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Abstract: We studied numerically external stimuli enforced annihilation of a pair of daughter nematic
topological defect (TD) assemblies bearing a relatively strong topological charge |m| = 3/2. A Landau-
de Gennes phenomenological approach in terms of tensor nematic order parameter was used in
an effectively two-dimensional Cartesian coordinate system, where spatial variations along the
z-axis were neglected. A pair of {m = 3/2, m = −3/2} was enforced by an appropriate surface
anchoring field, mimicking an experimental sample realization using the atomic force microscope
(AFM) scribing method. Furthermore, defects were confined within a rectangular boundary that
imposes strong tangential anchoring. This setup enabled complex and counter-intuitive annihilation
processes on varying relevant parameters. We present two qualitatively different annihilation paths,
where we either gradually reduced the relative surface anchoring field importance or increased an
external in-plane spatially homogeneous electric field E. The creation and depinning of additional
defect pairs

{
1
2 ,− 1

2

}
mediated the annihilation in such a geometry. Furthermore, we illustrate the

absorption of TDs by sharp edges of the confining boundary, accompanied by m = ±1/4↔ ∓1/4
winding reversal of edge singularities, and also E-driven zero-dimensional to one-dimensional defect
core transformation.
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1. Introduction

Topological defects (TDs) [1] correspond to localized regions within ordered media where the
relevant order parameter field is frustrated and topologically protected. In most cases, at the defect
origin, the continuum field, which describes defectless equilibrium configurations, is not uniquely
defined [2]. In general, TDs appear as a consequence of the universal concept of broken symmetry
and are of interest in all branches of physics [1,3]. The key topological feature of a topological
defect is fingerprinted in its topological charge [1,2], which is a conserved quantity. Corresponding
topological charge conservation laws regulate transformations (decomposing, merging, depinning) of
defect configurations.

Owing to their topological origin, the physics of TDs exhibits several universal features.
Consequently, it is of interest to find physical systems in which TDs are relatively easily experimentally
formed, manipulated, and observed, which allows detailed and controlled analysis of the behavior of
interest. For example, in the last decades, several studies analyzed quench driven coarsening of TDs in
different condensed matter systems to gain information on structural details in the early universe [3–5].
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Condensed systems allow systematic and controlled experimental analysis, while related phenomena
of the universe could be only indirectly and passively observed.

Nematic liquid crystals (NLC) [6] offer an ideal testbed to study TDs [7–10] due to their unique
combination of liquid behavior, softness, experimentally-tractable characteristic scales of time and
spatial responses, and optical anisotropy. Furthermore, NLC structures possessing TDs could be
exploited in various (in particular electro-optical) applications [11,12]. The uniaxial nematic structure is
commonly described by the mesoscopic nematic director field n̂, which points along the local uniaxial
NLC order, and the states ±n̂ are physically equivalent (the so-called head-to-tail invariance) [7].
In bulk, nematic equilibrium n̂ is homogeneously aligned along a symmetry breaking direction. Several
studies have been performed on thin LC films, in which relatively simple quasi-two-dimensional (2D)
behavior [13–17] is observed. Despite the simplicity, such systems display rich and complex behavior,
in particular with respect to topological defect transformations. In 2D NLCs, only point defects exist.
The role of topological charge is played by the winding number m [7] (also referred to as the Frank
index). It determines the total rotation of n̂ on encircling the defect core counterclockwise. Due to
the head-to-tail invariance, m can possess half-integer and whole integer numbers. Some typical TDs
are shown in Figure 1. TDs bearing positive and negative m are commonly referred to as defects and
antidefects, respectively, and pairs {m,−m} in general tend to annihilate into a defectless configuration.
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that the core structure of single |𝑚| = 1/2 disclination is well known. In terms of the tensor nematic 
order parameter it was originally determined by Schopohl and Sluckin [13]. Typical structural 
changes by traversing the defect core are shown in Figure 2. The orientational frustration is resolved 
via the order reconstruction (OR) mechanism [19]. In general, this mechanism is realized in cases 
where a relatively large orientational mismatch in nematic order is imposed on a scale comparable 
[19–23] to the nematic biaxial order parameter relaxation length 𝜉 . The latter is relatively weakly 
temperature-dependent and is of order a few tens of nanometer [23]. The presence of the order 
reconstruction (OR) mechanism within the core was confirmed experimentally [24] in lyotropic 

