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Abstract: Dexketoprofen trometamol is the tromethamine salt of dexketoprofen [(2S)-2-(3-benzoylphenyl)
propanoic acid-2-amino-2-(hydroxymethyl)propane-1,3-diol], a nonsteroidal anti-inflammatory drug
(NSAID) used for the treatment of moderate- to strong-intensity acute pain. The crystal structure of
the hitherto sole known hydrate phase of dexketoprofen trometamol (DK-T_2H2O), as determined by
single-crystal X-ray diffraction, is presented. The water molecules are arranged in dimers included
in isolated sites and sandwiched between piles of trometamol cations. The molecular and crystal
structures of DK-T_2H2O are analyzed and compared to those of the parent anhydrous crystal form
DK-T_A. In both the crystal structures, all the potential H-bond donors and acceptor of the dexketoprofen
and trometamol ions are engaged, and both the species crystallize in the P21 space group. However,
during the DK-T_A:DK-T_2H2O hydration process, the unique symmetry axis is not conserved,
i.e., the ions are arranged in a different way with respect to the screw axis, even if the two crystal
structures maintain structural blocks of DK anions and T cations. Quantum mechanical solid-state
calculations provide some hints for the possible intermediate structure during the crystalline–crystalline
hydration/dehydration process.

Keywords: dexketoprofen trometamol; hydrates; crystal structure; NSAIDs

1. Introduction

Upon crystallization, a large number of active pharmaceutical ingredients (APIs) incorporate
solvent molecules into their crystal lattice [1]. The inclusion of solvent molecules in the crystal lattice
leads to changes in the unit cell dimensions, content and intermolecular interactions with respect to
the pristine compound. As a consequence, the solvate of a drug molecule usually presents different
physical, chemical and mechanical properties with respect to its unsolvated species, which obviously
has a significant impact on the stability, solubility and performance of the API, as well as on the related
regulatory issues. For this phenomenon, i.e., the possibility for a given substance to exist in different
crystal forms, with each one having a different elemental composition as a result of the inclusion of
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one or more solvent molecules, several authors have used the terms “pseudopolymorphism” [2] or
“solvatomorphism” [3].

The most common type of solvate, where the trapped solvent is water, is called a hydrate [4]
which, according to Morris and Rodriguez-Hornedo, can be classified in three categories, depending
on how the water molecules are organized into the crystal lattice [5]: (i) channel hydrates; (ii) isolated
site hydrates; (iii) metal ion associated hydrates.

Many APIs are able to form hydrates due to the capability of the water molecule to act both as
H-bond donor and acceptor and also because water is often present in the manufacturing environment
of pharmaceuticals solids. In fact, APIs can be in contact with water during different processing steps
(crystallization, lyophilization, wet granulation, aqueous film coating or spray drying) and are exposed to
water during storage in an atmosphere containing water vapor. In some cases, water molecules can improve
the stability of metastable solid forms. The formation of strong intermolecular hydrogen bonding may improve
the stability of the hydrated crystal form compared to the corresponding anhydrate, providing stability to the
crystal lattice [6]. The cardiovascular drug creatine phosphate sodium tetrahydrate, the beta-lactam antibiotic
ampicillin trihydrate and the synthetic broad-spectrum cephalosporin antibiotic, cephalexin monohydrate
are some examples of marketed stable hydrated forms of APIs [7–9]. Finally, various hydrates of the
same compound can exhibit different properties. For example, olanzapine has three hydrated polymorphs:
dihydrate D, B and E. Dihydrate D is the most thermodynamically stable form and has the most efficient
crystal packing and hence the highest density [6].

X-ray crystallography is the key to studying structure–property relationships and single crystal X-ray
diffraction (SCXRD) is the method of choice for molecular and crystal structure determination when crystals
are available, as well as X-ray powder diffraction (XRPD), which provides an alternative valuable tool for
the characterization of crystalline powder materials [10]. Both of these techniques [11–15], complemented
by differential scanning calorimetry [16–18], solid state NMR [19], IR-UV and Raman spectroscopy [20–22]
and modelling [23–29], can be successfully used to characterize the solid state features and behavior
(e.g., phase stability, polymorphism, phase transformation) of a large variety of compounds including APIs’
key precursors, well-known APIs as well as new promising active pharmaceutical compounds.

Non-steroidal anti-inflammatory drugs (NSAIDs) represent a widespread class of analgesic
medications which are used to reduce pain and inflammation.

Dexketoprofen (Scheme 1 top), i.e., the S-enantiomer of ketoprofen; is usually formulated as
2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS or trometamol, Scheme 1 bottom) salt which is
absorbed rapidly [30].
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The anhydrate salt dexketoprofen trometamol, DK-T hereafter, is known to exhibit different crystal
forms [31,32]: polymorph A (DK-T_A) and polymorph B (DK-T_B). DK-T_A is the thermodynamically
stable crystalline form used to manufacture dosage-form products and its molecular and crystal
structures, as obtained from SCXRD, were recently published by several of us [33]. Meanwhile,
XRPD measurements allowed researchers to obtain cell parameters, the space group and Z of both
the thermodynamically unstable, but kinetically preferred, DK-T_B solid form and the previously
unknown dihydrate form DK-T_2H2O [31].

The crystal of DK-T_A belongs to the monoclinic crystal system, P21 space group, and four
dexketoprofen anions and four trometamol cations are present in the asymmetric unit (1.30 mg/cm3

at rt) as well as the microcrystalline powder of DK-T_2H2O. Given that for P21, the Z value is 2, we
reasoned [31] that in the asymmetric unit, two dexketoprofen/trometamol independent pairs and four
water molecules should be present (1.29 mg/cm3 at rt).

In that paper, the DK-T_A:DK-T_2H2O and the reverse transformation were studied: the addition
of water drop by drop to DKT_A, in a DK-T_A/H2O stoichiometric ratio ranging from 1:2 to 1:7, always
leads to the dihydrate species. The hydration process is quick, not accompanied by the formation of a
detectable amorphous phase and reversible. On these grounds, we speculated that both the anhydrous
and hydrate crystal architectures did not suffer upon water uptake/release and that the dihydrate form
belongs to the class of the channel hydrates and most probably is a planar hydrate.

