂v

∂Xm
∂u

)2
}
(dudv)2

(A14)

Squaring of first bracket in (A14) we get:(
ε2 jε3k

∂X j
∂u

∂Xk
∂v − ε2lε3m

∂Xl
∂v

∂Xm
∂u

)2
= ε2 jε2nε3kε3s

∂X j
∂u

∂Xn
∂u

∂Xk
∂v

∂Xs
∂v +

+ε3mε3sε2lε2n
∂Xm
∂u

∂Xs
∂u

∂Xl
∂v

∂Xn
∂v − 2ε2 jε3mε3kε2l

∂X j
∂u

∂Xm
∂u

∂Xk
∂v

∂Xl
∂v .

(A15)

In the (A15) we can change the symbols of the indexes in the second expression as follows m→ j,
s→ n, l→ k, n→ s, i.e.,:

ε3mε3sε2lε2n
∂Xm

∂u
∂Xs

∂u
∂Xl
∂v

∂Xn

∂v
= ε3 jε3nε2kε2s

∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
(A16)
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and in the third expression as follows m→ n, l→ s:

ε2 jε3mε3kε2l

∂X j

∂u
∂Xm

∂u
∂Xk
∂v

∂Xl
∂v

= ε2 jε3nε3kε2s

∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
. (A17)

Then the square of the first bracket is:(
ε2 jε3k

∂X j
∂u

∂Xk
∂v − ε2lε3m

∂Xl
∂v

∂Xm
∂u

)2
= ε2 jε2nε3kε3s

∂X j
∂u

∂Xn
∂u

∂Xk
∂v

∂Xs
∂v +

+ε3 jε3nε2kε2s
∂X j
∂u

∂Xn
∂u

∂Xk
∂v

∂Xs
∂v − 2ε2 jε3nε3kε2s

∂X j
∂u

∂Xn
∂u

∂Xk
∂v

∂Xs
∂v .

(A18)

All squared brackets in (A14) can be re-written in the same a way, i.e.,:

(
d2Sde f

x

)2
=

(
ε2 jε2nε3kε3s + ε3 jε3nε2kε2s − 2ε2 jε3nε3kε2s

)∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
(dudv)2, (A19)

(
d2Sde f

y

)2
=

(
ε1 jε1nε3kε3s + ε3 jε3nε1kε1s − 2ε1 jε3nε3kε1s

)∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
(dudv)2, (A20)

(
d2Sde f

z

)2
=

(
ε1 jε1nε2kε2s + ε2 jε2nε1kε1s − 2ε1 jε2nε2kε1s

)∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
(dudv)2. (A21)

Substituting (A19), (A20) and (A21) into the Formula (A14) the size of the deformed grain surface
area element can be written as:(

d2Sde f or
)2

= Γ jnks
∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
(dudv)2, (A22)

where:

Γ jnks =
{
ε2 jε2nε3kε3s + ε3 jε3nε2kε2s + ε1 jε1nε3kε3s + ε3 jε3nε1kε1s + ε1 jε1nε2kε2s + ε2 jε2nε1kε1s−

−2
(
ε2 jε3nε3kε2s + ε1 jε3nε3kε1s + ε1 jε2nε2kε1s

) (A23)

We note that:

ε2 jε2nε3kε3s + ε3 jε3nε2kε2s + ε1 jε1nε3kε3s + ε3 jε3nε1kε1s + ε1 jε1nε2kε2s + ε2 jε2nε1kε1s =
∑

V([p, q]), p , q
p, q ∈ {1, 2, 3}

εpjεpnεqkεqs (A24)

where notation under the summation symbol means the sum over all variations of indexes p, q while
p , q. In addition we use the appropriate changes of the index symbols in some sums in the bracket
( j↔ n ,k↔ s ) and consider that:

2
(
ε2 jε3nε3kε2s + ε1 jε3nε3kε1s + ε1 jε2nε2kε1s

)
= ε2 jε3nε3kε2s + ε3 jε2nε2kε3s + ε1 jε3nε3kε1s+

+ε3 jε1nε1kε3s + ε1 jε2nε2kε1s + ε2 jε1nε1kε2s =
∑

V([p, q]), p , q
p, q ∈ {1, 2, 3}

εpjεqnεqkεps. (A25)

Therefore, the size of deformed grain surface area can be written as:

Sde f or =

v2∫
v1

u2∫
u1

√
Γ jnks

∂X j

∂u
∂Xn

∂u
∂Xk
∂v

∂Xs

∂v
dudv, (A26)
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where:
Γ jnks =

∑
V([p, q]), p , q
p, q ∈ {1, 2, 3}

(
εpjεpnεqkεqs − εpjεqnεqkεps

)
(A27)

which is consistent with Formulas (25) and (26).

