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Abstract: A polymeric chain spin-crossover (SCO) compound [Fe(NH2trz)3](NO3)2 was embedded
in the pores of mesoporous silica MCM-41, which yielded an M@S composite. The obtained
material was characterized by infrared spectrometry, powder X-ray diffractometry, gas sorption
studies, electron microscopy, and atomic absorption. The temperature-induced SCO behavior of
the composite was monitored by temperature-variable magnetic measurement. The results indicate
that the spin transition curve of the composite was evidently shifted to a higher temperature in
comparison to bulk [Fe(NH2trz)3](NO3)2. The shift in the transition temperature for M@S [versus
bulk [Fe(NH2trz)3](NO3)2] amounted to Tc

↑ = 362 K [347 K] and Tc
↓ = 327 K [314 K] (magnetic

data). The significant difference in the SCO behavior of [Fe(NH2trz)3](NO3)2 when embedded in
the MCM-41 matrix may be attributed to the strengthened cooperativity of compound S and the
nano-confinement pressure of SiO2 walls.
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1. Introduction

The magnetic properties of spin-crossover (SCO) compounds [1–3] are affected by physical and
chemical conditions, such as light, heat, pressure, magnetic field, or solvent (guest) molecules [4–6].
Under the perturbation of a persistent external field, a substance with this property can change from one
stable state to another, thus achieving the function of information storage [7–9] and switching [10,11].

The Fe(II) spin-crossover complexes, with the transition temperature near room temperature and
the obvious color change, are more suitable for applications in information storage and sensors [12–15].
One interesting direction in this area focuses on the composites that involve a given SCO complex
and a given regular matrix [16,17]. Several Fe(II) SCO compounds were synthesized or embedded
in matrices, such as MOFs [18], SiO2 [19], and Ni [20]. These investigations indicated that the spin
transition behavior of an SCO compound is not only dependent on its own natural character, but is
also influenced by the matrix surrounding the particles. For instance, Mallah and coworkers reported
that embedding Fe(pyrazine)Pt(CN)4 in different matrices would cause a significant effect on the
spin transition behavior, achieving a hysteresis of 15 K [21]. Some SCO compounds can be induced
from LS to HS by encapsulation of the suitable matrix, including Fe(II) [22], Ni(II), and Co(II) SCO
compounds [23]. Recently, it was shown that the spin transition behavior of SCO complexes shifted to
a lower temperature through the encapsulation of MIL-101 [18] or C70 [24].

In the previous work, two 1D Fe(II) SCO compounds, [Fe(Htrz)3](BF4)2·H2O and [Fe(Htrz)2trz]BF4

(Htrz = 4H-1,2,4-triazole and trz = 1,2,4-triazolato), were confined in the pores of mesoporous silica
MCM-41 [19]. Both of the spin transition temperatures shifted to a higher value. Furthermore,
the presence of crystal H2O strongly influenced the confinement effect of MCM-41, and the dehydration
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of trapped [Fe(Htrz)3](BF4)2·H2O in the MCM-41 pores would largely raise the spin transition
temperature. However, whether this matrix effect is applicable to other SCO compounds still need
more investigations.

In the work, another 1D Fe(II) SCO complex, [Fe(NH2trz)3](NO3)2 (Scheme 1), was encapsulated in
the pores of mesostructured silica MCM-41. The chosen material has been known to display a reversible
hysteresis loop of ~35 K and has attracted keen interest [25–28]. Herein, the “matrix effect” on the SCO
behavior of [Fe(NH2trz)3](NO3)2 was investigated by temperature flexible magnetic measurements.
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The [Fe(NH2trz)3](NO3)2 (S) chains were embedded in the cylindrical pores of MCM-41 and formed
a hybrid material M@S (for the synthesis procedure, please see Experimental Section). The obtained
M@S material showed a reversible strong color change, which represented its spin transition from LS
(pink) to HS (white). The infrared (IR) spectra of S and M@S were highly consistent, C-H and N-H
stretching vibrations were clearly observed in the range of 3000~3500 cm−1, the peak at 1650 cm−1

indicated the bending modes of -NH2, and all modes of the triazole ring including coupled C-C
and N-N stretching were shown between 600 and 1500 cm−1 (Figure 1a). Comparing powder X-ray
diffractograms (PXRD) of M@S and S confirmed that the compound S formed the same crystalline
phase in MCM-41 (Figure 1b). However, several small new peaks arose in the region of 18◦~22◦ 2 θ

compared with pure S (Figure 1b). In fact, those new peaks were attributed to the highly loaded
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Figure 1. (a) IR spectra and (b) powder X-ray diffractograms (PXRD) patterns of compound S,
hybrid material M@S, and MCM-41.
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The amount of SCO compound S was determined from the Fe analysis by atomic absorption
spectroscopy (AAS) to 54.95%. The formula of compound S is C6H12N14O6Fe (432.09 g/mol), Fe: 12.92%.