Now we present here the molecular and crystal structure of the DK-T_2H2O as obtained by
SCXRD. Until now, no solvates of dexketoprofen trometamol have been described in the literature, so
this is the first structural characterization of its hydrate form. Attention has been paid to the role played
by the water molecules in the crystal lattice and the hypothesis formulated in our previous study, about
the nature of the dihydrate species (planar hydrate) was checked due to the new information acquired.
Quantum chemical calculations have been used to study the crystal structure relationships between
DK-T_2H2O and the parent anhydrous phase DK-T_A.

2. Materials and Methods

Dexketoprofen trometamol (DK-T) was kindly supplied by the Menarini Group. This sample
contains the A polymorph of dexketoprofen trometamol (DK-T_A), as provided by a comparison of its
most significant XRPD peaks and those listed in the EP1739072A1 PATENT for form A. It was used as
received without further purification.

2.1. Procedures of DK-T_A Hydration and DK-T_2H2O Crystallization

The hydration process of the microcrystalline powder of DK-T_A was followed under a Linkam
Hot-stage microscope by using different DK-T:H2O molar ratios (1:2 and 1:10).

Crystals of DK-T_2H2O (vide infra) suitable for single crystal X-ray diffraction were obtained by
adding 20 equiv of mQ water drop by drop to DK-T_A form. The mixture was stirred until the complete
dissolution of the powder. The resulting clear solution was kept at ambient conditions. After one week, by
the slow evaporation of the solvent, plate-shaped, colorless crystals formed.

2.2. X-ray Powder Diffraction (XRPD)

XRPD patterns were measured in air at ambient temperature on a Bruker New D8 Da Vinci
diffractometer equipped with a Bruker LYNXEYE-XE detector. Data over the range 3◦−60◦ 2θ were
collected with 0.02◦ increments of 2θ, and a counting time of 1 s/step. The copper (Cu−Kα) radiation
(λ = 1.54056 Å) was used and the tube voltage and current were set to 40 kV and 40 mA, respectively.

2.3. Single Crystal X-Ray Data Collection and Structure Solution

Single crystal X-ray diffraction data of DK-T_2H2O were collected at 100 K using Cu-Kα radiation
(λ= 1.54178 Å) on a Bruker Apex-II CCD diffractometer (Bruker Corporation, Billerica, MA, USA). Data were
collected with the Bruker APEX2 program [34] and integrated and reduced with the Bruker SAINT
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software [35]. Dexketoprofen trometamol dihydrate crystallizes in the monoclinic crystal system, space
group P21. The structure was solved using the SIR-2004 package [36] and was refined on F2 by the full-matrix
least-squares technique using the SHELXL-2018/3 [37] program package. All non-hydrogen atoms were
refined with anisotropic displacement parameters. The H atoms, bonded to oxygen atoms, were found in
the Fourier density maps and their coordinates were freely refined, while their thermal parameter was set
in agreement with the atom to which they are bonded. In order to avoid unrealistic O-H bond distances,
DFIX and DANG restraints were used for the water molecules. All the other hydrogen atoms were set in a
calculated position. Geometrical calculations were performed by PARST97 [38], and molecular plots were
produced by the programs ORTEP-3 [39], Mercury [40] and Discovery Studio 2019 Client [41].

Table 1 lists crystal data and refinement parameters of DK-T_2H2O. Structural data can be obtained
free of charge from The Cambridge Crystallographic Data Centre CCDC deposition number 2012545.

Table 1. Crystallographic data and refinement parameters for the dihydrate phase of dexketoprofen
trometamol (DK-T_2H2O).

DK-T_2H2O

Formula [C4H12NO3]+[C16H13O3]− .2H2O
MW 411.44
T (K) 100
λ (Å) 1.54178

Crystal system, space group Monoclinic, P21

Unit cell dimensions (Å, ◦)
a = 8.480(4)

b = 27.7440(10); β = 90.479(3)
c = 8.7770(4)

Volume (Å3) 2064.89(15)
Z, Dc (mg/cm3) 4, 1.323

µ (mm−1) 0.857
R1 [I>2σ(I)] 0.0639

wR2 (all) 0.1672
GOFs (Goodness of fit) 1.041

2.4. Computational Methods

The crystal-packing arrangement was analyzed with Mercury [38]. Crystal-Explorer17 [42] was
used to compute the Hirshfeld surfaces (HS) and their associated 2D fingerprint plots to investigate
the intermolecular interactions in the crystal packing of DK-T_2H2O.

The CRYSTAL17 software package (Colleretto Giacosa (Turin), Italy) [43] has been used for the
optimized geometries and energetics calculated at the HF-3c level of theory [44,45]—further details
are given in Supplementary Materials. Table S1 reports the optimized coordinates for DK-T_2H2Oc,
DK-T_Ac, and DK-T_C (vide infra).

3. Results and Discussion

3.1. Procedures of DK-T_A Hydration and DK-T_2H2O Crystallization

In order to get insights into the anhydrous (DK-T_A)-hydrate (DK-T_2H2O) transformation, we
follow the hydration process under microscope.

When a 1:2 DK-T:H2O molar ratio mixture was used, no visible changes take place, as provided
by the photos reported in Figure S1; the XRPD pattern collected after 1 minute from the mixing
shows that the hydrate form was formed (Figure S2, Supplementary Materials). This observation
further strengthens the hypothesis that in these experimental conditions, the hydration process takes
place through a crystalline–crystalline phase transformation. By contrast, a 1:10 DK-T:H2O molar
ratio mixture causes a dissolution of the starting material followed by a fast recrystallization of the
DK-T_2H2O form (Figure 1). The same experiment, monitored via XRPD, shows that just after the
mixing, the interconversion of anhydrous–hydrate was completed (Figure S3, Supplementary Material).
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Figure 1. From left top to right bottom: photos taken every 20′′ showing the fast recrystallization when
a 1:10 DK-T:H2O molar ratio mixture was used.

Finally, the addition of high amount of water (20 equiv) to DK-T_A led to the formation of single
crystals. SCXRD analysis (vide infra) reveals that crystals belong to the same crystalline phase of the
microcrystalline powder already characterized (DK-T_2H2O). Crystals of DK-T_2H2O are stable at
least for a time period of six months at ambient conditions (∼293 K and ∼60% RH).