Appendix C. Volume Preserving during Plastic Deformation

Integrals in (42) can be written in coordinate form:

∫
(Sunde f or)

→

R · d
→

Sunde f or =
v2∫

v1

u2∫
u1

(
X1

(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
+ X2

(
∂X1
∂v

∂X3
∂u −

∂X1
∂u

∂X3
∂v

)
+ X3

(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

))
dudv (A28)

∫
(Sde f or)

→
r · d

→

Sde f or =
v2∫

v1

u2∫
u1

(
x1

(
∂x2
∂u

∂x3
∂v −

∂x2
∂v

∂x3
∂u

)
+ x2

(
∂x1
∂v

∂x3
∂u −

∂x1
∂u

∂x3
∂v

)
+ x3

(
∂x1
∂u

∂x2
∂v −

∂x1
∂v

∂x2
∂u

))
dudv (A29)

Using the transformation (17) the integral in (A29) takes the form:

∫
(Sde f or)

→
r · d

→

Sde f or =
v2∫

v1

u2∫
u1

{
ε1nXn

(
ε2 jε3k

∂X j
∂u

∂Xk
∂v − ε2lε3m

∂Xl
∂v

∂Xm
∂u

)
+

+ε2nXn

(
ε1 jε3k

∂X j
∂v

∂Xk
∂u − ε1lε3m

∂Xl
∂u

∂Xm
∂v

)
+ ε3nXn

(
ε1 jε2k

∂X j
∂u

∂Xk
∂v − ε

1
l ε

2
m
∂Xl
∂v

∂Xm
∂u

)}
dudv

(A30)

If we change the index labeling l→ j, m→ k in the sums (A30) the following formula results from
Equation (43):

ε1nε2 jε3kXn

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
+ ε2nε1 jε3kXn

(
∂X j
∂v

∂Xk
∂u −

∂X j
∂u

∂Xk
∂v

)
+ ε3nε1 jε2kXn

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
=

= X1
(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
+ X2

(
∂X1
∂v

∂X3
∂u −

∂X1
∂u

∂X3
∂v

)
+ X3

(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

)
,

(A31)

i.e., in simplified notation:(
ε1nε2 jε3k − ε2nε1 jε3k + ε3nε1 jε2k

)
Xn

(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
=

= X1
(
∂X2
∂u

∂X3
∂v −

∂X2
∂v

∂X3
∂u

)
+ X2

(
∂X1
∂v

∂X3
∂u −

∂X1
∂u

∂X3
∂v

)
+ X3

(
∂X1
∂u

∂X2
∂v −

∂X1
∂v

∂X2
∂u

)
.

(A32)

Finally, if we consider the fact that:

X1

(
∂X2

∂u
∂X3

∂v
−
∂X2

∂v
∂X3

∂u

)
= δ1nδ2 jδ3k

(
∂X j

∂u
∂Xk
∂v
−
∂X j

∂v
∂Xk
∂u

)
Xn, (A33)

X2

(
∂X1

∂v
∂X3

∂u
−
∂X1

∂u
∂X3

∂v

)
= −δ2nδ1 jδ3k

(
∂Xk
∂u

∂X j

∂v
−
∂Xk
∂v

∂X j

∂u

)
Xn, (A34)

X3

(
∂X1

∂u
∂X2

∂v
−
∂X1

∂v
∂X2

∂u

)
= δ3nδ1 jδ2k

(
∂X j

∂u
∂Xk
∂v
−
∂X j

∂v
∂Xk
∂u

)
Xn. (A35)

volume preserving can be represented by equation:{
ε1nε2 jε3k − ε2nε1 jε3k + ε3nε1 jε2k − δ1nδ2 jδ3k + δ2nδ1 jδ3k − δ3nδ1 jδ2k

}(
∂X j
∂u

∂Xk
∂v −

∂X j
∂v

∂Xk
∂u

)
Xn = 0 (A36)

leading to (46).
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Appendix D. Tensor of Plastic Deformation

Formula (46) represents the system of 27 equations for 9 unknown parameters (coefficients of
deformation tensor): i.e.,:

ε11(ε22ε33 − ε23ε32) − ε21(ε12ε33 − ε13ε32) + ε31(ε12ε23 − ε13ε22) = 1 . . . f or
{
n, j, k

}
= {1, 2, 3} ∨ {1, 3, 2}

ε12(ε23ε31 − ε21ε33) − ε22(ε13ε31 − ε11ε33) + ε32(ε13ε21 − ε11ε23) = 1 . . . f or
{
n, j, k

