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Abstract: Crystallographic studies of monosulfonated azo dyes have concentrated on the salt forms
that contain the azo anion. Here we present a study that compares the structures of these anions
with protonated free acid forms and with doubly deprotonated dianion forms. To this end, the new
single crystal diffraction structures of 13 systematically related free acid forms of monosulfonated
azo dyes are presented, together with three new structures of doubly deprotonated forms and two
new structures of Na salt forms of azo anions. No structures of dideprotonated monosulfonated
azo dyes have previously been reported and this paper also reports the first crystal structure of an
azo dye with a hydronium cation. The geometries of the free acid, anion and dianion forms are
compared to literature equivalents. It is shown that protonation of the azo bond gives predictable
bond lengthening and shortening, which is of a greater magnitude than similar effects caused by
azo-hydrazone tautomerisation, or the smaller again effects caused by the resonance electron donation
from O or N based substituents. The dianion containing structures have twisted dianion geometries
that can be understood based on the resonance effects of the phenoxide groups and upon the needs to
bond to a relatively high number of metal cations.

Keywords: dyes; sulfonate; free acid; salt forms; hydronium; coordination polymer; crystalline
polymorphism; crystallography

1. Introduction

Azo colourants are one of the most widespread and widely used class of dyes. They often bear
sulfonate substituents, which impart enhanced aqueous solubility and help decrease toxicity [1–3].
The popularity of azo compounds as dyes and pigments is at least partly because of the ease with which
the azo coupling reaction can accommodate a wide range of different functionalities—allowing simple
and aqueous access to a large variety of compounds all with different material and colour properties [4].
The ability to quickly form many closely related molecules, that are all variations on a theme, also makes
azo compounds a good choice for systematic structural studies. Relatively large-scale solid-state
structural studies on salt forms of monosulfonated azo dyes have been published [5–7], as has work
on salt forms of disulfonated azo dyes [8–10]. Crystallographic work on salt forms of sulfonated azo
pigments is also available. However, the extra difficulty of working with materials that typically have
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low solubility and highly anisotropic crystal growth properties means that pigment studies often rely
on the use of special techniques, e.g., structure solution from powder diffraction, electron diffraction,
and/or use of synchrotron radiation [11–16]. Much less attention has been paid to the solid-state
structures of the free acid forms of sulfonated azo dyes [17]. In this paper, we present 13 new crystal
structures of free acid forms of monosulfonated azo dyes. These are used alongside literature results to
examine the structural changes caused by protonation/deprotonation of the azo chromophore. We also
present the structures of three compounds that feature doubly deprotonated monosulfonated azo
species. Crystal structures of such dianionic species have not previously been reported. The structural
changes caused by deprotonation are examined for these compounds as well.

2. Materials and Methods

Azo dyes were either obtained from commercial suppliers (H4, H7, H8, H10, and H11 were
supplied by Fujifilm and Na12 by Sigma Aldrich) or synthesised by the well-known azo coupling
method [1,4,6,17]. See Scheme 1 for dye numbering key. Sodium salts were converted to free acid
forms using aqueous HCl and free acids converted to sodium salts by aqueous treatment with NaOH
solution. With the exception of Na21*, samples for diffraction experiments were obtained by simple
recrystallization from aqueous solution. For Na21* crystals were obtained by vapour diffusion of
acetone into an aqueous solution.

X-ray Diffraction. Samples H4 (polymorph α), H9, H10, and Ba17* were measured at the single
crystal beam lines (9.8 and 16.2) of the Daresbury SRS [18]. Data for H11, H14, and H16 were
measured by the UK National Crystallography Service at the University of Southampton [19]. All other
samples were measured in-house using a Nonius Kappa CCD diffractometer. All structures were
solved using direct methods and refined using all unique reflections against F2 using SHELXL within
WINGX [20–22]. Structural figures have been generated using MERCURY [23]. H atoms bound to C
atoms were placed in geometrically idealised positions and refined in riding modes. H atoms bound
to O or to N atoms were found by difference synthesis and where possible were refined freely and
isotropically. Where this was not possible, sensible restraints were placed upon the H atoms’ bond
distances and/or constraints on their displacement parameters. Structure Na21* was refined as twinned
by a 180◦ rotation about 1 0 0. Refinement against an hklf5 formatted reflection file gave a superior
model with the contribution of the minor twin component refining to 0.2632(33). Where disorder was
identified this was modelled over two sites with the minimum of restraints and constraints needed
to give normal bond lengths and displacement parameters. The following groups were modelled as
disordered; one solvent water molecule in both structure H6 and structure H10, the SO3 group of one
of the crystallographically independent azo molecules of H11, the SO3 group and the water molecule
of H14, and the acetone solvent molecule of Na21*. Full crystallographic details are available in cif
format from CCDC 2010004-2010021 and selected parameters are given in Table 1. Cif also available
from Supplementary Materials.
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Scheme 1. Diagram showing the main monosulfonated azo species investigated. Compounds are
arranged in approximate order of increasing resonance electron donating power of D. In the text,
an asterisk (e.g., 1*) is used to denote a hydroxyl species that has been deprotonated to give the
corresponding dianion.