3.2. Molecular and Crystal Structure from Single-Crystal X-Ray Diffraction

The crystalline phase of DK-T_2H2O, as determined by SCXRD, and that of the microcrystalline sample
of the dihydrate dexketoprofen trometamol reported in ref. [31], are identical, as provided by comparing
calculated (Figure S4 Supplementary Materials) and measured powder diffraction patterns (see ref. [31]).
In the asymmetric unit of DK-T_2H2O (P21 space group), there are two dexketoprofen/trometamol
independent pairs and four water molecules (Figure 2). An ORTEP drawing of the a independent
dexketoprofen trometamol pair together with the atom labelling is shown in Figure 3. The overall shape of
the two independent dexketoprofen anions, DK hereafter, (labelled in the following as a and b) is very
similar, as provided by the sequence of the τ1-τ3 dihedral angles (see Table 2), which can be described as
(ap)-(sp)-(-sc) [46]. The conformational isomer of the dihydrate species is almost identical to that labelled as
c in the crystal structure of the parent anhydrous species (see Figure 4) which, from a relaxed potential
energy surface scan of about τ1, resulted in the highest energy (∆E about 1 kcal/mol, [31]). Finally, a search
in the Cambridge Structural Database (version 5.41) [47] shows that τ1-τ3 values are within the populated
ranges (see Figure S5 in Supplementary Materials).Crystals 2020, 10, 659 6 of 14 

 

 
Figure 2. View of the asymmetric unit of DK-T_2H2O. 

 
Figure 3. ORTEP-3 view of the a independent dexketoprofen trometamol pair in DK-T_2H2O with 
atoms labelling (ellipsoid probability = 25%). 

 
Figure 4. Superimposition (by using the C1-C6 ring) of the molecular structures of the DK anions as 
found in the anhydrous (stick; 4 independent DKs: a = green; b = blue; c = pale blue; d = yellow) and 
hydrate (ball and stick; 2 independent DKs: a = orange; b = red) phases of the trometamol salt. 

The two trometamol cations, T hereafter (labelled in the following as a and b), which are well 
superimposable, adopt the quite usual (+sc)(+sc)(+sc) conformation (see Table S2). 

Figure 2. View of the asymmetric unit of DK-T_2H2O.



Crystals 2020, 10, 659 6 of 14

Crystals 2020, 10, 659 6 of 14 

 

 
Figure 2. View of the asymmetric unit of DK-T_2H2O. 

 
Figure 3. ORTEP-3 view of the a independent dexketoprofen trometamol pair in DK-T_2H2O with 
atoms labelling (ellipsoid probability = 25%). 

 
Figure 4. Superimposition (by using the C1-C6 ring) of the molecular structures of the DK anions as 
found in the anhydrous (stick; 4 independent DKs: a = green; b = blue; c = pale blue; d = yellow) and 
hydrate (ball and stick; 2 independent DKs: a = orange; b = red) phases of the trometamol salt. 

The two trometamol cations, T hereafter (labelled in the following as a and b), which are well 
superimposable, adopt the quite usual (+sc)(+sc)(+sc) conformation (see Table S2). 

Figure 3. ORTEP-3 view of the a independent dexketoprofen trometamol pair in DK-T_2H2O with
atoms labelling (ellipsoid probability = 25%).

Table 2. Selected dihedral angles for DK-T_2H2O as obtained from single crystal X-ray diffraction.

Crystals 2020, 10, 659 7 of 14 

 

Table 2. Selected dihedral angles for DK-T_2H2O as obtained from single crystal X-ray diffraction. 

 
 DK 
 a b 

τ1 = C9-C8-C10-O1 −163.0(5) −158.7(5) 
τ2 = C2-C3-C7-O3 −22.1 (9) −30.3(9) 
τ3 = O3-C7-C11-C12 −40.0(9) −35.4(9) 

The crystal lattice of DK-T_2H2O is held together by a hydrogen bond network involving all the 
potential H-bond donor and acceptor sites of dexketoprofen and water molecules (Table 3). In 
particular, the carboxylate oxygen atoms (O1 and O2) of each dexketoprofen anion interact with two 
-OH groups provided by two trometamol cations and two water molecules, whereas the ammonium 
group of each trometamol cation is H-bonded to one water molecule (O1W) and to two hydroxyl 
oxygen atoms provided by different trometamol cations. As a result of these latter interactions, 
alternating a/b trometamol cations bound through NH3···OH strong hydrogen bonds (𝑅ଶଶ(10) motif 
[48], Table 3) pile along the c-axis direction (Figure 5 top). In addition, each trometamol bound water 
molecule (O1W, represented in a space-filling style in Figure 5 middle) acts, in turn, as a H-bond 
donor towards the oxygen of a DK carboxylate group (O1) and of a symmetry-independent water 
molecule (O2W, see Figure 5 bottom). Thus, each O1W water molecule bridges a 
dexketoprofen/trometamol pair and, at the same time, gives rise to water–water dimers, being 
involved in three H-bonds. By contrast, the O2W water molecules are involved in four hydrogen 
bonds: as H-bond donor towards the oxygen atoms provided by the DK carboxylate and the T 
hydroxyl groups and as H-bond acceptor towards O1W and the hydroxyl group of a further 
trometamol cation. 

It is noteworthy, as already pointed out [31], that the insertion of the water molecules does not 
significantly contribute to fill void spaces in DK-T_A (no empty space was detected in the crystal 
lattice of the anhydrous form by the Voids routine of Mercury [38] and, accordingly, crystal densities 
(1.323 and 1.329 mg/cm3) and packing indexes (0.70 for both structures [49]) are almost identical), nor 
involve additional potential H-bond sites with respect to the anhydrous phase. 

Table 3. Selected H-bonds in DKT_2H2O. 

