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Abstract: This study used the solvent monoethylamine (MEA)/CaCl2/H2O to investigate CO2

absorption and CaCO3 crystallization in a bubble column scrubber. The variables explored were
pH, gas flow rate, gas concentration, the liquid flow rate of the solution to absorb CO2, and CaCO3

crystallization. Under a continuous mode, the solution of CaCl2 was fed continuously, and the pH
dropped after CO2 absorption. To maintain the set pH value, there was an automatic input of the
MEA solvent into the bubble column. In addition to maintaining the pH, the solution could also
absorb CO2 and produce CaCO3 crystals, which served two purposes. The results showed that there
were mainly vaterite crystals. At different pH values, the lower the pH, the higher the precipitation
rate of vaterite (Fp), and vice versa. However, under different gas flow rates, the Fp decreased as the
pH value increased. Additionally, the process variables also affected the absorption rate (RA) and the
overall mass-transfer coefficient (KGa) generally increased with increasing pH, gas concentration,
and gas flow rate. However, it slowed down under operating conditions at high pH and high gas flow
rate. Finally, correlation equations for RA, KGa, and Fp were also obtained and discussed in the study.

Keywords: absorption; precipitation; bubble column scrubber

1. Introduction

The weather irregularity resulting from the greenhouse effect is a matter of great concern around
the world. A major portion of greenhouse gases is CO2, which is mainly caused by the excessive use
of fossil fuels and unchecked deforestation [1,2]. Many countries are working towards alternative
energy development [3], energy-saving, and process improvement. Chemical treatment, physical
treatment, and microbiological treatment are the primary technologies for disposing of the CO2

emitted from factories, and the most commonly used method used is chemical treatment [4,5].
More than 1000 factories have developed the alkanolamine processes over the past few decades,
among which the monoethylamine (MEA) process has the advantages in terms of price, characteristics,
and recovery, although, it still consumes energy during recovery and brings cost burdens due to the
treatment of concentrated CO2 [5]. To develop an energy-saving process, new solvents [6–10], and new
processes [11,12] have been proposed and explored to find a process with a lower regeneration energy
requirement. Some of them studied the absorption kinetics of the mixed solvents [9,13,14]. Alternatively,
the hot potassium carbonate process is also applied in many cases, however, solvent regeneration and
reuse during recovery not only increases the cost but also causes secondary pollution [1,15]. The issue
with the NaOH process is that the solvent cannot be recovered. For the processes focusing on resource
recycling, the hot potassium carbonate and the NaOH processes are less effective. Hence, this research
team has developed the Ca(OH)2 process for CO2 absorption, which can recover CO2 and produce
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CaCO3 without solvent recovery. However, due to the inability of continuous operation, the process
development was limited. Eventually, the process was changed, and BaCl2/NaOH/H2O was used
for CO2 absorption, which could produce BaCO3 and be operated continuously [16,17]. However,
limitations still exist in solvent reuse. Previous studies showed that the CO2 absorption rate is greatly
affected by pH because while an increase in pH improves the CO2 removal efficiency, it consumes
more NaOH, which raises the cost. In addition, an increase in the liquid flow rate improves the yield
of BaCO3, and an increase in the gas flow rate improves the CO2 removal efficiency.

To develop CO2 and for resource recycling, this team also tried to recover CO2 and produce
CaCO3 by MEA/CaCl2/H2O, and tested solvent reuse. The results showed that the recovered solvent
can also absorb CO2, which motivated us to develop this process. Hence, because of the advantage of
the bubble column, with MEA/CaCl2/H2O as the solvent, CO2 recovery and resource recycling were
carried out by continuously operating a bubble column [18–21].

The main equations for the reaction with MEA/CaCl2/H2O as the solvent are as follows [8,22]:
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Equations (1), (4) and (5) present the change in the hydrolysis of the carbonate ion, and Equations (6),
(7) present the reaction of using MEA solution for CO2 absorption. RNCOO−(aq) is hydrolyzed into
HCO3

− and RNH2 after production and then reacts with Ca2+ to precipitate CaCO3 because HCO3
−

can be further dissociated to CO3
2−. MEA exhibits excellent absorption efficiency, therefore, it has been

adopted in several studies.
In the previous studies, to understand the relationship between absorption and crystallization

in this system, the quasi-steady operation and shell balance were adopted to obtain the equation of
absorption rate, and a two-film model was used to describe the mass transfer of CO2 in the absorption
solvent to determine the overall mass transfer coefficient [16,23]. Hence, the results of this study were
compared with those of the previous studies in terms of the above-mentioned theory to understand
the commercial value of this process. Further, the yield of the recovered solid was determined by
the liquid flow rate and suspension concentration, and the relationship between absorption rate and
precipitation rate was used to obtain the design parameters of the absorber.