Table 1. Selected Crystallographic Data and Refinement Parameters. R based on F where [I > 2σ(I)],
wR2 = based on F2 and all reflections.

Label Sp.Gr. Cell Parameters a, b, c, α, β, γ (Å, ◦) T (K) Rint R wR2 S CCDC

Na4 P21/c 13.1513(3), 14.3484(3), 33.1310(7)
90, 90.317(1), 90 123(3) 0.0711 0.0514 0.1275 1.039 2010004

Na15 P-1 9.6905(5), 11.4778(5), 16.6048(9)
93.727(2), 92.764(2), 95.367(3) 123(2) 0.0653 0.0528 0.1224 1.008 2010005

H2 P-1 8.0964(2), 8.2867(2), 10.3032(3)
87.731(1), 70.227(1), 82.360(1) 123(2) 0.0277 0.0380 0.0892 1.047 2010006

H3 Pca21
15.3433(7), 8.4213(3), 10.0810(4)
90, 90, 90 123(2) 0.0402 0.0375 0.0768 1.025 2010007

H4α P21/n 8.7460(5), 11.5738(7), 12.5451(7)
90, 98.954(2), 90 150(2) 1 0.0356 0.0530 0.1040 0.946 2010008

H4β P21/n 8.3274(2), 11.3529(2), 13.5999(3)
90, 104.1267(8), 90 123(2) 0.0179 0.0326 0.0826 1.045 2010009

H6 P21/n 7.9787(2), 7.0010(1), 24.7631(6)
90, 98.550(1), 90 123(2) 0.1109 0.0485 0.1258 1.036 2010010

H8 P21/c 6.9370(2), 19.1956(6), 12.1223(4)
90, 101.234(2), 90 123(2) 0.0358 0.0406 0.1083 1.044 2010011

H9 P21/c 6.347(3), 29.919(16), 6.729(4)
90, 93.363(9), 90 150(2) 1 0.1334 0.0795 0.2252 1.037 2010012

H10 P-1 6.8539(19), 8.345(2), 13.956(4)
74.449(4), 78.862(4), 87.277(4) 173(2) 1 0.0263 0.0595 0.1676 1.063 2010013

H11 P-1 10.0489(4), 12.9768(5), 14.2786(6)
90.184(3), 106.271(2), 97.454(3) 120(2) 0.1093 0.0611 0.1529 1.128 2010014

H14 P21/c 11.2940(6), 13.48.99(6), 11.3050(7)
90, 101.516(3), 90 120(2) 0.1200 0.0958 0.1661 1.195 2010015

H15 P21/c 13.5973(3), 8.2373(2), 15.0763(4)
90, 108.165(1), 90 123(2) 0.0374 0.0400 0.0980 1.025 2010016

H16 P21/c 8.5232(3), 18.0356(8), 11.2012(4)
90, 90.785(2), 90 120(2) 0.1076 0.0659 0.1390 1.112 2010017

H18 Fdd2 16.440(5), 54.256(17), 6.1265(19)
90, 90, 90 123(2) 0.0345 0.0792 0.2091 1.049 2010018

Ba17* P-1 6.8817(2), 9.5539(3), 17.0907(6)
85.147(1), 84.969(1), 77.834(1) 150(2) 1 0.0185 0.0367 0.0962 1.045 2010019

K33*2 C2/c 27.8729(7), 10.6107(2), 22.5081(5)
90, 120.679(1), 90 123(2) 0.0214 0.0356 0.0917 1.034 2010020

Na21* P21/a 6.0059(5), 21.2354(18), 16.2159(14)
90, 97.128(4), 90 100(2) 0.126 2 0.0869 0.1456 1.081 2010021