 X…Y (Å), H…Y (Å), X-H…Y (°)  X…Y (Å), H…Y (Å), X-H…Y (°) 
Strongest donor    

N1A-H1N1…O1WA 2.784(7)/2.020(4) /140.6(3)   
N1A-H1N2…O5B1 2.749(6)/1.933(4)/148.3(3)   
N1A-H1N3…O6B 2.883(6)/ 2.095(4)/144.3(3)   

  Water…Water  
N1B-H1N6…O1WB 2.787(7)/2.034(4)/139.2(3) O1WA-H1W2…O2WA2 2.801(6)/1.93(6)/171(5) 
N1B-H1N5…O4A 2.757(6)/1.953(4)/146.4(3) O1WB-H1W3…O2WB3 2.825(6)/1.98(6)/163(5) 
N1B-H1N4…O5A3 2.880(6)/2.096(4) /143.6(3)   

    

Strongest acceptor  
Water (acceptor) 

…trometamol (donor) 
 

O1A…H6OA-O6A4 2.711(6)/2.04(8)/161(9) O2WA…H6OB-O6B 2.786(6)/1.94(8)/177(8) 
O2A…H4OA-O4A5 2.586(6)/1.65(7) /153(6) O2WB…H5OA-O5A2 2.779(6)/1.91(8)/169(8) 

O1A…H1W4-O1WB4 2.903(6)/2.01(5) /174(4)   
O1A…H2W1-O2WA4 2.717(6)/1.85(4) /170(3)   

DK

a b

τ1 = C9-C8-C10-O1 −163.0(5) −158.7(5)
τ2 = C2-C3-C7-O3 −22.1 (9) −30.3(9)
τ3 = O3-C7-C11-C12 −40.0(9) −35.4(9)
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found in the anhydrous (stick; 4 independent DKs: A = green; b = blue; c = pale blue; d = yellow) and
hydrate (ball and stick; 2 independent DKs: A = orange; b = red) phases of the trometamol salt.

The two trometamol cations, T hereafter (labelled in the following as a and b), which are well
superimposable, adopt the quite usual (+sc)(+sc)(+sc) conformation (see Table S2).
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The crystal lattice of DK-T_2H2O is held together by a hydrogen bond network involving all
the potential H-bond donor and acceptor sites of dexketoprofen and water molecules (Table 3).
In particular, the carboxylate oxygen atoms (O1 and O2) of each dexketoprofen anion interact with two
-OH groups provided by two trometamol cations and two water molecules, whereas the ammonium
group of each trometamol cation is H-bonded to one water molecule (O1W) and to two hydroxyl
oxygen atoms provided by different trometamol cations. As a result of these latter interactions,
alternating a/b trometamol cations bound through NH3···OH strong hydrogen bonds (R2

2(10) motif [48],
Table 3) pile along the c-axis direction (Figure 5 top). In addition, each trometamol bound water
molecule (O1W, represented in a space-filling style in Figure 5 middle) acts, in turn, as a H-bond donor
towards the oxygen of a DK carboxylate group (O1) and of a symmetry-independent water molecule
(O2W, see Figure 5 bottom). Thus, each O1W water molecule bridges a dexketoprofen/trometamol pair
and, at the same time, gives rise to water–water dimers, being involved in three H-bonds. By contrast,
the O2W water molecules are involved in four hydrogen bonds: as H-bond donor towards the oxygen
atoms provided by the DK carboxylate and the T hydroxyl groups and as H-bond acceptor towards
O1W and the hydroxyl group of a further trometamol cation.

It is noteworthy, as already pointed out [31], that the insertion of the water molecules does not
significantly contribute to fill void spaces in DK-T_A (no empty space was detected in the crystal
lattice of the anhydrous form by the Voids routine of Mercury [38] and, accordingly, crystal densities
(1.323 and 1.329 mg/cm3) and packing indexes (0.70 for both structures [49]) are almost identical),
nor involve additional potential H-bond sites with respect to the anhydrous phase.

Table 3. Selected H-bonds in DKT_2H2O.

X . . . Y (Å), H . . . Y (Å),
X-H . . . Y (◦)

X . . . Y (Å), H . . . Y (Å),
X-H . . . Y (◦)

Strongest donor

N1A-H1N1 . . . O1WA 2.784(7)/2.020(4) /140.6(3)

N1A-H1N2 . . . O5B1 2.749(6)/1.933(4)/148.3(3)

N1A-H1N3 . . . O6B 2.883(6)/ 2.095(4)/144.3(3)

Water . . . Water

N1B-H1N6 . . . O1WB 2.787(7)/2.034(4)/139.2(3) O1WA-H1W2 . . .
O2WA2 2.801(6)/1.93(6)/171(5)

N1B-H1N5 . . . O4A 2.757(6)/1.953(4)/146.4(3) O1WB-H1W3 . . . O2WB3 2.825(6)/1.98(6)/163(5)

N1B-H1N4 . . . O5A3 2.880(6)/2.096(4) /143.6(3)

Strongest acceptor Water (acceptor) . . .
trometamol (donor)

O1A . . . H6OA-O6A4 2.711(6)/2.04(8)/161(9) O2WA . . . H6OB-O6B 2.786(6)/1.94(8)/177(8)

O2A . . . H4OA-O4A5 2.586(6)/1.65(7) /153(6) O2WB . . . H5OA-O5A2 2.779(6)/1.91(8)/169(8)

O1A . . . H1W4-O1WB4 2.903(6)/2.01(5) /174(4)

O1A . . . H2W1-O2WA4 2.717(6)/1.85(4) /170(3)

Water (donor) . . .
trometamol (acceptor)

O1B . . . H4OB-O4B3 2.708(6)/2.01(8)/167(9) O2WA-H2W2 . . . O4B7 2.817(6) /1.96(6)/175(6)

O2B . . . H5OB-O5B6 2.588(6)/1.76(8) /174(8) O2WB-H2W4 . . . O6A 2.811(6) /1.94(6)/172(5)

O1B . . . H1W1-O1WA 2.884(6)/2.00(5) /173(4)

O1B . . . H2W3-O2WB7 2.728(6)/1.86(4) /164(3)
1=x,y,z-1; 2=x+1,y,z; 3=x,y,z+1; 4=-x+1,y+1/2,-z+1; 5=-x+2,y+1/2,-z+1; 6=x-1,y,z+1; 7=x-1,y,z.
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this respect resembles that of the parent anhydrous species (DK-T_A, Figure 7 bottom), 
notwithstanding the different relative arrangement of the trometamol piles and the dexketoprofen 
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crystal transformation (and the reverse one), the unique symmetry axis is not conserved, with DK 
and T ions being arranged in a different way with respect to the screw axis. 