As a result, with MEA/CaCl2/H2O as the absorbent, MEA as the controller of the pH of the
system, CaCl2 as the precipitant, and pH value, CO2 concentration and CO2 flow rate as the variables,
this study aimed to investigate the effects of variables on the absorption rate, mass transfer coefficient,
and precipitation rate by CO2 absorption experiment in the bubble column, so as to provide references
for the design of such absorbers.

2. Absorption Rate and Mass Transfer Coefficient

The gases A (CO2) and B (N2) were mixed and added to the bubble column, and the calcium
chloride aqueous solution and MEA solvent were separately imported into the bubble column. At the
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beginning of the experiment, the calcium chloride solution was continuously fed at 50 mL/min and
the MEA was fed to adjust the decline of pH value due to CO2 absorption to keep it within the set
range. MEA balanced pH value and absorbed the CO2. The absorbed CO2 decomposed to CO3

2−

in the solution and quickly reacted with Ca2+ in the solution to form CaCO3 precipitation. CO2

was continuously fed and MEA was fed to maintain absorption, finally, the CO2 at the outlet was
steady, indicating that the system was now stable. The mass balance at a steady state of CO2 is shown
below [16]:

FA1 − FA2 −RAVL = 0 (10)

where, FA1 and FA2, respectively, denote the molar flow rates at the CO2 inlet and outlet, VL represents
the liquid volume in the bubble column and RA represents the CO2 absorption rate, which can be
obtained by the following equation:

RA =
FA1

VL

[
1−

(
1− y1

y1

)(
y2

1− y2

)]
(11)

where, y1 and y2, respectively, denote the CO2 concentrations at the inlet and outlet. Once the absorption
rate is obtained, the overall mass transfer coefficient can be obtained by the following equation:

KGa =
RA

[Cg −HCL]av
(12)

where, H is Henry’s law constant and a function of temperature and ionic strength. In Equation (12),
because of the change in the position of the gas as it passes through the bubble column, Cg-HCL is
substituted by the average value of the inlet and outlet, thus, the calculated overall mass transfer
coefficient is the average value [23]. However, H-value was found to be 0.39–0.78 [24] and CO2 in the
liquid phase was less than 10−6 M. Due to this, the value HCL was less than 10−6 [25], which was much
smaller than Cg. Therefore, the HCL value can be negligible compared to Cg.

3. Experiment

The major equipment used in this experiment is shown in Figure 1, including the bubble column,
digital pressure indicator, heater, CO2 meter, condenser, pH controller, gas mixer, N2 cylinder, CO2

cylinder, and gas flow-meter. The reagents used in this experiment are calcium chloride, MEA, CO2,

and N2 gas.
Before the experiment, the pH electrode was calibrated with a standard buffer solution of pH 4.0

and 7.0 to accurately observe the change in pH. CO2 and N2 cylinders were opened to adjust the flow
of CO2 and N2 and the gas temperature at the inlet until the CO2 concentration and temperature of the
gas mixer reached the set values. During the experiment, the prepared solution was added into the
bubble column, and the gas in the gas mixer was introduced into the solution in the bubble column.
To begin the operation, the condenser was opened and the calcium chloride solution was continuously
fed at 50 mL/min and the MEA was fed to adjust the decline of pH after absorption to keep it within
the set range. On the other hand, CO2 could be absorbed. The time, pH value, the test value of the CO2

meter, and MEA feeding volume were recorded during the experiment, and about 5 mL of suspension
was extracted in a fixed time. After the suspension was filtered, two additional 5 mL samples of the
suspension were taken at 40 and 50 min to measure the calcium ion concentration and total carbonate
ion concentration by atomic absorption (AA) (GBC Scientific Equipment, GBC 932 Plus, Melbourne,
Australia) At the end of the experiment, an additional 2 mL of suspension was taken and placed in a
container used for particle size measurement to measure the size of CaCO3 particles by using a laser
particle size analyzer (Galai CIS-50, Or Akiva, Isreal).