1 Measurements made with synchrotron radiation. 2 Prior to application of twin law, see text in methods section.
* is used to denote a hydroxyl species that has been deprotonated to give the corresponding dianion.
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3. Results

The discussion will centre on the structures of 17 azo species called 1 to 17 in Scheme 1. Of these,
the structures of H1, H5, H7, H12, and H13 are taken from the literature and the other structures are
presented here [17,24–26]. Of the free acid species, eight are of special interest, as the structures of their
deprotonated, Na salt forms are available for comparison. For this purpose, the structures of Na4 and
Na15 are presented here and the other 6 Na salt structures are available from the literature [5,6,17,27].
Finally, three structures containing doubly deprotonated azo species are also presented. In all three
cases, a hydroxyl substituent of the azo dye anion has lost a proton. The resulting complexes are Na21*,
K3(3)(3*) and Ba17* (where * indicates the corresponding dianion of the azo species in Scheme 1).
The paper is structured so that firstly the main features of the new structures are briefly described,
followed by a detailed comparison of the azo geometries of the free acid, anionic and dianionic forms.

3.1. Structures of Na Salt Forms

The crystal structures of s-block metal salt forms of monosulfonated azo dyes have been discussed
previously [5–7]. It was shown that their coordination behaviour and gross structural features are largely
dependent of the position of the sulfonate group and the identity of the metal ion. Similar observations
have also been made for disulfonated azo dyes and for sulfonated azo pigments [9,15]. The new
structures of Na4, [Na(4)(OH2)2].0.5H2O, and Na15, [Na(15)(OH2)].0.5H2O, are fairly typical of their
type, though Na4 does have a somewhat unusual Z’ = 4 structure with four independent cation/anion
pairs per asymmetric unit [28]. Na salts of azo species with the sulfonate group para to the azo are
expected to form structures with alternate single layers of inorganic/hydrophilic groups (Na, SO3, OH2,
OH) and single layers of organic/hydrophobic groups (the central azobenzene fragment). Additionally,
both the SO3 groups and the water ligands should bridge between Na centres to give highly connected
coordination polymers. All these features are seen in both Na4 and Na15, for example see Figure 1.
Both form three dimensional coordination polymers with azo ligands acting as approximately linear
linkages between the inorganic layers by coordinating to Na through both the SO3 and OH substituents.
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3.2. Structures of Free Acid Forms

The most common result on crystallising monosulfonated azo dyes from low pH aqueous systems
is to obtain a solid-state form with protonation of the N atom of the azo group that is bonded to the
sulfonate bearing aromatic ring, see Figure 2 for example. Ten of the thirteen free acid structures
reported herein adopt similar zwitterionic forms and this is also the commonest form previously
reported for crystal structures of similar dyes [17,24–26]. The structure obtained for H9 is different, as
in this monohydrated structure the amine substituent has been protonated to give a R-NH3

+ group.
This zwitterionic form is not unexpected as structures of both anhydrous and dihydrate forms of H9
have previously been reported and both have similar protonation sites [29,30]. We also report here
a second, similar case of a substituent that is more basic than the azo N atoms being preferentially
protonated in the structure of the hydroxyquinoline species H18, see Figures 3 and 4. The presence
of a substituent with a basic N centre is not enough to reliably stop protonation of the azo group.
Both the methoxy substituted species 10 and 11 feature NH2 substituents and also protonated azo
groups. Additionally the dye species 12 to 16 all have NR2 (R , H) amine substituents and all
feature protonation of the azo group. Finally, dye 8 is the only species here with a strongly electron
withdrawing group present, here a nitro substituent. This would be expected to make the azo N atoms
less basic and indeed the structure isolated is the hydronium salt form [H3O] [8].2H2O where the
dye species retains its non-protonated anionic form, Figure 5. Solid-state hydronium salt forms of
sulfonated aryl species are well known, but have not been previously reported for sulfonated azo dyes
or pigments [31,32].Crystals 2020, 10, x FOR PEER REVIEW 6 of 18 
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Discussion of the supramolecular structure of salt forms of sulfonated azo colourants highlighted
their layered packing structures [5,6,15]. These layering features were broadly speaking a result of
having an approximately linear organic linker with polar head and tail groups. Here the commonest
free acid form, the one with protonation at the azo group, breaks from this description by having
a formally charged NH group at the azo core. Thus, these species do not form layered structures.
The NH3 bearing H9 does have polar groups only at the head and tail of the molecule, and it does form
layered structures both for the monohydrate described herein and in its differently hydrated literature
structures, Figure 6. The hydronium salt of H8 also has no central azo NH group. This structure is a
channel hydrate with channels of OHx units propagating parallel to the crystallographic a direction
but with no layering.
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For the 14 free acid forms with protonation of the azo group, there are only a few supramolecular
features that occur in multiple structures. For 12 of the 14, the azo NH acts as a hydrogen bond
donor to an O atom of a sulfonate group. For the species with SO3 ortho to the azo bond, this is an
intramolecular hydrogen bond that forms a 6-membered OSCCNH ring. The exceptions are the two
species with both NH2 and OMe substituents, 10 and 11. In the structure of H10.2H2O the azo NH
takes part only in an intramolecular hydrogen bond with the O atom of the OMe group acting as the
acceptor. In the structure of H11.3H2O the azo NH group acts as a hydrogen bond donor to a water
molecule. 7 of these 14 structures are anhydrous and of these the 4 with aromatic OH substituents
all have related hydrogen bonding motifs. The structures of H1 and of both polymorphs of H4 have
the same 1-dimensional hydrogen bonded motif formed from R3