A recent work of Werner and Swift found more than 2000 pairs of hydrate and anhydrous 
species [50] in the Cambridge Structural Database [45]. Using their refcode list, we found 281 pairs 
with at least one of the structures with P21 symmetry. Only 48 pairs (17.1%) have P21 as the space 
group for both the hydrate and anhydrous species (Table S3 in Supplementary Materials). For 
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Figure 5. View of the crystal packing of DK-T_2H2O (for the sake of clarity only selected DK, T and
water molecules are shown). (top) a-b-a-b sequence of trometamol cations interacting via H-bonds,
viewed along the b axis direction); (middle) H-bonded trometamol-water molecules (space-filling
style, magenta O1WA, cyan O1WB); (bottom) selected H-bond interactions involving DK, T and water
molecules (see text), viewed along the a axis direction.

Figure 6 shows an overall picture of the DK-T_2H2O crystal packing (top): the crystallization water
molecules, organized in dimers, are sandwiched between stacks of H-bonded trometamol cations aligned
along the c axis direction (left). The DK anions (those labelled as a are interacting each other via C-H . . . O=C
interactions) are disposed in a double layer between the T’s parallel chains. As a result, the structure is
made of alternating structural blocks of DK anions and T cations (right) and in this respect resembles
that of the parent anhydrous species (DK-T_A, Figure 7 bottom), notwithstanding the different relative
arrangement of the trometamol piles and the dexketoprofen anions. So, as it is evident by comparing
the pictures in Figure 7, during the DK-T_A:DK-T_2H2O crystal transformation (and the reverse one),
the unique symmetry axis is not conserved, with DK and T ions being arranged in a different way with
respect to the screw axis.

A recent work of Werner and Swift found more than 2000 pairs of hydrate and anhydrous species [50]
in the Cambridge Structural Database [45]. Using their refcode list, we found 281 pairs with at least one of
the structures with P21 symmetry. Only 48 pairs (17.1%) have P21 as the space group for both the hydrate
and anhydrous species (Table S3 in Supplementary Materials). For comparison, in the whole dataset,
the same space group is maintained in 29.5% of the cases, while for the P212121 space group, which is another
very frequent space group for molecules having a chiral center, the percentage is 24.8%. Interestingly, in the
hydrate/anhydrous P21/P21 subset the Z value is the same in both the species in only 29 cases, while for
10 pairs, the hydrate species have a larger value for Z, and the opposite holds for the remaining 9 pairs.
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From a visual analysis of the 48 hydrate/anhydrous pairs, we found that in only 24 cases, the overall
molecular packing is comparable between the hydrate and anhydrous crystals and the water molecules
do not disrupt the molecular arrangements of the organic crystals too much. In other words, for the P21

space group, there is a 50% chance to have closely related hydrate anhydrous structures, and in most cases,
they can be described as a dehydrated hydrate or isomorphic hydrate. The DK-T_A:DK-T_2H2O crystal
transformation instead belongs to the other group: there are no relationships between the screw axes in the
two crystals.

As mentioned above, the water molecules are arranged in dimers connected through a carboxylic
oxygen atom (O1) and describe as a whole a zig-zag motif extending along the c axis direction (Figure 6 top).
In fact, each water dimer is hosted in an isolated site, i.e., it is not connected by a channel, as depicted in
Figure 7, which shows the voids left following the in silico removal of the crystallization water molecules.
In this respect, DK-T_2H2O could be described as isolated site hydrate (with two water molecules in each
site); however, the dihydrate species could be also classified as a planar hydrate (a subclass of channel
hydrates [51]), given that water molecules are interposed between stacks of Ts (Figure 7 bottom).

Given that the water molecules are sandwiched between columns of trometamol cations parallel
to the c axis direction, it should be expected that the hydration/dehydration process occurs along
the c axis. As shown in Figure 6, the organization in alternating structural blocks of DK anions and
T cations is retained in the two crystal forms; however, the unique symmetry axis is not conserved
(DK and T ions arrange differently with respect to the screw axis in the two solid forms). On the
other hand, although several attempts made, no trace of the amorphous phase in the XRPD (X-ray
Powder Diffraction) (hydration) and VT-XRPD (Variable Temperature XRPD) (dehydration) patterns
was detected [31].
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(top) and c (bottom) axis directions mapped with the Voids routine in Mercury [38] by using a probe
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3.3. Crystal Structure from Computational Methods

As already said, there are no differences in the nature (type, number and geometry) of the
H-bond interactions involving each of the two independent dexketoprofen and trometamol ions
(Table 2), as well evidenced by the corresponding Hirshfeld surfaces (HSs), the related fingerprint plots
(Figures S6 and S7 in Supplementary Materials) and relative contributions to the HS area (Figure S8 in
Supplementary Materials). By contrast, the different coordination numbers (3 vs. 4) which characterize
the water molecules (O1W vs. O2W) are well evidenced in the corresponding HSs (three red spots
vs. four red spots) and in the related fingerprint plots (Figure 8): the bottom right wing comprised
between the two spikes which contributes to account for the H . . . H contribution to the HSs area (ca.
51% for O1W vs. 44% in O2W). We speculated that the higher HH contribution for O1W could be a hint
of the higher steric hindrance experienced by O1W, which could be the reason of a three-coordinate
geometry, instead of the four-tetrahedral one.

Finally, as for the O . . . H interactions, there are no significant differences in terms of HSs, fingerprint
plots and related contribution to the HSs area of the DK and T ions in the anhydrous (Figure S9 in
Supplementary Materials) and hydrate phases, which agrees well with the observation that in both the
crystal structures, all the potential H-bond donors and acceptor are engaged.
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We also searched for some hints on the relative arrangements of the trometamol piles in
DK-T_2H2O and DK-T_A using quantum mechanical solid-state calculations. First of all, starting from
the experimental structures, we optimized DK-T_2H2O and DK-T_A (DK-T_2H2Oc and DK_TAc,
hereafter) in order to verify the adequacy of the theoretical method used. The calculated and
experimental volumes differ of about 7.4% and 4.6% for DK-T_2H2O and DK-T_A, respectively. Tables
S4 and S5 in Supplementary Materials show a comparison between the experimental and calculated cell
parameters. These differences are in line with the state of the art, also considering that the structures
were obtained at 100K, while the calculations refer to a temperature of 0K. A better agreement could be
obtained using the quasi-harmonic approximation method that allows us to obtain the variations of the
cell parameters with the temperature, but it was outside the goal of our work. In any case, looking at
the key dihedral angles for DK and T (see Tables S6 and S7 in the Supplementary Materials), we found
a difference no larger than 8◦, and this ensures that the main orientations of the molecules have been
simulated correctly. After that, we removed the water molecules from the optimized DK-T_2H2Oc
crystal structure and we optimized a dehydrated structure (DK-T_C). The DK-T_C volume is 69.8Å3

(3.7%) smaller than the volume of the calculated dihydrate structure (DK-T_2H2Oc). As shown by
Figure S10 and in comparison with Figure 6, its overall packing is closely related to that found in
DK-T_2H2O and the trometamol piles are still present, being the carboxylic groups of DK able to
maintain the piles separated.