At present, Fe analysis, IR, and PXRD characterization only confirmed the presence of compound
S in material M@S, but not inside the pores of MCM-41. Nevertheless, the case of compound S occupied
the pores of MCM-41, and the porosity of MCM-41 was largely decreased, especially with such a high
loading (54.95%). The porosity of M@S and MCM-41 was measured by N2 physic-sorption studies at
77 K (Figure 2). The blank host MCM-41 possessed Brunauer–Emmett–Teller (BET) and Langmuir
surface areas of 860 and 1240 m2/g, respectively, while the M@S material only yielded BET and Langmuir
surface areas of 220 and 330 m2/g, respectively. Thus, compared to pure MCM-41, the porosity of M@S
material was decreased significantly to less than 30% of MCM-41. The N2 physic-sorption isotherms of
M@S belonged to type-IV(a), with a Type H2(b) hysteresis loop, which may be attributed to the pore
blocking [29]. Obviously, such a pore structure must be caused by the formation of compound S inside
the pores of MCM-41. The S-shaped N2 physic-sorption isotherms of MCM-41 highly agreed with the
literature reports [30,31]. All in all, the decrease in porosity of M@S was good evidence that the pores
of MCM-41 were filled with compound S as expected.
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Figure 2. N2 physic-sorption isotherms of M@S and MCM-41.

The morphologies of MCM-41, compound S, and M@S were detected by scanning electron
microscopy (SEM) (Figure 3). The pure compound S consisted of rod-like crystals, which can be easily
distinguished from amorphous MCM-41. Sample M@S showed similar morphology to native MCM-41,
and no characteristic compound S crystals could be found in M@S. This result also supports the idea
that the compound S was inside the mesopores of MCM-41, and the residual material outside the
pores was removed by washing treatment.
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Transmission electron microscopy (TEM) images more intuitively revealed the formation of
nanocrystals of compound S inside the mesopores of MCM-41 (Figure 4). The black dots in the images
represent the compound S nanocrystals, which had a diameter of ~2 nm, and this result coincides with
mesopores sizes of MCM-41 (2.1 ~ 2.7 nm). Under higher resolution (the right image of Figure 4),
it can be clearly found that the black dots were composed of lattices planes, which were indicative of
crystalline material.
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In this work, the spin–transition (ST) behavior of M@S material and compound S were investigated
by DC magnetic measurements. The analysis results are shown in Figure 5. The spin–crossover
behavior of compound S was well investigated in the literature [26,27]. It was known for having
abrupt spin transitions and a large hysteresis loop of ~35 K, with Tc

↑ = 348 K and Tc↓ = 313 K [26,27].
However, in our measurement, the spin–transition curves of compound S had slight discrepancies
with Tc

↑= 347 K and Tc↓=314 K, which were within the error range (Figure 5). M@S presented a
reversible hysteresis loop of ~35 K, with Tc