3(20) structures, see Figure 7 for
an illustration. Structure H5 has the same core motif but the extra hydroxy substituent leads to an
additional R4

4(20) motif and to an increase in the dimensionality of the hydrogen bonding. There are
no hydrogen bonding motifs common to the hydrated free acid structures or to the anhydrous amine
based structures.
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The two polymorphic forms of H4 were prepared despite separate but seemingly identical aqueous
recrystallisations, and are of particular interest as they have very similar packing structures. As well
as the similar hydrogen bonding noted above, they also form similar stacked structures. The main
difference between the two forms seems to be a small difference in the dihedral angles between the
planes of the aromatic rings (25.85(10) vs. 15.79(8)◦ for α and β forms respectively). Often such close
structural similarities are related to a fast, low activation energy transformation of one phase to the
other [33,34]. However, here, both phases seem to be stable both with respect to time (samples were
kept and re-measured after 6 years) and with respect to temperature (both forms were stable from 100
to 293 K according to diffraction data, and DSC/TGA measurements from room temperature upwards
showed only a decomposition event that started at 538 K).

3.3. Structures of Forms Containing Dianions

In earlier studies, a wide variety of salt forms of monosulfonated azo dyes were formed [5–7].
During this work, two structures containing di-deprotonated azo ions were unexpectedly obtained,
[Ba(17*)(OH2)5] and [K3(3)(3*)(OH2)], Figures 8 and 9. In both cases, only a few crystals of the named
products were obtained after accidental addition of excess metal hydroxide to aqueous solutions of the
dye. Attempts to rationally reproduce these results or to produce similarly di-deprotonated species
using other metal hydroxides and OH bearing azo species were largely unsuccessful. Commonly such
preparations gave viscous oils and/or solid materials with extremely small particle sizes. However, one
preparation using an aqueous solution of dye Na1 with pH raised above 10 by addition of NaOH did
give suitable crystals after vapour diffusion of acetone into the sample. These crystals were found to be
[Na2(1*)(OH2)4(acetone)], Figure 10. Of the three dianion containing structures, that of [Ba(17*)(OH2)5]
is least illuminating to the discussion below as the deprotonated ROH group is remote from the azo
chromophore. From the literature [5,6,9,15], a Ba salt of a sulfonated azo anion should give a discrete
complex or a low dimensional coordination polymer that propagates through Ba-SO3-Ba bridges.
In these literature-species water ligands are always terminal. However, Ba17* is different, as here
the azo is dianionic and, thus, the Ba:azo ligand ratio is doubled. This structure is a 2-dimensional
coordination polymer and, moreover, is one where Ba-O-Ba bridges only involve water O atoms and
not sulfonate O atoms. A final structural point of note is that only one of the two ethanol derived arms
of the amine group bonds to Ba, and surprisingly it is the protonated CH2CH2OH group that does so
rather than the formally charged CH2CH2O group. This latter O atom instead acts as an acceptor to
4 hydrogen bonds.
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The asymmetric unit of [K3(3)(3*)(OH2)] contains three K centres, a bridging water ligand and
two azo units. Formally, and in the crystallographic model presented, one of these azo units has a
phenol group and one a deprotonated phenoxide group. However, as is often the case with such
mixed ROH . . . OR species [35,36], the H atom is located between two O atoms with a short O . . . O
contact (2.470(2) Å). This often indicates a dynamic equilibrium with the H atom shared between
both sites [37,38]. Arguing against such a shared arrangement are the two different C-O distances
(1.339(2) and 1.324(2) Å). The outstanding unusual feature of this structure’s coordination are the K-N
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interactions and the π-geometry contacts between K centres and aromatic rings. No M-N(azo) contacts
have been observed for any of the reported simple salt forms of s-block metal complexes of sulfonated
azo dyes [5,6]; although the structure of Ag1 does have a Ag(I) to azo contact [27]. Neither in the
salt structures do the metal centres normally form short π-geometry interactions with aryl rings [5,6];
for sulfonated azos, such interactions have only been seen for Cs and Ag(I) [5,9]. Here all three
independent K centres make π interactions with aromatic groups and two of the K centres bond to an
azo N atom. In detail, of the three crystallographically independent K centres, one makes a K to π