The DK and T conformations in DK-T_C are still very similar to those observed in DK-T_2H2Oc;
nevertheless, several key angles differ by more than 10◦, indicating some level of rearrangement of the
molecules in the crystal (see Table S6 in the Supplementary Materials). The energy difference between
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DK-T_C and the optimized DK-T_A (DK-T_Ac) is not meaningful, the difference less being than 1 kcal/mol.
On the other hand, DK-T_Ac has a larger density than DK-T_C (1.392 vs. 1.352 g/cm3, respectively) and
this can be one of the reasons for the preference of the anhydrous form DK-T_Ac. Then, keeping in mind
that no amorphous phases were detected in the transformation of the DK-T salts, the structurally strict
similarity between the DK-T_C and DK-T_2H2O forms may suggest, as a hypothesis, the existence of an
intermediate form during the crystalline–crystalline hydration/dehydration process.

4. Conclusions

We have reported here the molecular and crystal structures of the dihydrate phase of the
dexketoprofen trometamol salt (DK-T_2H2O) as determined by single crystal X-ray diffraction.
Diffraction data show that, as in the parent anhydrous phase (DK-T_A), all the potential donor/acceptor
sites are involved in the intermolecular H-bond. However, in DK-T_2H2O, at variance with the
anhydrous species, the H-bond between the strongest donor/acceptor groups (-NH3

+/COO−) is
mediated by the water molecules. The latter are arranged in isolated dimers extending along the c axis
direction sandwiched between piles of trometamol cations; as a consequence, the classification of the
hydrate, isolated hydrate vs. planar hydrate, is not straightforward.

The hydration/dehydration process (and the reverse one) occurs without a change in the space
group; however, the unique symmetry axis is not conserved, being the DK and T ions arranged in
a different way with respect to the screw axis in the two solid forms. Finally, quantum mechanical
solid-state calculations provided some hints for the possible intermediate during the crystalline-crystalline
hydration/dehydration process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/8/659/s1,
XRPD patterns, Hirshfeld surfaces and related fingerprint plots, comparison between experimental and calculated
data tables.

Author Contributions: Conceptualization, P.P., P.R. and A.I.; methodology, L.C. (Luca Conti), M.P.G., G.G. and
S.M.; software, A.I.; investigation, P.R., L.C. (Laura Chelazzi) and M.V.; data curation, P.P. and P.R.; writing—original
draft preparation, P.P., P.R., A.I. and S.M.; writing—review and editing, P.P., P.R. and S.M.; supervision, P.P. and
A.I. All authors have read and agreed to the published version of the manuscript.

Funding: M.P.G.: G.G., P.P., P.R., and S.M. thank the Fondazione Cassa di Risparmio di Firenze (project 2018.0980).

Acknowledgments: Authors thank the Centro di Cristallografia Strutturale (CRIST) of the University of Florence
for the X-ray diffraction facilities and Samuele Ciattini for his valuable technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Byrn, S.R.; Zografi, G.; Chen, X.S. Solid-State Properties of Pharmaceutical Materials, 1st ed.; John Wiley & Sons:
New York, NY, USA, 2017; pp. 38–39.

2. Nangia, A. Pseudopolymorph: Retain This Widely Accepted Term. Cryst. Growth Des. 2006, 6, 2–4. [CrossRef]
3. Brittain, H.G. Theory and principles of polymorphic systems. In Polymorphism in Pharmaceutical Solids;

Brittain, H.G., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1999; pp. 1–33.
4. Aaltonen, J.; Allesø, M.; Mirza, S.; Koradia, V.; Gordon, K.C.; Rantanen, J. Solid form screening–a review.

Eur. J. Pharm. Biopharm. 2009, 71, 23–37. [CrossRef] [PubMed]
5. Morris K., R.; Rodríguez-Hornedo, N. Encyclopaedia of Pharmaceutical Technology, 3rd ed.; Swarbrick, J.,

Boylan, J., Eds.; Marcel Dekker: New York, NY, USA, 1993; pp. 393–440.
6. Tiana, F.; Qua, Q.; Zimmermann, A.; Munka, T.; Jørgensend, A.C.; Rantanena, Y. Factors affecting crystallization

of hydrates. J. Pharm. Pharmacol. 2010, 62, 1534–1546. [CrossRef] [PubMed]
7. Xu, Y.; Jiang, L.; Huang, Y.; Wang, J.R.; Mei, X. Solid-State Characterization and Transformation of Various

Creatine Phosphate Sodium Hydrates. J. Pharm. Sci. 2014, 103, 3688–3695. [CrossRef]
8. Hickey, M.B.; Peterson, M.L.; Manas, E.S.; Alvarez, J.; Haeffner, F.; Almarsson, O. Hydrates and Solid-State

Reactivity: A Survey of β-Lactam Antibiotics. J. Pharm. Sci. 2007, 96, 1090–1099. [CrossRef]

http://www.mdpi.com/2073-4352/10/8/659/s1
http://dx.doi.org/10.1021/cg050343e
http://dx.doi.org/10.1016/j.ejpb.2008.07.014
http://www.ncbi.nlm.nih.gov/pubmed/18715549
http://dx.doi.org/10.1111/j.2042-7158.2010.01186.x
http://www.ncbi.nlm.nih.gov/pubmed/21039539
http://dx.doi.org/10.1002/jps.24175
http://dx.doi.org/10.1002/jps.20919


Crystals 2020, 10, 659 13 of 14

9. Martins Santos, O.M.; Dias Reis, M.E.; Tavares Jacon, J.; Esselin de Sousa Lino, M.; Savioli Simões, J.;
Doriguetto, A.C. Polymorphism: An evaluation of the potential risk to the quality of drug products from the
Farmácia Popular Rede Própria. Braz. J. Pharm. Sci. 2014, 50, 1–24. [CrossRef]