After the experiment, the suspension reacted in the bubble column was filtered, and the obtained
solid was dried using a hot air drier. Finally, the obtained powder was weighed, and part of it was
observed by a SEM (Jeol, JSM-6500F, Tokyo, Japan) for its morphology, while the other part was
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observed by XRD(Rigaku, D/MAX-2200/PC, Tokyo, Japan)components and construction. Table 1 shows
the operating conditions of the experiment, with the CO2 concentration between 10 and 30%, the gas
flow rate between 2 and 8 L/min, and the pH value between 9 and 11. Table 1 was the operating
conditions conducted in this study.
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Figure 1. The capture of CO2 using a bubble-column scrubber. 1. CO2 gas tank; 2. N2 gas tank;
3. gas-flow meter; 4. gas-flow meter; 5. digital pressure gauge; 6. bubble-column scrubber; 7. cooling
machine; 8. tubing pump; 9. controller; 10. thermometer; 11. pH-electrode; 12. CO2 meter; 13. MEA
solvent reservoir; 14. reservoir; 15. cooling coil; 16. tubing pump; 17. CaCl2 solution reservoir.

Table 1. Operating conditions used in this work.

Concentration of CO2 Gas (%) 10–30

Concentration of CaCl2 (M) 0.2
Concentration of MEA (M) 4
Gas-flow rate (L/min) 2–8
Flow rate of CaCl2 (mL/min) 50
Gas inlet temperature (◦C) 30
Temperature in the column (◦C) 35
pH 9–11

4. Results and Discussions

4.1. Experimental Data

Figure 2 shows the CO2 concentrations at the outlet measured at Qg = 4 L/min and different pH
values, indicating that, at pH 9 and 10, the CO2 concentration at the outlet declined in the initial stage
of the experiment, then began to rise nearly 5 min later, and reached a steady state at nearly 40 min and
34 min, respectively. At pH 11, the CO2 concentration at the outlet first rose and then began to decline
nearly 2 min later until it reached a steady state at about 20 min. After the steady state was reached,
the absorption rate, mass transfer coefficient, mean residence time, and precipitation rate could be
obtained by Equations (10) and (11), by which the precipitation rate was calculated by multiplying
the slurry density by the liquid flow-rate and dividing the result by the liquid volume; the mean
particle size was measured by the particle size analyzer. As shown in Table 2, the obtained absorption
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rate was between 6.26 × 10–6 and 3.80 × 10–4 mol/s·L, the mass transfer coefficient was in the range
between 1.83 × 10–3 and 5.33 × 10–2 1/s, the precipitation rate is was in the range of 0.53 × 10–5 to
26.08 × 10–5 mol/s·L, and the particle size was in the range of 0.72 to 1.83 µm. Further, the absorption
efficiency was found to be in the range of 32.8–100%.
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Figure 2. Variation in CO2 concentration at the outlet with time at different pH values. (CO2 = 10%,
Qg = 4 L/min).

Table 2. The data obtained in the experiment.

No. pH y1
(%)

u
(cm/s)

RA × 105

(mol/s·L)
KGa × 102

1/s
τ

min
Fp × 105

(mol/s·L)
E

(%)
dp
µm

Qadd
(mL/min)

1 9 10 1.7 0.63 0.183 17.00 3.42 32.8 1.60 2.0
2 10 10 1.7 1.28 0.487 16.71 1.35 71.5 1.37 2.9
3 11 10 1.7 1.82 0.889 16.01 0.53 100 1.45 2.6
4 9 10 3.4 2.40 1.38 14.98 14.71 55 1.33 9.0
5 10 10 3.4 3.07 1.54 13.92 6.11 75 1.41 13.5
6 11 10 3.4 3.88 2.66 13.56 1.34 99.2 1.83 15.2
7 9 10 5.1 5.02 1.59 9.57 11.59 68 1.14 12.4
8 10 10 5.1 7.36 4.26 9.51 2.85 100 0.64 25.3
9 11 10 5.1 7.40 4.10 4.57 1.06 100 1.78 176.6
10 9 10 6.8 9.78 3.74 11.88 13.76 84.1 1.01 20.2
11 10 10 6.8 14.4 4.31 7.70 10.68 100 0.94 44.3
12 11 10 6.8 11.5 5.20 4.95 3.08 100 1.28 228.4
13 9 20 3.4 12.3 1.53 14.17 26.08 68.7 1.63 42.4
14 10 20 3.4 16.3 2.70 11.74 9.77 97.5 1.44 43.0
15 11 20 3.4 16.4 3.03 3.90 5.43 100 0.72 143.6
16 9 30 3.4 30.8 2.99 12.60 22.50 73.4 1.65 24.4
17 10 30 3.4 38.0 5.33 9.37 10.30 98.3 1.31 64.8
18 11 30 3.4 36.9 4.76 3.18 1.68 100 0.75 128.6
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4.2. Identification of Solid Components