Figure 1. Examples of topological defects (TDs) bearing (a) m = 1/2; (b) m = 1; (c) m = 3/2; (d) m = −1/2;
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In general, high values of m are rarely realized. Namely, the free energy costs of a defect scales with
m2 [16]. Consequently, if one enforces locally a defect bearing |m| > 1/2, it tends to decompose [16–18]
to elementary defects bearing |m| = 1/2, where the charge conservation law is obeyed. Note that the
core structure of single |m| = 1/2 disclination is well known. In terms of the tensor nematic order
parameter it was originally determined by Schopohl and Sluckin [13]. Typical structural changes by
traversing the defect core are shown in Figure 2. The orientational frustration is resolved via the order
reconstruction (OR) mechanism [19]. In general, this mechanism is realized in cases where a relatively
large orientational mismatch in nematic order is imposed on a scale comparable [19–23] to the nematic
biaxial order parameter relaxation length ξb. The latter is relatively weakly temperature-dependent
and is of order a few tens of nanometer [23]. The presence of the order reconstruction (OR) mechanism
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within the core was confirmed experimentally [24] in lyotropic chromonic LCs. Namely, such LCs
exhibit a micron-scale nematic biaxial order parameter correlation length ξb that provides experimental
insight into the core structure, whose characteristic linear size is comparable to ξb.
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Figure 2. Core structure of a typical m = 1/2 disclination. (a) The biaxial spatial variation, measured
via the biaxiality parameter β2 (see Equation (3)). The core structure is characterized by a rim, where
β2 = 1. The rim is circular in the approximation of equal elastic constants. The center of the core
exhibits negative uniaxiality. (b) Characteristic changes in the (s,ψ) phase space on crossing the
center of disclination. (c) Schematic variation of the nematic mesoscopic local profile within the core.
Here numbers 1 to 5 mark points representing mesoscopic changes on traversing the defect core along
a chosen direction.

In this paper, we focus on the annihilation of surface enforced relatively highly charged {defect,
antidefect} pair bearing the winding number |m| = 3/2 in an effectively 2D nematic cell confinement.
We enforce the annihilation via different routes: (i) by changing effective elastic LC properties, or (ii) by
increasing an external in-plane electric field strength. We demonstrate that annihilation proceeds via
two qualitatively different channels, whose realization is rather counterintuitive.

2. Methods

We use the Landau-de Gennes mesoscopic approach in terms of the traceless and symmetric
tensor nematic order parameter Q [6]. In its eigen frame, it is expressed as [20]

Q =
3∑

i=1

λiêi ⊗ êi, (1)

where λi and êi stand for Q eigenvalues and eigenvectors, respectively. Uniaxial states are commonly
described by [6]

Q = S
(
n̂⊗ n̂−

1
3

I
)
. (2)

The nematic uniaxial order parameter S ∈ [−1/2, 1] quantifies the extent of fluctuations about
the local nematic director n̂, and S > 0 (S < 0) reflects “prolate” (“oblate”) shape in the ellipsoidal



Crystals 2020, 10, 673 4 of 13

presentation of the LC mesoscopic order. We henceforth refer to such configurations as positive uniaxial
and negative uniaxial nematics.

Biaxial states could be assessed if elastic distortions are present. The degree of biaxiality is well
measured by the biaxiality parameter [25]

β2 = 1−
6 tr(Q3)2

tr(Q2)3
∈ [0, 1]. (3)

The limiting values β2 = 0 and β2 = 1 correspond to a uniaxial nematic state and a nematic order
exhibiting the maximal biaxiality, respectively.

