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Abstract: In this paper we report on nonreciprocal wave propagation in a 2D radial sonic crystal
with space–time varying properties. We show that a modulation traveling along the radial direction
reflects in omni-directional and isotropic nonreciprocal wave propagation between inner and outer
shells. The nonreciprocal behavior is verified both analytically and numerically, demonstrating that
space–time radial crystals can be employed as one-way emitter or receiver of acoustic or elastic signals.
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1. Introduction

Based on the reciprocity principle, wave propagation in linear unmodulated materials
occurs with the same dispersion characteristics along opposite directions. Dispersion properties
showing lack of mirror symmetry in the wavevector space witness the breaking of such principle,
implying directional propagation characteristics. The breaking of reciprocity is considered an
interesting topic within the research community and is motivated by numerous applications of
technological relevance for different realms of physics, such as mechanical [1–6], acoustic [7–9],
and electromagnetic [10] systems. In this context, one dimensional space–time modulations have been
successfully conceived to generate filtering bands (or bandgaps ) occurring at different frequencies for
counter propagating waves. Topical examples of space–time modulation have been successfully
realized in elastic structures through piezoelectric material with attached negative capacitance
shunts [11,12]. Similarly, passive beams with embedded resonators have been used for this purpose,
by properly phase shifting consecutive modulation signals, mimicking a plane wave propagation
along the beam’s dimension [13–15]. The acoustic counterpart has been studied by Cummer and
co-workers [7,16,17] and S. Karkar et al. [8], among others [18,19], demonstrating strong nonreciprocal
transmission of acoustic waves. In addition, nonreciprocity in modulated electromagnetic waveguides
have been object of research in the last years, with emphasis on Bloch modes conversion [20,21] and
stability [22,23].

Recently, 2D space–time varying systems have been employed as a platform to break the
reciprocity principle, following the same approach adopted in the monodimensional case [24,25].
The performances of such configuration is mainly limited by two factors: (i) modulations traveling
along specific directions lead to modified dispersion for a limited range of propagation angles,
which implies strong anisotropy in the nonreciprocal response; (ii) the generation of complete
nonreciprocal bandgaps can be problematic for the greater number of supported modes as compared
to the monodimensional counterparts.

In the attempt to overcome such limitation, we consider a class of axisymmetric modulations,
called radial sonic crystals (RSCs), which have been successfully employed by Torrent and co-workers
to induce reciprocal bandgaps in prior studies [26].
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In contrast with Ref. [26], we introduce the Plane Wave Expansion Method (PWEM) for the
analysis of spatially modulated RSCs. Then, such analysis tool is employed to investigate on the
propagation properties of space–time varying media. In this context, the breaking of reciprocity
principle is achieved though an RSC in which the modulation embodies a space–time variation of the
material properties in the radial direction.

For this configuration, we demonstrate that omnidirectional isotropic nonreciprocity can be
achieved for acoustic waves, i.e., there are given frequency bands in which only diverging waves
can propagate freely, while the existence of propagating converging ones is forbidden and vice-versa,
depending on the direction of propagation of the modulation. The concept is elucidated in Figure 1,
showing that wave can propagate when traveling opposite to the modulation, whereas a filtering
effect is achieved in case of a concurrent propagation direction. More specifically, we show that RSCs
support distinct Bloch modes, each characterized by a different azimuthal symmetry (monopole,
dipole, quadrupole, etc.), that propagate along the radial direction and can be isolated through a
selective excitation, therefore achieving one-way effects between inner and outer shells.

The article is organized as follows: in Section 2 the PWEM for radial crystals is introduced as the
main analysis tool adopted in this manuscript. Section 3 deals with the application of such method in
the attempt to compute the wave propagation properties of spatially modulated RSCs, as a preliminary
case study for the main discussion of this work. The analytical results are then verified via numerical
simulations of the RSC under wide spectrum excitation. The analysis then is focused on space–time
varying RSCs, for which the occurrence of the nonreciprocal behavior is verified through the PWEM
and by way of numerical simulations of wave propagation under narrowband transient excitation.
In this context, we demonstrate that space–time varying RSCs operate as a one-way emitter or receiver
of acoustic waves. Concluding remarks are reported in Section 4.