interaction with the phenoxide ring (K-C 3.279(2) Å), one makes π geometry interactions with a phenol
ring and a σ geometry interaction with the azo group of the same anion (K-C 3.210(2), K-N 3.2769(18)
Å), and the third makes π geometry interactions with both the azo group of the dianion (K-N 3.3294(19)
Å), and with the phenol ring of the anion (K-C 3.071(2) Å). Whilst all these interactions are generally
longer than the K-O dative bonds that are also present (range 2.5889(18) to 3.0963(17) Å), they are
obviously significant. Note that, given the large variations in bond length typical for coordination to K,
the σ and π geometry K-N interactions are rather similar in length despite their different geometries.
The overall result is a 2-dimensional coordination polymer with water ligands bridging between K
centres. Despite the unusual bonding types observed, this is similar to the general structural type
observed for K salts of simple sulfonated azo anions [5,6].

The odd coordination behaviour of [K3(3)(3*)(OH2)] may be related to the high metal:azo ratio
and the increased negative charge on the azo dianion. The solvate [Na2(1*)(OH2)4(acetone)] also
features an azo dianion and has an even higher metal:azo ratio. However, it also features a smaller
metal ion and a large number of donor solvent molecules. These features combine to give a structure
that does not show any Na to π interactions or any Na-N bonding. Each Na centre has a simple
O6 coordination shell. Interestingly, like [Ba(17*)(OH2)5], the deprotonated hydroxy group does not
form a coordination bond despite its formal charge. Again as in [Ba(17*)(OH2)5] this O atom accepts
4 hydrogen bonds. The acetone ligand and one of the water ligands are terminal with the other
three water ligands bridging between Na centres. Together with Na-SO3-Na bridges, these give a
2-dimensional coordination polymer.

4. Discussion

Comparison of Azo Geometries of Free Acids, Anions, and Dianions

There are three main effects to be considered here that will systematically change the geometry
of a substituted azobenzene based dye. These are push-pull effects, the effects of azo to hydrazone
tautomerisation, and the effects of protonation. See Schemes 2–4 for illustrations.
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Push–pull effects are widely cited as an important mechanism for understanding how various
substituents alter the colour of a dye [39–41]. Of importance, here is the idea that an electron donating
group para to the azo bond will effectively lengthen the azo bond, Scheme 2, and so give rise to a
bathochromatic colour shift. The stronger the resonance electron donating power of the substituent,
then the larger these effects should be. To measure this effect on bond lengths in the series of dyes above,
a structure of azobenzene was used as a base line [42]. For each of the 8 available Na salt forms, the bond
lengths of azobenzene (using the values from the centrosymmetric molecule 2 of structure AZOBEN13)
were subtracted from the equivalent bond lengths for the salt’s anion. For each Na salt, the pattern of
bond lengthening and shortening expected from Schemes 2 and 3 is discernible, see Figure 11. Taken as
a group this is quite convincing; however, most individual differences are below the statistically
significant 3σ cut-off. The only structures that show robustly large, statistically significant differences
are the two NR2 species Na12 and Na15 and the dihydroxy species Na5. The Na salts of the phenol
derivatives 1, 2, 3 and 4 and of the NH2 derivative 9 all show much smaller differences. Taking an
anion from Na15 as an example, an azo bond length increase of 0.018(3) Å is accompanied by the
C-N(azo) bond to the amine bearing ring decreasing by a similar amount, 0.017(4)Å. The double bonds
of the quinone fragment shown in Scheme 2 are both 0.018(4) Å shorter in Na15 than in azobenzene.
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The single bonds subtending the amine are 0.028(4) and 0.022(4) Å longer than azobenzene, but this
large difference is less informative as it includes the direct effect of substituting H for N(CH2CH2OH)2