The eigenvalues can be parametrized as

λ1 =
2
3

s cos(ψ), λ2 = −
2
3

s cos
(
ψ+

π
3

)
, λ3 = −

2
3

s cos
(
ψ−

π
3

)
, (4)

where

s =

√
3
2

trQ2. (5)

Note that the eigenvalues {λ1,λ2,λ3} can be expressed using two independent variables (i.e., {s,ψ})
due to the constraint

∑3
i=1 λ

2
i = 0. The (s,ψ) order parameter space is shown in Figure 2b. The isotropic

order is reflected by s = 0. Nematic configurations corresponding to ψ = 0, ψ = 2π
3 , and ψ = − 2π

3
exhibit positive uniaxial states along ê1, ê2, and ê3, respectively. States ψ = π, ψ = −π3 , and ψ = π

3
correspond to the negative uniaxial states along ê1, ê2, and ê3. The remaining states are biaxial. In this
parametrization it holds β2 = sin2(3ψ). Any continuous change in nematic order is fingerprinted in a
continuous change in the order parameter space.

In our study we will consider nematic structures in the Cartesian coordinate system (x,y,z), whose
coordinate unit vectors are given by the triad (êx, êy, êy). Of interest are quasi-two-dimensional
structures, where the Q eigenvector along the z-axis remains fixed (i.e., ê3 = êz). In this case, in addition
to {s,ψ}, only one additional parameter (i.e. an angle θ) is needed to determine Q, describing the
rotation of the Q eigenframe with respect to the Cartesian frame:

ê1 = êxsinθ+ êycosθ, (6a)

ê2 = −êxcosθ+ êysinθ. (6b)

Presentation of Q in terms of {s,ψ,θ} is useful to illustrate or guess different possible Q configuration
variations along a given path in real space connecting two sites imposing different nematic order.
An example is illustrated in Figure 2, where one crosses the core of |m| = 1/2 defect.

However, this Q representation does not provide a one-to-one mapping of each component (is not
injective) [26]. For this reason, we used in simulations parametrization given by

Q = (q1 + q3)êx ⊗ êx + (−q1 + q3)êy ⊗ êy + q2
(
êx ⊗ êy + êy ⊗ êx

)
− 2q3êz ⊗ êz, (7)

in terms of variational fields {q1, q2, q3}. It holds λ1 = q3 +
√

q2
1 + q2

2, λ2 = q3 −

√
q2

1 + q2
2, and

λ3 = −2q3. Note that the exchange of eigenvalues [13] between λ1 and λ2 corresponds to the condition√
q2

1 + q2
2 = 0. It was originally introduced to describe the elastic deformation within the core structure

of |m| = 1/2 wedge defects [13]. The basic mechanism enabling this transformation is commonly
referred to as order reconstruction [12,19].
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2.1. Free Energy

We express the free energy F of a confined LC as a sum of nematic condensation ( fc), elastic ( fe),
external electric field

(
f f
)
, and surface ( f (i)s ) free energy density contributions:

F =

∫ (
fc + fe + f f

)
d3r +

∑
i

∫
f (i)s d2r. (8)

Here d3r and d2r stand for the volume and area measures, and the superscript (i) refers to the i-th
confining substrate. The free energy densities are expressed using the standard Landau-de Gennes
expansion [6] in Q. We take into account only the most essential symmetry allowed contributions to
illustrate phenomena of interest [6,20,27]:

fc = a0(T − T∗)trQ2
− b trQ3 + c(trQ2)2, (9a)

fe =
L
2
|∇Q|2, (9b)

f f =
ε0∆ε

2
E.QE, (9c)

f (i)s =
w(i)

2
tr(Q−Qs)

2. (9d)

Here a0, b, c are positive material-dependent constants, T∗ stands for the isotropic supercooling
temperature, L is a positive representative nematic elastic constant (i.e., we use the single elastic
constant approximation), E stands for an external electric field, ∆ε is the dielectric anisotropy (we limit
to materials with ∆ε > 0), w(i) > 0 is the anchoring strength coefficient at the i-th confining surface,
which enforces nematic order described by Qs [27].