(a) (b)

Figure 1. Graphical representation of the one-way effect. (a) Waves are allowed to propagate from the
inner to the outer shells di and do of the spatiotemporally modulated radial sonic crystal (RSC) (white
region in the drawing) when the modulation travels from the outer to the inner shell. (b) Vice-versa,
waves are not allowed to reach the outer shell if the modulation travels from the inner to the outer shell.

2. Materials and Methods

Following the work presented in Ref. [26], we briefly underline the conditions under which the
Bloch theorem can be applied in case axisymmetric variation of material properties in radial direction
is considered (the temporal modulation will be introduced in the next section). We hereafter introduce
the PWEM to compute the dispersion properties of RSCs. With implied harmonic time dependence and
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under the assumption that p(r, θ) = ∑q pq(r)eiqθ , the acoustic wave equation for a non homogeneous
medium in cylindrical coordinates writes:(

−B(r)
1
r

∂

∂r
r

ρ(r)
∂

∂r
+

B(r)
ρ(r)

q2

r2

)
pq = ω2 pq (1)

where B(r) is the bulk modulus of the fluid and ρ(r) its mass density. The underlying assumption
is that the material parameters are constant in the azimuthal direction. The wave equation can be
recasted in the following form:

Hqwq = ω2wq (2)

defining the differential operator

Hq = −B(r)
1
r

∂

∂r
r

ρ(r)
∂

∂r
+

B(r)
ρ(r)

q2

r2 (3)

For the Bloch theorem to hold, Hq should be invariant under the translations defined by r →
r + nd, with n integer and d the radial lattice constant. As previously shown in Ref. [26], this is only
possible if a tensorial mass density is assumed:[

−B(r)
r

∂

∂r
r

ρr(r)
∂

∂r
+ q2 B(r)

r2ρθ(r)

]
pq(r) = ω2 pq(r) (4)

where ρr(r) and ρθ(r) are introduced as the components of the mass density tensor. Based on the
aforementioned arguments, the desired translational invariance can be recovered when the following
coefficients in the differential operator are adopted:

B(r) = r ∑
n

Bneinκrr

1
ρr(r)

=
∑n Rneinκrr

r
1

ρθ(r)
= r ∑

n
Θneinκrr

(5)

which allow for the evaluation of the dispersion properties in the ω = ω(κ) form to be found upon
application of the Bloch theorem. Here κr = 2π/d and n ∈ [−N, N] is the index of the Fourier
expansion. As a consequence, Bloch waves are admissible solutions for Equation (4):

pq(r) = ∑
m

Pq,mei(mκr+κ)r (6)

Upon substitution of Equations (5) and (6) in Equation (4) and exploiting the orthogonality of
the exponential functions, an eigenvalue problem can be obtained in the form (see the details in
Appendix A):

[H(κ)]Wq = ω2Wq (7)

which yields the dispersion relation ω (κ) of the RSC for Bloch waves traveling along the radial
direction r, while the dependence from θ is implicit in the q value.
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Consider now a space–time modulation of the material parameters:

B(r, t) = ∑
n

Bnein(κrr−ωrt)

1
ρr(r, t)

=
∑n Rnein(κrr−ωrt)

r
1

ρθ(r, t)
= r ∑

n
Θnein(κrr−ωrt)

(8)

which corresponds to the space-varying configuration, augmented by a temporal modulation
with angular frequency ωr = 2π/Tr. Tr is the temporal period. Bloch-wave solutions take the
following form:

pq(r, t) = ∑
m

Pq,mei[(mκr+κ)r−(mωr+ω)t] (9)

Similarly to the spatially modulated medium, we exploit the PWEM to get to a quadratic
eigenvalue problem (QEP):

ω2[M2] + ω[M1] + [M0(κ)] = 0 (10)

where the matrices [M2] = [I], [M1]ij = 2ωriδij, and [M0]ij = ω2
r i2δij − [H(κ)]ij are detailed in

Appendix B. Equation (10) is used to evaluate the dispersion relation ω (κ) for given values of q and
hereafter employed to study a specific class of radial space–time modulations.