}
= {2, 1, 3} ∨ {2, 3, 1}

ε13(ε21ε32 − ε22ε31) − ε23(ε11ε32 − ε12ε31) + ε33(ε11ε22 − ε12ε21) = 1 . . . f or
{
n, j, k

}
= {3, 1, 2} ∨ {3, 2, 1}

ε1n
(
ε2 jε3k − ε2kε3 j

)
− ε2n

(
ε1 jε3k − ε1kε3 j

)
+ ε3n

(
ε1 jε2k − ε1kε2 j

)
= 0 . . . f or all other

{
n, j, k

}
,

(A37)

where {i,j,k} is the ordered set of coefficients. Of these 27 equations, only the following 9 are independent:

ε11(ε22ε33 − ε23ε32) − ε21(ε12ε33 − ε13ε32) + ε31(ε12ε23 − ε13ε22) = 1 (A38)

ε12(ε23ε31 − ε21ε33) − ε22(ε13ε31 − ε11ε33) + ε32(ε13ε21 − ε11ε23) = 1 (A39)

ε13(ε21ε32 − ε22ε31) − ε23(ε11ε32 − ε12ε31) + ε33(ε11ε22 − ε12ε21) = 1 (A40)

ε11(ε21ε32 − ε22ε31) − ε21(ε11ε32 − ε12ε31) + ε31(ε11ε22 − ε12ε21) = 0 (A41)

ε11(ε21ε33 − ε23ε31) − ε21(ε11ε33 − ε13ε31) + ε31(ε11ε23 − ε13ε21) = 0 (A42)

ε12(ε21ε32 − ε22ε31) − ε22(ε11ε32 − ε12ε31) + ε32(ε11ε22 − ε12ε21) = 0 (A43)

ε12(ε22ε33 − ε23ε32) − ε22(ε12ε33 − ε13ε32) + ε32(ε12ε23 − ε13ε22) = 0 (A44)

ε13(ε21ε33 − ε23ε31) − ε23(ε11ε33 − ε13ε31) + ε33(ε11ε23 − ε13ε21) = 0 (A45)

ε13(ε22ε33 − ε23ε32) − ε23(ε12ε33 − ε13ε32) + ε33(ε12ε23 − ε13ε22) = 0 . (A46)

The mentioned equations can be rewritten as follows:∣∣∣∣∣∣∣∣∣
ε11 ε21 ε31

ε12 ε22 ε32

ε13 ε23 ε33

∣∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣∣∣∣
ε12 ε22 ε32

ε13 ε23 ε33

ε11 ε21 ε31

∣∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣∣∣∣
ε13 ε23 ε33

ε11 ε21 ε31

ε12 ε22 ε32

∣∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣∣∣∣
ε11 ε21 ε31

ε11 ε21 ε31

ε12 ε22 ε32

∣∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣∣
ε11 ε21 ε31

ε11 ε21 ε31

ε13 ε23 ε33

∣∣∣∣∣∣∣∣∣ = 0

(A47)

∣∣∣∣∣∣∣∣∣
ε12 ε22 ε32

ε11 ε21 ε31

ε12 ε22 ε32

∣∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣∣
ε12 ε22 ε32

ε12 ε22 ε32

ε13 ε23 ε33

∣∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣∣
ε13 ε23 ε33

ε11 ε21 ε31

ε13 ε23 ε33

∣∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣∣
ε13 ε23 ε33

ε11 ε21 ε31

ε13 ε23 ε33

∣∣∣∣∣∣∣∣∣ = 0

As it can be easily seen, Formula (35) results from these mathematical treatments.

Appendix E. Derivation of Formulas (54) and (55)

No complicated calculations are necessary to determine Formulas (54) and (55). If we consider
(21) the tensor of the grain surface deformation can be written as:

→
→
σ =


(
ε22ε33 − ε23ε32

)
−

(
ε21ε33 − ε23ε31

) (
ε21ε32 − ε22ε31

)(
ε13ε32 − ε12ε33

)
−

(
ε13ε31 − ε11ε33

) (
ε12ε31 − ε11ε32

)(
ε12ε23 − ε13ε22

)
−

(
ε11ε23 − ε13ε21

) (
ε11ε22 − ε12ε21

)
 (A48)
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and the transposed tensor to the tensor (A48) is:

→
→
σ

T

=


(
ε22ε33 − ε23ε32

) (
ε13ε32 − ε12ε33

) (
ε12ε23 − ε13ε22

)
−

(
ε21ε33 − ε23ε31

)
−

(
ε13ε31 − ε11ε33

)
−

(
ε11ε23 − ε13ε21

)(
ε21ε32 − ε22ε31

) (
ε12ε31 − ε11ε32

) (
ε11ε22 − ε12ε21

)
 (A49)

is the vector with the following coordinates:

→
→
σ

T

·
→
τ =


(
ε22ε33 − ε23ε32

)
τ1 +

(
ε13ε32 − ε12ε33

)
τ2 +

(
ε12ε23 − ε13ε22

)
τ3(

ε23ε31 − ε21ε33

)
τ1 +

(
ε11ε33 − ε13ε31

)
τ2 +

(
ε13ε21 − ε11ε23

)
τ3(

ε21ε32 − ε22ε31

)
τ1 +

(
ε12ε31 − ε11ε32

)
τ2 +

(
ε11ε22 − ε12ε21

)
τ3

 (A50)

Subsequent scalar product of vector (A50) with the vector:

→
ρ
(i)

=
[
sin

(
η(i)

)
cos

(
χ(i)

)
, sin

(
η(i)

)
sin

(
χ(i)

)
, cos

(
η(i)

)]
(A51)

mentioned in Section 6, i.e.,:

→→σT

·
→
τ

 ·→ρ (i)
=


(
ε22ε33 − ε23ε32

)
τ1 +

(
ε13ε32 − ε12ε33

)
τ2 +

(
ε12ε23 − ε13ε22

)
τ3(

ε23ε31 − ε21ε33

)
τ1 +

(
ε11ε33 − ε13ε31

)
τ2 +

(
ε13ε21 − ε11ε23

)
τ3(

ε21ε32 − ε22ε31

)
τ1 +

(
ε12ε31 − ε11ε32

)
τ2 +

(
ε11ε22 − ε12ε21

)
τ3

·


cos
(
χ(i)

)
sin

(
η(i)

)
sin

(
χ(i)

)
sin

(
η(i)

)
cos

(
η(i)

)
 (A52)

gives the result:

→→σT

·
→
τ

 ·→ρ (i)
=

=
(
ε22ε33 − ε23ε32

)
cos

(
χ(i)

)
sin

(
η(i)

)
τ1 +

(
ε13ε32 − ε12ε33

)
cos

(
χ(i)

)
sin

(
η(i)

)
τ2 +

(
ε12ε23 − ε13ε22

)
cos

(
χ(i)

)
sin

(
η(i)

)
τ3+

+
(
ε23ε31 − ε21ε33

)
sin

(
χ(i)

)
sin

(
η(i)

)
τ1 +

(
ε11ε33 − ε13ε31

)
sin

(
χ(i)

)
sin

(
η(i)

)
τ2 +

(
ε13ε21 − ε11ε23

)
sin

(
χ(i)

)
sin

(
η(i)

)
τ3+

+
(
ε21ε32 − ε22ε31

)
cos

(
η(i)

)
τ1 +

(
ε12ε31 − ε11ε32

)
cos

(
η(i)

)
τ2 +

(
ε11ε22 − ε12ε21

)
cos

(
η(i)

)
τ3

(A53)

that can be written in the form (54).
It is also possible to calculate easily the next scalar product:

→
→
σ ·
→
ρ
(i)

=


(
ε22ε33 − ε23ε32

)
−

(
ε21ε33 − ε23ε31

) (
ε21ε32 − ε22ε31

)(
ε13ε32 − ε12ε33

)
−

(
ε13ε31 − ε11ε33

) (
ε12ε31 − ε11ε32

)(
ε12ε23 − ε13ε22

)
−

(
ε11ε23 − ε13ε21

) (
ε11ε22 − ε12ε21

)
·


cos
(
χ(i)

)
sin

(
η(i)

)
sin

(
χ(i)

)
sin

(
η(i)

)
cos

(
η(i)

)
 (A54)

which gives the vector with coordinates:

→
→
σ ·
→
ρ
(i)

=


(
ε22ε33 − ε23ε32

)
cos

(
χ(i)

)
sin

(
η(i)

)
−

(
ε21ε33 − ε23ε31

)
sin

(
χ(i)

)
sin

(
η(i)

)
+

(
ε21ε32 − ε22ε31

)
cos

(
η(i)

)(
ε13ε32 − ε12ε33

)
cos

(
χ(i)

)
sin

(
η(i)

)
−

(
ε13ε31 − ε11ε33

)
sin

(
χ(i)

)
sin

(
η(i)

)
+

(
ε12ε31 − ε11ε32

)
cos

(
η(i)

)(
ε12ε23 − ε13ε22

)
cos

(
χ(i)

)
sin

(
η(i)

)
−

(
ε11ε23 − ε13ε21

)
sin

(
χ(i)

)
sin

(
η(i)

)
+

(
ε11ε22 − ε12ε21

)
cos

(
η(i)

)
 (A55)

and leads to the result (55).
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