2.2. Geometry of the Problem

We study nematic configurations inside a three-dimensional well with square cross section of
length R and thickness h<<R. The geometry of the problem is depicted in Figure 3, where we use
Cartesian coordinate system (x,y,z). At the lateral walls (Figure 3a) we enforce strong uniaxial tangential
anchoring conditions:

Qs(x = −R/2, y, z) = Qs(x = R/2, y, z) = Seq

(
êy ⊗ êy −

1
3

I
)
, (10a)

Qs(x, y = −R/2, z) = Qs(x, y = R/2, z) = Seq

(
êx ⊗ êx −

1
3

I
)
. (10b)

At the bottom (command) plate we enforce the nematic pattern consisting of a pair {defect, antidefect}
of strength {m = m1 = −3/2, m = m2 = 3/2} placed at (x1, y1) and (x2, y2):

Qs(x, y, z = 0) = Seq

(
ê⊗ ê−

1
3

I
)
, (11a)

ê = êxcosθ+ êysinθ, θ =
∑2

i=1
mitan−1

(
y− yi

x− xi

)
. (11b)

Typically, we set (x1 = 0, y1 = −0.25 R) and (x2 = 0, y2 = 0.25 R). The opposite plate enforces
degenerate tangential anchoring.

This setup mimics samples that could be realized experimentally using, for instance, the atomic
force microscope (AFM) scribing method [28]. In a typical experimental setup, a nematic LC is confined
within a thin plane-parallel cell, where at least one (command) surface imposes anchoring conditions
inscribed via an AFM stylus [28], while the opposing surface imposes a degenerate tangential anchoring.
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Furthermore, in some simulations we switch on a spatially homogeneous electric field E = Eêy along
the y-axis.
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Figure 3. The geometry of the problem. (a) Nematic liquid crystals (NLC) cell of length R and thickness
h<<R. At the lateral walls we enforce strong tangential anchoring (along êx or êy). At the bottom
command plate a pair {m = 3/2, m = −3/2} of surface defects is enforced. The top plate imposes
degenerate tangential anchoring. (b) The command plate imposed nematic pattern in the (x,y) plane.

In simulations, we assume that the cell is thin enough so that the nematic structure is effectively
two dimensional, exhibiting only variations in the (x,y) plane. Consequently, we use in numerical
simulation the parametrization for the nematic tensor order parameter [22] given by Equation (7),
where q1 = q1(x, y), q2 = q2(x, y), and q3 = q3(x, y) are the variational parameters. In this
parametrisation êz is always an eigenvector of Q.

For presentational purposes, we introduce the dimensionless temperature t = (T − T∗)/(T∗∗ − T∗)
and material characteristic lengths [20]:

ξ f =

√
LS∗∗

ε0|∆ε|E2 , (12a)

ξb =
4
3

√
Lc

b2(1 +
√

1− t)
, (12b)

de =
L
w

. (12c)

The quantity ξ f stands for the external field nematic extrapolation length, which we express at the
superheating temperature T = T∗∗, ξb is the biaxial correlation length, de is the surface extrapolation
length, w stands for the anchoring strength imposed by the command surface, and S∗∗ = 3b/16c stands
for the superheating bulk value of S. We henceforth utilize the relative anchoring strength of the
command surface plate and of the external field E = Eêy in terms of dimensionless ratios, respectively.

µw =
ξb
de

, µ f =

(
ξb
ξ f

)2

, (13)

We minimize the free energy of the system with respect to the variational parameters q1, q2, and
q3. The resulting Euler-Lagrange equations are solved numerically using the standard over-relaxation
method. Technical and numerical details are given in [29].
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3. Results

Of interest are different paths in which annihilation of a master surface anchoring enforced
pair {m = 3/2, m = −3/2} annihilates in the geometry and boundary conditions described in the
Methods section. The initial nematic configuration is shown in Figure 4a (biaxiality pattern) and
Figure 5a (director field pattern). Each of the command surface imposed |m| = 3/2 defects at
(x1 = 0, y1 = −0.25 R) and (x2 = 0, y2 = 0.25 R) decay in three elementary |m| = 1/2 daughter defects.
Due to boundary conditions, two additional defects m = 1/2 and m = −1/2 at the top and the bottom
boundaries of Figure 4a, respectively, are introduced. In addition, at the lateral boundaries, relatively
(non-singular) strongly elastically deformed regions exist, which are fingerprinted by relatively
strong local biaxiality. Furthermore, sharp corners of their structure enforce |m| = 1/4 type surface
distortions [30].