10. Aitipamula, S.; Vangala, V.R. X-Ray Crystallography and its Role in Understanding the Physicochemical
Properties of Pharmaceutical Cocrystals. Indian Inst. Sci. 2017, 97, 227–243. [CrossRef]

11. Beloborodova, A.A.; Minkov, V.S.; Rychkov, D.A.; Rybalova, T.V.; Boldyreva, E.V. First Evidence of
Polymorphism in Furosemide Solvates. Growth Des. 2014, 17, 2333–2341. [CrossRef]

12. Maestrelli, F.; Rossi, P.; Paoli, P.; De Luca, E.; Mura, P. The role of solid state properties of flufenamic acid.
J. Pharm. Biom. Anal. 2020, 14, 113058–113066. [CrossRef]

13. Rossi, P.; Paoli, P.; Ienco, A.; Biagi, D.; Valleri, M.; Conti, L. A new crystal form of the NSAID dexketoprofen.
Acta Cryst. Sect. C 2019, 75, 783–792. [CrossRef]

14. Paoli, P.; Rossi, P.; Chelazzi, L.; Altamura, M.; Fedi, V.; Giannotti, D. Solid State Investigation and
Characterization of a Nepadutant Precursor: Polymorphic and Pseudopolymorphic Forms of MEN11282.
Cryst. Growth Des. 2016, 16, 5294–5304. [CrossRef]

15. Drebushchak, T.N.; Mikhailenko, M.A.; Brezgunova, M.E.; Shakhtshneider, T.P.; Kuznetsova, S.A. Crystal
Structure Of Betulin Ethanol Solvate. J. Struct.Chem. 2010, 51, 798–801. [CrossRef]

16. Drebushchak, V.A.; McGregor, L.; Rychkov, D.A. Cooling rate “window” in the crystallizationof metacetamol
form II. J. Therm. Anal. Calorim. 2017, 127, 1807–1814. [CrossRef]

17. Paoli, P.; Rossi, P.; Macedi, E.; Ienco, A.; Chelazzi, L.; Bartolucci, G.L.; Bruni, B. Similar but Different: The Case
of Metoprolol Tartrate and Succinate Salts. Cryst. Growth Des. 2016, 16, 789–799. [CrossRef]

18. Rossi, P.; Paoli, P.; Chelazzi, L.; Conti, L.; Bencini, A. Metroprolol Fumarate: Crystal Structure from Powder
X-ray Diffraction Data and Comparison with the Tartrate and Succinate Salts. Cryst. Growth Des. 2018, 18,
7015–7026. [CrossRef]

19. Rossi, P.; Macedi, E.; Paoli, P.; Bernazzani, L.; Carignani, E.; Borsacchi, S.; Geppi, M. Solid-Solid Transition
between Hydrated Racemic Compound and Anhydrous Conglomerate in Na-Ibuprofen: A Combined
X-ray Diffraction, Solid-State NMR, Calorimetric, and Computational Study. Cryst. Growth Des. 2014, 14,
2441–2452. [CrossRef]

20. McGregor, L.; Rychkov, D.A.; Coster, P.L.; Day, S.; Drebushchak, V.A.; Achkasov, A.F.; Nichol, G.S.;
Pulham, C.R.; Boldyreva, E.V. A new polymorph of metacetamol. CrystEngComm 2015, 17, 6183–6192.
[CrossRef]

21. Yang, P.; Qin, C.; Du, S.; Jia, L.; Qin, Y.; Gong, J.; Wu, S. Crystal Structure, Stability and Desolvation of the
Solvates of Sorafenib Tosylate. Crystals 2019, 9, 367. [CrossRef]

22. Tarakanova, E.G.; Voloshenko, G.I.; Kislina, I.S.; Mayorov, V.D.; Yukhnevich, G.V.; Lyashchenko, A.K.
Composition and Structure of Hydrates Formed in Aqueous Solutions of Formic Acid. J. Struct.Chem. 2019,
60, 255–267. [CrossRef]

23. Rossi, P.; Paoli, P.; Milazzo, S.; Chelazzi, L.; Ienco, A.; Conti, L. Investigating Differences and Similarities
between Betaxolol Polymorphs. Crystals 2019, 9, 509. [CrossRef]

24. Paoli, P.; Milazzo, S.; Rossi, P.; Ienco, A. Rationalization of Lattice Thermal Expansion for Beta-Blocker
Organic Crystals. Crystals 2020, 10, 350. [CrossRef]

25. Rossi, P.; Paoli, P.; Chelazzi, L.; Conti, L.; Bencini, A. The solid-state structure of the β-blocker metoprolol:
A combined experimental and in silico investigation. Acta Cryst. 2019, C75, 87–96. [CrossRef]

26. Rychkov, D.A. A Short Review of Current Computational Concepts for High-Pressure Phase Transition
Studies in Molecular Crystals. Crystals 2020, 10, 81. [CrossRef]

27. Rychkov, D.A.; Stare, J.; Boldyreva, E.V. Pressure-driven phase transition mechanisms revealed by
quantum-chemistry: L-serine polymorphs. Phys. Chem. Chem. Phys. 2017, 19, 6671–6676. [CrossRef] [PubMed]

28. Giovannoni, M.P.; Schepetkin, I.; Quinn, M.T.; Cantini, N.; Crocetti, L.; Guerrini, G.; Iacovone, A.; Paoli, P.;
Rossi, P.; Bartolucci, G.; et al. Synthesis, biological evaluation, and molecular modelling studies of potent
human neutrophil elastase (HNE) inhibitors. J. Enz. Inhib. Med. Chem. 2018, 33, 1108–1124. [CrossRef]
[PubMed]