3. Results

3.1. Space-Varying Radial Crystals

Let us consider the material properties illustrated in Figure 2. In the case at hand we assume
Bn = Θn = δ0n without any loss in generality, where δ0n is the symbol of Kronecker, i.e., ρr (r, θ) and
ρθ (r, θ) are constants modulated by r. In contrast, the radial density ρr (r, θ) is spatially modulated
such that:

∑
n

Rneinκrr = R0[1 + αcos(κrr)] (11)

with a spatial period d = 1 m, and a dimensionless modulation amplitude α = ∆R/R0 = 0.4,
with ∆R = (Rmax − Rmin)/2. R(r, θ) = ∑n Rneinκrr is shown in Figure 2a to better highlight the
imposed periodicity. The radial density ρr (r, θ) = ρr (r), azimuthal density ρθ (r, θ) = ρθ (r) and
the bulk modulus B (r, θ) = B (r) are instead represented in Figure 2b–d and are evaluated through
Equation (5). We remark that the physical parameters adopted in the manuscript have been arbitrarily
set and do not affect the physical behavior of the system, but only have influence on the frequency
range under consideration.

Note that different q values lead to different dispersion branches, corresponding to different
azimuthal symmetries. The Bloch diagrams are shown with white dots in Figure 3a–c for
q = 0, 1, 2, and are evaluated through the aforementioned method. In the figure and in the
remainder of the manuscript, µ = κd is defined as the normalized wavenumber, which implies
that the Brillouin zone is limited within the domain µ/π ∈ [−1, 1] . The associated Bloch modes
pq(r, θ, t) = ∑m Pq,mei(mκr+κ)reiωteiqθ are shown in Figure 3d–o, whereby for better visualization the
dependence from time is eliminated evaluating pq(r, θ, t) at t = 0. Different q values imply monopolar
(Figure 3d,e,j,k), dipolar (Figure 3f,g,l,m), and quadrupolar (Figure 3h,i,n,o) associated symmetries
and are labeled with roman numbers I–IV. It is straightforward to conclude that excitation with
appropriate azimuthal symmetry are able to favor only the propagation of the corresponding Bloch
modes (i.e., Bloch modes with different symmetries are orthogonal to the excitation). The modes
obtained for q > 0 display cutoff frequencies below which propagation is not allowed, which is
typical of higher order modes in acoustic waveguides. In addition, a reciprocal gap, that occurs at the
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same frequency for positive and negative wavenumbers, is present for any q values and is tailorable
depending on the modulation parameters α and κr [1].

(a) (b)

(c)

(d)

Figure 2. Schematic of the spatial modulation. (a) Graphical representation of R(r, θ). (b) Radial density
distribution ρr(r, θ) in space. (c) Representation of the bulk modulus B(r, θ) in the plane. (d) Tangential
density ρθ(r, θ) distribution in space. ρθ(r, θ) is inversely proportional to the radius, whereas B(r, θ) is
linearly increasing with r.

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

Figure 3. Numerical dispersion (colored contours) with superimposed Plane Wave Expansion Method
(PWEM) solution (white dots) for (a) q = 0, (b) q = 1, (c) and q = 2. The Bloch-wave solutions
corresponding to µ/π = ±0.5 and µ/π = ±1.5 are marked with red dots. The corresponding
modes are illustrated below for (d,e,j,k) q = 0, (f,g,l,m) q = 1, and (h,i,n,o) q = 2.
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The PWEM results are verified through numerical simulations with the Partial Differential
Equation (PDE) interface provided by the COMSOL Multiphysics environment. The model solves the
two dimensional wave equation with implemented spatiotemporal anisotropic material properties.
Time domain analysis is performed within a finite RSC with inner and outer shells of diameter
di = 1 [m] and do = 45 [m]. Wave propagation is excited with a broadband spectrum excitation in
form of imposed acoustic velocity along the perimeter of the mean circumference, with appropriate
azimuthal symmetry to excite each mode separately. The 2D FFT of the time history of the response
along the radial direction is then performed to obtain the dispersion relation p̂(κ, ω) and superimposed
for comparison in Figure 3a–c. The total time of simulation was set in order to avoid reflections at the
inner and outer boundaries of the domain, these being set to be acoustically fixed.