as well as the resonance effect. The structure of Na12 shows similar bond length changes at the azo
group but somewhat smaller changes in the aromatic ring. These changes are apparently in line with
theory in that the amine groups with a strong resonance electron donating ability (Hammett constants
−0.83, −0.72) give larger effects than the weaker donor group OH (Hammett constant −0.37) [43].
The problem is the structure of Na9. With a NH2 substituent (Hammett constant −0.66) the bond length
changes should lie between those seen for say Na1 and Na15, but they do not. Only the C-N(azo)
bond deviation fits this description, with all other changes being equal to or less than those seen for
the phenol derivatives. At 1.249(3) Å the azo bond of Na9 is as short as any reported herein [17].
One possibility is that the structure is inaccurate. As with stilbenes, the structures of azobenzene units
are often disordered by a rotation about a 2-fold axis [42,44]. Indeed some Na salt structures (Na13,
Na17) have been omitted from this work due to just such a disorder problem making their geometric
parameters unreliable. An unidentified minor disorder component in Na9 could give an unreliable
azo bond length. The structure of Na9 has, thus, been re-examined in detail. There are no signs of
unresolved disorder (no residual electron density about the azo bond and no unusual displacement
ellipsoids). The lack of resonance push effect may thus be due to the NH2 group forming a dative
bond to Na (Na-N 2.525(3) Å). The N atom is tetrahedral, and the implied involvement of the N lone
pair in bonding to Na may here prevent the expected resonance effect.
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The significant changes in bond length seen for Na5, Table 2, come about not from a push pull
mechanism but through the tautomeric effects seen in Scheme 3. Here the changes in length of the
azo fragment are larger than those seen above, and fit well with the presence of some proportion of
hydrazone tautomer [45]. It is interesting that for all known structures of sulfonated azo dyes with
OH ortho to the azo bond, those based on phenol rings are found to exist as the azo form whilst
those based on napthol ring systems exist as hydrazone forms [5,10,15]. It has been noted that for
related hydrazone species the largest bond length change comes not for the azo bond but for the C7-N2
bond [10,15]; this is also true for Na5.
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Table 2. Bond length differences between Na5 and azobenzene (Na5–azobenzene).

Bond 1 Difference (Å)

N1=N2 0.032(4)
N1-C4 −0.017(5)
N2-C7 −0.039(4)
C7-C8 0.013(5)
C8-C9 −0.026(5)

C9-C10 0.006(5)
C10-C11 −0.006(5)
C11-C12 −0.011(5)
C12-C7 0.014(5)
1 OH substituents are on C10 and C12.

One use for sulfonated azo dyes is as acid-base indicators. Compounds such as methyl orange,
Na12, are well known to change colour markedly at low pH. As shown in the structures discussed
above and in Scheme 4, this is due to protonation of the azo N atom closer to the SO3 group. Scheme 4
shows the pattern of bond lengthening and shortening expected upon such protonation. Examination
of the free acid structures shows that such distortions do occur in the solid state, with the largest
changes being at the N=N, N-C7 and C10-X (X = O or N) bonds. The N=N and N-C7 bond lengths
are shown in Figure 12. It can be seen that dyes with NR2 substituents have longer N=N bonds and
shorter N-C7 bonds than dyes with OH substituents and that H8 and H9 are different. These latter
differences are simply because these are the two free acid forms that do not protonate at the azo group,
H8 is the hydronium species and H9 has a protonated NH3 substituent. The C-N-N angles also change
upon protonation of the azo. For these free acid forms, the C-N-N angles are 3.1 to 7.9◦ wider than in
the equivalent Na salts.
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Figure 12. Bond lengths for N=N and N-C7 for all known free acid forms of monosulfonated azo dyes.
The group para to azo for compounds 1 to 8 is OH, for 9 to 11 is NHx, 12 is NMe2, 13 and 14 is NEt2,
and for 15 and 16 is N(CH2CH2OH)2.