29. Giovannoni, M.P.; Crocetti, L.; Cantini, N.; Guerrini, G.; Vergelli, C.; Iacovone, A.; Teodori, E.; Schepetkin, I.;
Quinn, M.T.; Ciattini, S.; et al. New 3-unsubstituted isoxazolones as potent human neutrophil elastase
inhibitors: Synthesis and molecular dynamic simulation. Drug Develop. Res. 2020, 81, 338–349. [CrossRef]
[PubMed]

http://dx.doi.org/10.1590/S1984-82502011000100002
http://dx.doi.org/10.1007/s41745-017-0026-4
http://dx.doi.org/10.1021/acs.cgd.6b01191
http://dx.doi.org/10.1016/j.jpba.2019.113058
http://dx.doi.org/10.1107/S2053229619006533
http://dx.doi.org/10.1021/acs.cgd.6b00826
http://dx.doi.org/10.1007/s10947-010-0121-0
http://dx.doi.org/10.1007/s10973-016-5954-0
http://dx.doi.org/10.1021/acs.cgd.5b01383
http://dx.doi.org/10.1021/acs.cgd.8b01182
http://dx.doi.org/10.1021/cg500161e
http://dx.doi.org/10.1039/C5CE00910C
http://dx.doi.org/10.3390/cryst9070367
http://dx.doi.org/10.1134/S0022476619020100
http://dx.doi.org/10.3390/cryst9100509
http://dx.doi.org/10.3390/cryst10050350
http://dx.doi.org/10.1107/S2053229618017084
http://dx.doi.org/10.3390/cryst10020081
http://dx.doi.org/10.1039/C6CP07721H
http://www.ncbi.nlm.nih.gov/pubmed/28210731
http://dx.doi.org/10.1080/14756366.2018.1480615
http://www.ncbi.nlm.nih.gov/pubmed/29969929
http://dx.doi.org/10.1002/ddr.21625
http://www.ncbi.nlm.nih.gov/pubmed/31800122


Crystals 2020, 10, 659 14 of 14

30. Hanna, M.; Moon, J.Y. A review of dexketoprofen trometamol in acute pain. Curr. Med. Res. Opin. 2019, 35,
189–202. [CrossRef]

31. Bosch, M.; Mannucci, S.; Torras, E.; Falorni, R.; Gonzales, J.M. Polymorphic forms of dexketoprofen trometamol,
preparation and pharmaceutical compositions thereof. European Patent EP1739072 A1, March 2007.

32. Farshi, F.; Soylemez, S.; Koc, F.; Durmus, S. A process for preparing dexketoprofen trometamol form A and
form B crystals. International Patent WO2011/001213 A1, June 2009.

33. Rossi, P.; Paoli, P.; Chelazzi, L.; Milazzo, S.; Biagi, D.; Valleri, M.; Ienco, A.; Valtancoli, B.; Conti, L.
Relationships between Anhydrous and Solvated Species of Dexketoprofen Trometamol: A Solid-State Point
of View. Cryst. Growth Des. 2020, 20, 226–336. [CrossRef]

34. Bruker. BrukerAPEX2; Bruker AXS Inc.: Madison, WI, USA, 2012.
35. Bruker. Bruker SAINT; Bruker AXS Inc.: Madison, WI, USA, 2012.
36. Burla, M.C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; Da Caro, L.; Giacovazzo, C.; Polidori, G.;

Spagna, R. An improved tool for crystal structure determination and refinement. J. Appl. Crystallogr. 2005, 38,
381–388. [CrossRef]

37. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71,
3–8. [CrossRef]

38. Nardelli, M. PARST95 - an update to PARST: A system of Fortran routines for calculating molecular structure
parameters from the results of crystal structure analyses. J. Appl. Crystallogr. 1995, 28, 659. [CrossRef]

39. Farrugia, L. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [CrossRef]
40. Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, E.;

Taylor, R.; van de Streek, J.; Wood, P.A.; et al. Mercury CSD 2.0—New Features for the Visualization and
Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [CrossRef]

41. Discovery Studio 2019 Client; BIOVIA: San Diego, CA, USA, 2019.
42. Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A.

CrystalExplorer17 (2017); University of Western Australia: Perth, Australia, 2017.
43. Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.;

Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. WIREs
Comput. Mol. Sci. 2018, 8, e1360. [CrossRef]

44. Sure, R.; Grimme, S. Corrected small basis set Hartree-Fock method for large systems. J. Comput. Chem. 2013,
34, 1672–1685. [CrossRef]

45. Cutini, M.; Civalleri, B.; Corno, M.; Orlando, R.; Brandenburg, J.G.; Maschio, L.; Ugliengo, P. Assessment of
different quantum mechanical methods for the prediction of structure and cohesive energy of molecular
crystals. J. Chem. Theory Comput. 2016, 12, 3340–3352. [CrossRef]

46. IUPAC. Compendium of Chemical Terminology, 2nd ed.; the "Gold Book"; McNaught, A.D., Wilkinson, A., Eds.;
Blackwell Scientific Publications: Oxford, UK, 1997.

47. Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. Sect. B
2016, 72, 171–179.

48. Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals.
Acta Crystallogr., Sect. B Struct. Sci. 1990, 46, 256–262. [CrossRef]

49. Kitaigorodskii, A.I. Organic Chemical Crystallography; Consultants Bureau: New York, NY, USA, 1961;
pp. 106–110.

50. Werner, J.E.; Swift, J.A. Data mining the Cambridge Structural Database for hydrate–anhydrate pairs with
SMILES strings. CrystEngComm 2020. [CrossRef]

51. Morris, K.R. Structural Aspects of Hydrates and Solvates. In Polymorphism in Pharmaceutical Solids;
Brittain, H.G., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1999; pp. 126–179.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/03007995.2018.1457016
http://dx.doi.org/10.1021/acs.cgd.9b01030
http://dx.doi.org/10.1107/S002188980403225X
http://dx.doi.org/10.1107/S2053229614024218
http://dx.doi.org/10.1107/S0021889895007138
http://dx.doi.org/10.1107/S0021889812029111
http://dx.doi.org/10.1107/S0021889807067908
http://dx.doi.org/10.1002/wcms.1360
http://dx.doi.org/10.1002/jcc.23317
http://dx.doi.org/10.1021/acs.jctc.6b00304
http://dx.doi.org/10.1107/S0108768189012929
http://dx.doi.org/10.1039/D0CE00273A
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Procedures of DK-T_A Hydration and DK-T_2H2O Crystallization 
	X-ray Powder Diffraction (XRPD) 
	Single Crystal X-Ray Data Collection and Structure Solution 
	Computational Methods 

	Results and Discussion 
	Procedures of DK-T_A Hydration and DK-T_2H2O Crystallization 
	Molecular and Crystal Structure from Single-Crystal X-Ray Diffraction 
	Crystal Structure from Computational Methods 

	Conclusions 
	References