The XRD analysis (Figure 3) shows the comparison with the standard CaCO3 peak, and the
results shows that the major peak intensities, (110), (112), (114), (300), (118), and position of the sample
obtained from the experiment were consistent with those of the vaterites as reported earlier [26–28],
indicating that the obtained CaCO3 was mainly vaterite.
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4.3. Effects of Variables on Vaterite Morphology and Size

Figure 4 shows different morphologies of vaterites with different flow rates observed by SEM
when the pH was 9 and y1 was 10%. According to the images observed by SEM, the single particles
were mainly disc vaterites. With the increase in Qg, the morphology changed a little, but the particle
size decreased. The picture in Figure 4a showed the uniform particles were observed; on the other hand,
in Figure 4b–d, they showed some tiny particles were formed giving average size smaller. However,
the effects of Qg on particles need to be investigated further. Figures 4b and 5 show the effects of
different CO2 concentrations on the vaterite morphology; the morphology obtained at different CO2

concentrations was nearly discoid and spherical. Its morphology was nearly spherical when y1 was
10% (dp = 1.33 µm), 20% (dp = 1.63 µm), and 30% (dp = 1.65 µm), and the mean particle size increased
with the increase in y1.

Figures 4b and 6 show the different morphologies at different pH values when y1 was 10% and
the flow rate was 4.0 L/min. At pH 9, as shown in Figure 4b, the calcium carbonate morphology
was roughly spherical; at pH 10, spherical crystals began to form; at pH 11, the morphology was
mainly spherical and significantly exhibited the shape of vaterite, and the particle size increased with
the increase in pH value. However, when y1 was 20% and 30%, the particle size decreased with the
increase in pH (Please see Table 2). The possible reason may be that the increase in MEA feed and CO2

absorption at a high pH improved the rates of supersaturation and nucleation, so that the precipitation
increased accordingly, which affected the particle size and morphology.
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4.4. Effects of Variables on the Absorption Rate of CO2

To investigate the effects of variables on the absorption rate, the pH value at the absorption rate
(RA) was drawn, as shown in Figure 7. In Figure 7a, with the volume flow rate as the parameter, RA

was found to increase roughly with the increase in pH; RA increased linearly with pH at low flow rates
and remained steady with the increase in pH at high flow rates, indicating that the increase in pH
had limited effects on the absorption rate. In addition, Figure 7a also shows that, at high flow rates,
the absorption rate was high and increased significantly, indicating that increasing the flow rate is
an effective method to increase the absorption rate. Finally, as per Figure 7b, the feed concentration
significantly increased the absorption rate, but the effects of pH were limited at high values of y1.
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The effects of parameters on RA were explored using linear regression and the result was as follows:

RA = 6.9095× 10−5 exp(0.21pH)y2.12
1 u1.67 (13)

The regression error was 1.63%. The regression confidence is shown in Figure 8. The regression
result showed that RA was proportional to u and y1 to the powers of 1.67 and 2.12, respectively. It also
shows that RA increased with an increase in pH. In addition, the RA values presented here were in
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the range of 0.063 × 10−4–3.8 × 10−4 mol/s·L, which was much smaller than that of MEA-CO2-H2O
absorption system (3.68× 10−4–56.8× 10−4 mol/s·L) as reported in the previous study [21]. The difference
was due to the formation of vaterites, a larger number of tiny particles, which enhanced the coalescence
of the bubbles. Due to this, the mass-transfer rate of CO2 gas was blocked, which reduced the
absorption rate.
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4.5. Effects of Variables on KGa

As shown in Figure 9a, the KGa value increased linearly with the increase in pH, and a higher
gas flow rate led to a higher KGa value. At a high pH value (pH = 11), the absorption tended to be
complete, as shown in Figure 2, indicating the reduced effects on KGa. Figure 9b shows that KGa
increased with the increase in pH and y1, and this value was large at a high pH. The figure also shows
that, at pH = 10 and 11, the KGa values were leveled off, indicating the diminishing effects of pH.
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The relationship between KGa and pH value, and between u and y1 was explored, and KGa was
used to carry out a regression analysis of u, y1 and pH, and the result was as follows:

KGa = 2.8469× 10−4u1.68y0.87
1 exp(0.39pH) (14)
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The regression error was 6.42%. The difference between the calculated value and the measured
value is presented in Figure 10. The regression result showed that KGa was proportional to u to the
power of 1.68 and the obtained value was closer than that reported earlier, which was between 0.58
and 1.67 [7,9–12], and the empirical formula also shows that KGa increased with the increase in y1 and
pH value. The overall mass transfer coefficients at different pH values, y1, and u could be estimated
from Equation (14), and after the values were determined, the volume of the absorption tower could
be estimated. In addition, the difference in the mass transfer coefficient in the bubble columns can be
compared with each other. For example, please see Table 3. The values obtained in this study ranged
from 0.01 to 0.15 1/s, congruent with those reported in the literature [29–33]. However, these values
were much smaller than those reported in previous work [21], and those by Al-Naimi et al. [29]. In our
study, as shown in Table 2, KGa decreased with an increase in Fp, such as that in No.1-No.3. In addition,
in other earlier studies [23] we found that Nos. 7(0.0136 1/s), 8(0.0199 1/s), 10(0.0506 1/s), 11(0.0299 1/s),
12(0.0241 1/s) were lower in mass-transfer coefficient due to the formation of ABC crystals. This
decrease in mass transfer coefficient with increasing solid concentration is attributed to a decrease in
small bubble and an increase in large bubble sizes due to the bubble coalescence tendencies, and they
exhibited limited the mass transfer coefficient [29]. A similar trend was found in an earlier study [31].
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Table 3. Comparison of mass-transfer coefficients in the bubble columns.

KGa(1/s) RA × 104(mol/s·L) Remarks and References

0.01–0.14 - O2-Liquid(water/glycerin/alcohol)-Solid(PVC) [29]
0.045–0.085 - O2(N2+O2)-H2O [30]
0.02–0.14 - Air-Paraffin oil-Porous catalyst [31]
0.01–0.15 - O2-H2O [32]
0.0377–0.8881 3.68–56.8 CO2-MEA-H2O [21]
0.021–0.109 1.36–6.61 CO2-NaOH-H2O [33]
0.0143–0.3302 3.21–9.03 CO2-NH3-H2O [23]
0.0183–0.0520 0.063–3.80 CO2-MEA-CaCl2-H2O [This work]

4.6. Precipitation Rates of Vaterites

Figure 11 shows the relationship between the rate of CaCO3 precipitation and pH at different y1.
The results indicate that the precipitation rate of CaCO3 increased with the decrease in pH, otherwise,
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the precipitation rate decreased. This figure also shows that Fp tended to increase with an increase
in y1. Figure 12 shows the effects of pH on Fp at different Qg values and obviously indicates that Fp

values decreased with the increase in pH, regardless of Qg. Moreover, generally, a higher Qg led to a
larger Fp. However, when Qg = 8 L/min, except at pH = 9, Fp was smaller than that at Qg = 6 L/min,
which may be caused by the restriction of the system operation.
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The results of the above discussion and the data in Table 2 indicate a competition effect between
RA and FP, which was affected by u, y1, and pH. Hence, Fp was used to carry out the regression of
parameters for comparison, and the result was as shown below:

Fp = 2.5081 exp(−1.02pH)y0.98
1 u1.06 (15)

The error was 4.28% and the reliability was as shown in Figure 13. According to this equation, the
Fp value decreased with the increase in pH and increased with an increase in u and y1. Here,
we defined the ratio of RA and FP as ψ. Using Equations (13) and (15), the relation became
ψ = 2.7548 × 10−5 exp(1.23pH)y1.14

1 u0.61. A high ψ value indicates that the mass transfer was
dominated by absorption, while a low ψ value indicates that the mass transfer was dominated
by crystallization.
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5. Conclusions

In a continuous bubble column, the vaterite was precipitated mainly in disk-like and spherical
morphology if MEA/CaCl2/H2O solution was used for CO2 absorption. At pH = 11, regardless of the
other conditions, the absorption rate was close to 100%, so the increase in pH made no contribution to
the improvement in absorption efficiency. The shell balance and two-film model were able to determine
the absorption rate and overall mass transfer coefficient. An improvement in the gas flow rate and
gas concentration increased the solid precipitation rate and overall mass transfer coefficient, but the
solid precipitation rate decreased with the increase in pH values. Therefore, the precipitation rate
was competitive with the absorption rate, which could be estimated by ψ(= RA/FP). A high ψ value
indicates that the mass transfer was dominated by absorption, while a low ψ value indicates that the
mass transfer was dominated by crystallization. The results show that the MEA/CaCl2/H2O solution
can be used to absorb CO2, the greenhouse gas, and recover CaCO3, and is a technology worthy of
further development.
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