An interesting result is obtained on subtracting the bond lengths of the Na salt forms from those
of the azo protonated free acid forms, Figure 13. These differences are larger than those seen for
push–pull substituent effects, and larger than those caused by tautomerisation in Na5 (compare a
maximum change upon protonation of 0.083(5) Å with maximum changes of 0.028(4) and 0.039(4)
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Å for push–pull substituent effects and tautomerisation respectively). This effect is greater for NR2
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Figure 13. Difference in N-N and N-C7 bond lengths (Free Acid – Na Salt) for dyes where the free acid
form is protonated on the azo N atom. There is no known Na salt crystal structure for similar dyes that
have no entry. Dyes 1 to 5 have an OH substituent para to the azo group, dye 12 NMe2, and dyes 15
and 16 N(CH2CH2OH)2. Differences for 5 are relatively small as Na5 already has relatively short/long
bonds due to its intramolecular hydrogen bond and resulting tautomeric forms. This intramolecular
interaction does not occur in the free acid form H5. Errors on differences are ±0.007 Å for 16, ±0.005 Å
for 3 and 12 and ±0.004 Å for all others.

In the three salts containing azo dianions, the azo bond lengths are systematically longer than
those in the equivalent Na salt containing the anionic dye (difference range 0.009 to 0.021 Å) and the
N-C7 bonds are in general slightly shorter. The azo bonds are thus approximately the same length as
those in the equivalent free acid forms, but do not have the large decreases in N-C7 bond length seen
for the free acid forms. Both on protonation and with respect to tautomerisation effects, the N-C7 bond
changes more than the azo bond [10]. However, on dideprotonation, it is the azo bond that is most
changeable. The azo bond length ranges are 1.251(4) to 1.268(3) and 1.269(2) to 1.316(3) Å for simple
Na salts and azo protonated free acids respectively. This compares to a range of 1.267(2) to 1.274(5) Å
for the dianionic forms. For the phenoxide species, the bond lengths are comparable to those in Na12.
This fits with the approximately equal Hammett values of NMe2 and O− (−0.83 and −0.81). The C-N-N
angles are similar to those in the anionic Na salt forms and different from those in the protonated azo
free acid forms.

An obvious feature of all the dianionic forms is that they have very twisted conformations, with
dihedral angles between the planes of the two aromatic rings ranging from 36.85(13) to 50.86(8)◦.
In contrast, most of the anionic and free acid forms are relatively planar, with only Na2, Na16, H1,
and H4 (α form) having twist angles greater than 20◦. In studies of ortho sulfonated azo salt forms,
highly twisted conformations have been shown to be molecular deformations caused by the need to
adopt twisted geometries in order to access desirable coordination modes [5,15]. As all three dianionic
species have higher than normal metal:azo ratios and thus have a large number of dative bonds, it is
possible that the twisted conformations seen here are also associated with conformational changes
needed to allow effective coordination to multiple metal centres.
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5. Conclusions

For monosulfonated azo dyes, it has been shown that the commonest free acid form is that with
protonation at the azo N atom closer to the sulfonate group. This widens the C-N-N angles and gives
predictable bond lengthening and shortening which is of a greater size than similar effects caused by
azo-hydrazone tautomerisation, which are in turn greater than the effects caused by the resonance
electron donation of O or N based substituents. If other more basic substituents are present then these
may be protonated in place of the azo. Finally, the only example with an electron withdrawing nitro
group features a non-protonated azo anion with the acidic proton been borne by a hydronium cation.
In neither of these latter cases are large bond length effects observed. An interesting detail is that those
azo protonated free acid forms with amine substituents seem to display larger bond length changes on
protonation than do those with OH substituents, even having corrected for the differing resonance
effects of these groups.

For the azo anions larger bond length effects due to electron donation are associated with NR2

groups as compared to OH groups. The exception is Na9 where the NH2 group does not appear to
give the expected effect. This is perhaps due to NH2 to Na bonding competing with electron donation
from N to the azo. The first examples of solid-state structures of monosulfonated azo dianions are
presented. The bond lengths of these species are approximately as would be expected considering
the electron donating power of the phenoxide O atom. With relatively high metal:azo ratios all the
dianionic forms are multiply connected coordination polymers of general types seen previously for
the heaviest group 1 salt forms of monosulfonated azo anions [5,6]. The structure of [K3(3)(3*)(OH2)]
features both K to azo bonds and short K to aryl π contacts—bonding features that are not seen in the
salt structures of simple related anions.
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