↑ = 362 K and Tc↓ = 327 K (Figure 5). Compared to pure S,
the spin–transition curves of M@S clearly shifted to a higher temperature. As temperature increased,
χ*T steadily increased, reaching about 1.08 emuK/molOe, around 356 K, after which χ*T increased
sharply at 365 K. Beyond this temperature, χ*T increased very slightly and showed a plateau of
3.70 emuK/molOe at 380 K, which represented HS Fe(II) ions. In the cooling procedure, as temperature
decreased, χ*T followed the same pathway as that detected when heating, except in the range of
333~360 K, which displayed a hysteresis loop of ∼35 K, wide centered at ~345 K. Compared to pure S,
the whole spin transition hysteresis loop shifted ~15 K at a higher temperature (Figure 5). The hysteresis
loop was retained over successive cooling and heating thermal cycles, which confirmed the SCO
reversibility of M@S and S.Crystals 2020, 10, x FOR PEER REVIEW  5 of 8 
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In fact, the spin–transition (ST) behavior of an SCO complex in the matrix is majorly dependent
on the relative separation between the SCO nanoparticles (NPs), which played an important role in
the cooperativity [19–24]. Usually, when a nano-sized SCO compound was embedded in a matrix,
the SCO compound molecules were well isolated and lost their cooperativity, resulting in the ST
temperature shift to a lower temperature [22,23]. Nevertheless, in our case, the ST temperature shifted
to a higher value. The loading of compound S was quite high (nearly up to ~55%), and the distance
between S molecules was very small (Figure 4); thus, the influence of lost cooperativity was limited.
On the contrary, with such a high loading of compound S (Figure 6), the cooperativity may have
been strengthened during the crystallization procedure [32], which led to a “matrix effect” of ST
with a higher temperature [22,23]. The similar “matrix effect” with enhancing cooperativity was
also detected by encapsulating the iron SCO complex in various liquid matrices [32]. Additionally,
this “matrix effect” may have been due to the rigid media of SiO2 as well, which led to a stronger
nano-confinement pressure and resulted in a higher temperature direction shift [19]. It has been
reported that, when Fe(pyrazine)Pt(CN)4 was encapsulated with a thin SiO2 shell, its spin–transition
curve would occur at higher temperatures [21], which was also consistent with our experimental
results. Thus, for 1D SCO chains, the narrow MCM-41 mesopores indeed restricted the SCO behavior.
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3. Experimental Section

3.1. The Preparation of M@S

Two hundred and seventy-eight milligrams of FeSO4·7H2O (1 mmol) and 40 mg of ascorbic
acid were dissolved in 1 mL hot water. A hot solution of 261 mg of Ba(NO3)2 in 1 mL of water was
added to the solution of iron salt dropwise under stirring, maintaining the heating using a water bath.
The mixture was allowed to cool down, and after 3 h of stirring, the formed precipitate of BaSO4 was
filtered off and washed with water (Solution A).

Two hundred and fifty-two milligrams of 4-amino-1,2,4-triazole (AT) and 100 mg of MCM-41
powder (purchased from Aldrich with the pore size of 2.1–2.7 nm) in 2 mL of ethanol were stirred
for 12 h. The formed slurry was added at once to the solution, and the mixture was stirred for 3 h.
The precipitate was filtered off, washed twice with water and twice with ethanol, and dried in an
evacuated desiccator over silica gel. Yield: ~332 mg of a pink powder.



Crystals 2020, 10, 639 6 of 8

3.2. Characterization

Powder X-ray diffractograms (PXRD) were measured on a Bruker D2 Phaser instrument using
a flat low background sample holder and Cu-Ka radiation (l = 1.54182 Å) at 30 kV covering 2 theta
angles 5–80◦ over a time of 2 h, that is 0.01◦/S.

N2 adsorption isotherms were acquired on a Quantachrome Nova® instrument, with 2 h degassing
at a temperature of 120 ◦C in a vacuum prior to each measurement.

FT-IR spectra were recorded on a Bruker TENSOR 37 IR spectrometer at ambient temperature in
the range of 4000 to 500 cm−1 with an ATR unit.

Atomic absorption spectrometry (AAS) was carried out with a Perkin Elmer Analyst100 instrument,
the iron content of the sample was determined by comparison to standard solution.

Scanning electron microscopy (SEM) measurements were conducted on an ESEM Quanta 400 FEG
instrument at 10kV.

Transmission electron microscopy (TEM) measurements were conducted on an FEI Tecnai G2 f20
instrument at 200kV.

DC magnetic measurements were carried out on a Quantum Design MPMS XL-5 SQUID
magnetometer in a magnetic field of 1000 Oe, starting from 200 to 400 K (heating), and then cooling
back to 200 K.

4. Conclusions

In summary, a composite material M@S comprised of the 1D SCO complex [Fe(NH2trz)3](NO3)2

and MCM-41 was successfully prepared. Its spin transition behavior was identified by DC magnetic
measurement. Compared to the pure complex, the spin transition temperature of M@S shifted to a
higher value. This phenomenon could be ascribed to the strengthened cooperativity of compound S
and the nano-confinement of mesopore walls of MCM-41, which indicated a significant “matrix effect”
on the spin-crossover transition of [Fe(NH2trz)3](NO3)2.
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