3.2. Space–Time-Varying Radial Crystals

We now consider the modulation parameters used in the previous section for α and κr, while a
time periodicity for the radial density is enforced according to the following function:

R(r, t) = cos(κrr−ωrt) = ∑
n

Rnein(κrr−ωrt) (12)

with ωr = 0.3π. The spatial distributions of the material properties and their evolution in time
are depicted in Figure 4. Specifically, R(r, θ, t) = R(r, t) is shown in Figure 4a and illustrates a
modulation traveling from the outer to the inner shell, which implies a distribution of the radial
density ρr(r, θ, t) = ρr(r, t) as shown in Figure 4b. In contrast, the coefficients Bn = Θn = δ0n imply
time-invariant azimuthal density ρθ(r, θ, t) = ρθ(r, t) and bulk modulus B(r, θ, t) = B(r, t), that are
displayed in Figure 4c,d.

The dispersion properties for modes corresponding to q = 0, 1, 2 are inspected through the PWEM
in radial coordinates, and are shown in Figure 5. Compared to the space modulated media, a pair of
directional bandgaps open in the κ−ω space, as a blueprint of non reciprocity. This means that there are
frequency bands in which diverging waves cannot propagate while incoming waves can, and vice-versa.
Illustrative examples of counter-propagating Bloch modes pq(r, θ, t) = ∑m Pq,mei[(mκr+κ)r−(mωr+ω)t]eiθ

are shown below each dispersion (and labeled with roman numbers I–IV), corresponding to different
azimuthal symmetries and therefore associated with the respective order q. The analytical predictions
are checked employing time domain simulations with broadband frequency spectrum and the
numerical dispersion is overlapped on the analytic one for comparison, showing good agreement.
Moreover, the gap position and width are tailorable and can be set through a proper choice of the
modulation parameters α, κr, and ωr according to the procedure described in [1].

Non-reciprocity is then further inspected through a narrowband excitation centered in
correspondence of a directional bandgap and located in the central radius of the RSC. The time
histories within the simulation interval t ∈ [0, T], along with the recovered dispersion, are shown in
Figure 6 for monopole, dipole, and quadrupole excitations. For simplicity, only the contribution along
θ = 45◦ is displayed, whereby only diverging waves propagate thus confirming the one-way effects
(see Supplementary Material for full animations of the time history).
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(a) (b)

(c)

(d)

Figure 4. Schematic representation of the space–time varying properties. (a) Graphical representation
of R(r, θ, t). (b) Space–time varying radial tension ρr(r, θ, t). The properties are periodic in space
and traveling toward the inner shell or the outer shell depending on the modulation direction.
(c) Bulk modulus distribution B (r, θ, t). (d) Graphical representation of the spatially varying tangential
density ρθ(r, θ, t).

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

Figure 5. (a–c)Numerical dispersion relation (colored contours) for a space–time modulated SRC with
superimposed PWEM solution (white dots). (a) q = 0; (b) q = 1; (c) q = 2. The Bloch-wave solutions
corresponding to µ/π = ±0.5 and µ/π = ±1.5 are marked with red dots. The corresponding modes
are illustrated below for (d,e,j,h) q = 0, (f,g,l,m) q = 1, and (h,i,n,o) q = 2.
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(a) (b) (c) (d)

(e) (f)

Figure 6. One-way wave propagation for a space–time modulated SRC with excitation in the middle
of the ring structure and associated numerical and PWEM dispersion. (a,b) Monopole, (c,d) dipole,
and (e,f) quadrupole excitation. The energy mainly propagates from the central portion to the outer
shell, while propagation to the inner shell is not allowed.

4. Discussion

In this paper we investigated spatiotemporally modulated radial sonic crystals. The evaluation
of the wave propagation properties is carried out through the PWEM in polar coordinates, and then
validated via numerical simulation of wave propagation and corresponding dispersion. We have
shown that directional bandgaps can be induced for Bloch waves characterized by different
azimuthal symmetries (monopolar, dipolar, and quadrupolar) and that omnidirectional one-way
wave propagation is supported along the radial direction though a proper excitation mechanism.