For latter convenience, we label the three positively charged daughter defects (emerging from
m = 3/2) by P1, P2, P3, and the corresponding negatively charged daughter defects (emerging from
m = −3/2) by N1, N2, N3 as shown in Figure 4a. Boundary condition generated defects are labeled by
P4 (upper boundary) and N4 (bottom boundary). Furthermore, at some stages at lateral boundaries,
elastic distortions are strong enough to trigger nucleation of creations of pairs {defect, antidefect}, see
Figure 4c. We label these defect pairs by (N5,P5) and (N6,P6).
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m ∈ {3/2,−3/2}, which decomposes to elementary |m| = 1/2 defects. With decreasing anchoring strength,
the defects annihilate. (a) µw = 1.0, (b) µw = 0.6, (c) µw = 0.4, (d) µw = 0.3, (e) µw = 0.1, (f) µw = 0.0.
R/ξb = 25, t = −8. Selected corresponding qualitatively different director profiles are shown in Figure 5.

First, we enforce the annihilation by gradually decreasing the relative importance of the surface
anchoring field. In practice, this could be achieved by decreasing temperature towards the second-order
nematic-SmA phase transition temperature TNA, which is accompanied by divergence [6] in the nematic
twist and bend elastic constants. The relative importance of elastic and surface penalties of a confined
NLC is measured by the ratio RW/K, where R stands for the characteristic confinement length,
and K ∼ LS2 is the representative Frank nematic elastic constant, and W measures the dimensional
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anchoring strength. In our simulations this ratio is measured by µw. Therefore, on approaching
TNA, the ratio µw would decrease. The limit µw � 1 corresponds to the strong anchoring regime,
while µw < 1 corresponds to weak anchoring. The initial configuration, shown in Figure 4a, is evaluated
for µw = 1, which is strong enough to prevent the annihilation of {3/2,-3/2} pair; however, weak enough
to allow decomposition of |m| = 3/2 singularities. Such conditions are realized in typical samples
prepared using AFM scribing method [17].
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t = −8. TDs bearing m = 1/2 and m = −1/2 are indicated by red and blue circles, respectively.

On decreasing µw, in the first stage, the closest oppositely charged daughter defects (N1,P1) begin
to approach (see Supplementary movie Annihilation 1) until they mutually annihilate (See Figure 4b).
Then the defect pairs (N2,P4), (P2,N4), and afterward (P3,N3) annihilate. During these processes,
rearrangement of defects imposes sufficiently strong elastic distortions at the lateral boundaries
to trigger the formation and depinning of two pairs of defects (P5,N5) and (P6,N6), as shown in
Figure 4c. Finally, these defects are adsorbed by sharp edges of the confining boundary. Consequently,
the winding number, characterizing strong distortions in corners, revert their winding number. This is
evidently shown in Figure 5c,d, where one observes ±1/4↔ ∓1/4 winding number transformations
of the director field profiles within the edges.

Next, we trigger annihilation by applying and gradually increasing a spatially homogeneous
external electric field E = Eêy. The initial configuration for E = 0 is shown in Figure 6a, where we set
(x1 = 0, y1 = −0.3 R) and (x2 = 0, y2 = 0.3 R). On increasing E (see Supplementary movie Annihilation
2), in the first stage, the inner (N1,P1) defect approach and finally annihilate (Figure 6c). The remaining
defects annihilate in a qualitatively different way compared to the process shown in Figure 4,
where lateral defect pairs (N5,P5) and (N6,P6) are strongly involved. Namely, the oppositely charged
daughter and lateral defects approach each other and finally annihilate (Figure 6d). Furthermore,
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initially localized |m| = 1/2 structures of P4 and P5, clearly visible in Figure 6a–e, transform to
nonlocalized order reconstruction planes. This defect core “explosion” was studied in detail in [31].
Here we summarize the key stages of the process. In this E-driven transformation, the initially
spherically shaped biaxial core of a defect begins to grow as it is pushed towards a limiting wall
(in our setting y = R/2 boundary for P4, and y = −R/2 boundary for M4) on increasing E. For E > 0,
the ellipsoidal core-shape becomes progressively elongated along the x-axis. At some critical value of E,
the core diverges (i.e., its longest linear size equals R), and a planar order reconstruction plane is formed.
In this case order reconstruction takes form near the bottom and top confining plate. The corresponding
nematic director profile, reflecting the Q eigen frame orientation, is shown Figure 7b. Note that on
crossing the OR plane the LC molecules experience a mesoscopic shape transformation, similar to the
one shown in Figure 2c along the direction 1-5. The OR plane is formed at µ f ∼ 3.5, which for typical
LCs [6] corresponds to E ∼ 108 V/m.
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4. Discussion

We studied numerically the annihilation of master surface enforced highly charged pair {defect,
antidefect}, bearing topological charges {3/2,−3/2}. A Landau-de Gennes mesoscopic approach
in terms of the tensor nematic order parameter was used. We assumed quasi-two-dimensional
order, which in practice is sensible for relatively thin nematic cells. We chose geometrical setups and
boundary conditions that could be realized experimentally in future work. For example, highly charged
defect structures could be enforced using, e.g., the Atomic Force Measurement scribing method [30],
or plasmonic photoalignment technique [32]. In simulations we enforce a pair of |m| = 3/2 defects
via the command surface scribed pattern. We used anchoring strength coefficients that are strong
enough to prevent annihilation of the pair, however weak enough to allow decomposition [33] of each
surface pattern favored |m| = 3/2 defect into three daughter elementary defects bearing |m| = 1/2.
Furthermore, we confined the pair in a rectangular confinement region. One would expect mutual
annihilation of the two daughter assemblies on varying relevant control parameters. However, the
chosen setup enabled a nontrivial annihilation scenario of TDs, also involving creation of additional
defects, absorption of TDs within edges of the confining substrate, and one dimensional “explosion” of
defect cores. We illustrate two qualitatively different annihilation channels, either by progressively
weakening the relative importance of the surface anchoring field or increasing external in-plane electric
field. Both processes could be realized experimentally by using relatively simple experimental setups.
In our setting, the reference structures exhibit eight elementary TDs, where two additional defects are
introduced by the rectangular confinement. In the anchoring weakening-driven annihilation, only four
daughter defects were mutually annihilated, and the remaining two were annihilated with confinement
enabled TDs. On the contrary, in E-driven annihilation only one pair of daughter defects were mutually
annihilated and the remaining four defects were annihilated via TDs, which were created via creation
and depinning of additional pairs {defect, antidefect}.

Note that in realistic LC samples the characteristic nematic elastic constants are different from
each other. Nematic elasticity is commonly expressed in terms of splay (K11), twist (K22), bend (K33),
and saddle-splay (K24) elastic constants, introduced in the Frank-Oseen uniaxial description [34].
In our geometry the elastic distortions involving twist and saddle-splay deformations are absent.
Therefore, only K11 and K33 are expected to make an impact on defect structures. In conventional
LCs it holds K33 > K11. In this case the defect rearrangement would be carried out via LC structural
variations that prefer the splay nematic deformation. Furthermore, this elastic anisotropy would
break the mirror symmetry along the y-axis observed in Figure 4a. Namely, the core structures of
m = 1/2 and |m| = −1/2 defects would be different, because the relative contributions of bend and
splay deformations are different in these defects.

On approaching a second order N-SmA phase transition K33 diverges, whereas K11 remains finite.
Because any arrangement of TDs in our study involves bend elastic distortions, TDs would annihilate on
increasing K33. This elastic anisotropy would, for sure, at least quantitatively influence the annihilation
scenario. The defect rearrangement would be realized via LC rearrangements preferring the splay
deformation. However, for our scenario we do not expect a qualitatively different rearrangement of
TDs from those presented in Figures 4 and 6.

Nevertheless, it is a demanding task to obtain a numerically “realistic” result of elastic anisotropy on
rearrangement of TDs. In this paper we work in the approximation of equal elastic constants, represented
by a temperature independent constant L. In reality, several different elastic constants would appear,
which determine the relative importance of different symmetry-allowed elastic contributions expressed
in terms of Q and its spatial derivatives. For example, in Cartesian coordinates (x,y,z) = (x1, x2, x3),
the expansion up to the 2nd order in Q is commonly expressed as [35,36]

fe = f (2)e = L1Qi j,kQi j,k + L2Qi j, jQik,k + L3Qi j,kQik, j + L4Qi jQi j,kk + L5Q jkQik, jk.
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Here we use the summation convention over repeated indices, commas indicate spatial derivatives

(e.g., Qi j,k =
∂Qi j
∂xk

), and the superscript (2) in f (2)e indicates the 2nd order expansion contributions
in the elastic free energy density. Far from defect cores, the constants L1-L5 could be mapped to
the more familiar Frank elastic constants. However, for the expansion up to the 2nd order in Q it
holds that K11 = K33 [35,36], while in most LCs these constants can be significantly different. Higher
order terms need to be added [35,36] to lift this degeneracy, for example fe = f (2)e + L6QklQi j,lQi j,k.
However, according to recent studies in lyotropic chromonic LCs [24], even taking into account the
above mentioned elastic anisotropy, one could not exactly reproduce experimentally the observed core
structures of |m| = 1/2 TDs. Therefore, current theoretical modeling does not correctly describe cores
of single |m| = 1/2 TDs, and the core structure details might influence annihilation scenarios. For this
reason, we performed our study at the proof-of-principle level.

In our selected geometry pairs of defects {−1/2,1/2} are typically created as an intermediate
step and they actively mediate external stimulus driven annihilation processes. To estimate the free
energy costs of a pair {−1/2,1/2} creation we use the Lyuksyutov constraint [26,37] in which the cubic
term in fc is neglected. This is sensible approximation for LCs exhibiting weakly first order I-N

phase transition. With this in mind, it follows fc ∼ a0(T − T∗)trQ2 + c
(
trQ2

)2
, where fc is minimized

in the nematic phase for trQ2 =
a0(T∗−T)

2c , corresponding to fc ∼ −
a2

0(T−T∗)2

4c . The main penalty of
introducing a defect is “melting” of LC order within the core of TDs. Note that for a pair {−1/2,1/2},
the nematic director in the far field is spatially homogeneous because the total charge of the pair
equals to zero. The free energy cost of introducing a single |m| = 1/2 defect of length h is roughly

∆F ∼
∣∣∣ fc∣∣∣∆V

a2
0(T−T∗)2

4c πξ2
bh, where ∆V ∼ πξ2

bh estimates the defect core volume. For a typical nematic

LC it holds that a0 ∼ 0.05 106 J
Km3 , c ∼ 106 J

m3 , ξb ∼ 30 nm [23]. Therefore, deep in the nematic phase
it costs roughly 2∆F/(kbT∗) ∼ 103 to create a pair of defects, where we take |T − T∗| = 10 K, h ∼ ξb,
T∗ ∼ 330 K, and kb is the Boltzmann constant.

5. Conclusions

In summary, we studied the external stimulus-enforced annihilation of highly-charged assembly
of command surface enforced TDs. In bulk, these TDs would simply mutually annihilate on varying an
appropriate control parameter. However, we showed that in appropriate confinement these processes
could be extremely complex and display qualitatively different realizations. In particular, we showed
that when the characteristic confinement size and separation of highly charged defects are comparable,
additional defect pairs are created and involved in the annihilation processes. In these events the total
topological charge of the system is conserved in accordance with topological charge conservation laws.
Our simulations exhibit a rich diversity of defect configurations for which only a relatively small set of
control parameters was varied.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/8/673/s1,
Surface anchoring and an external electric field enforced annihilations pf TDs. “Annihilation1” movie shows the
β2(x, y) texture evolution of the annihilation process of command surface enforced assemblies {3/2,−3/2} TDs on
decreasing the dimensionless surface anchoring field strength from µw = 1, to µw = 0, Some representative stages
are shown in Figure 4. “Annihilation2” movie shows the β2(x, y) texture evolution of the annihilation process
of command surface enforced assemblies {3/2,−3/2} TDs on increasing the dimensionless external electric field
strength from µ f = 0, to µ f = 3.5, Some representative stages are shown in Figure 6.
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