This work paves the way for future studies on the practical realization of acoustic one-way
emitters/receivers. The underlying hypothesis of the work is to be able to obtain tensorial dynamic
densities modulated in time. Examples of metamaterials exhibiting equivalent tensorial densities are
numerous and have been used extensively in the literature regarding metamaterials for controlling
sound waves, for example in the context of transformation acoustics and cloaking ([27–30]).
For what concerns active modulation of the equivalent properties, interesting studies have also been
reported [31] both theoretically and experimentally [32–35]. A way of implementing anisotropy in a
modulated acoustic medium has also been recently introduced by Allam et al. [36]. In conclusion,
we also underline that the proposed approach is general and valid for all scalar wave systems
upon appropriate substitutions of material properties as for example transverse vibrations in
membranes, SH waves in bulk elastic materials, linear surface waves on water, and TM/TE modes
in elecromagnetism.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/7/624/s1,
Video S1: time history of monopole excitation, Video S2: time history of dipole excitation, Video S3: time history
of quadrupole excitation.
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The following abbreviations are used in this manuscript:

PWEM Plane Wave Expansion Method
RSC Radial Sonic Crystal

Appendix A. PWEM for a Spatially Modulated RSC

Consider the wave equation:[
−B(r)

r
∂

∂r
r

ρr(r)
∂

∂r
+ q2 B(r)

r2ρθ(r)

]
Pq(r) = ω2Pq(r) (A1)

The material densities ρr(r, θ) and ρθ(r, θ) and bulk modulus B(r, θ) are expanded as:

B(r) = r ∑
n

Bneinκrr

1
ρr(r)

=
∑n Rneinκrr

r
1

ρθ(r)
= r ∑

n
Θneinκrr

(A2)

where κr = 2π/d is the modulation wavenumber and d is the spatial period. Consider an Ansatz
solution in form of a Bloch wave:

pq(r) = ∑
m

Pq,mei(mκr+κ)r (A3)

substituting Equations (A2) and (A3) in the governing Equation (A1) gives:[
−∑

s
Bseisκrr ∂

∂r ∑
n

Rneinκrr ∂

∂r
+ q2 ∑

s,l
BsΘlei(s+l)κrr

]
∑
m

Pq,mei(mκr+κ)r = ω2 ∑
m

Pq,mei(mκr+κ)r (A4)

thus

−∑
s

Bseisκrr ∂
∂r ∑

n,m
i(mκr + κ)Pq,mRnei[(n+m)κr+κ]r + q2 ∑

s,l,m
BsΘl Pq,mei[(s+l+m)κr+κ]r = ω2 ∑

m
Pq,mei(mκr+κ)r (A5)

multiplying both side by eisκrr

∑
s,n,m

(mκr + κ)[(n + m)κr + κ]BsPq,mRnei(n+m+s)κrr + q2 ∑
s,l,m

BsΘl Pq,mei(s+l+m)κrr = ω2 ∑
m

Pq,meimκrr (A6)

http://www.mdpi.com/2073-4352/10/7/624/s1
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enforcing the orthogonality of exponential functions we get to:

∑
n,m

(mκr + κ)[(n + m)κr + κ]Bw−n−mPq,mRn + q2 ∑
l,m

Bw−l−mΘl Pq,m = ω2Pq,w (A7)

this can be recasted in an eigenvalue problem in the form

[H(κ)]Pq = ω2Pq (A8)

for example consider −1 ≤ n, m, l, w ≤ 1 then

Pq =

Pq,−1

Pq,0

Pq,1

 (A9)

and
[H(κ)] = ∑

n
[Ln(κ)] + ∑

l
[Ql ] (A10)

with

[Ln(κ)]ij = (jκr + κ)[(n + j)κr + κ]Bi−n−jRn − 1 < i, j < 1

[Ql ]ij = q2Bi−l−jΘl − 1 < i, j < 1
(A11)

Appendix B. PWEM for a Spatiotemporally Modulated RSC

Consider now space–time periodic material parameters, which can be suitably expanded
as follows:

B(r, t) = r ∑
n

Bneinκrr−ωrt

1
ρr(r, t)

=
∑n Rneinκrr−ωrt

r
1

ρθ(r, t)
= r ∑

n
Θneinκrr−ωrt

(A12)

where ωr = 2π/Tr is the temporal angular frequency and Tr is the temporal period. The Ansatz
solution possess the same periodicity of the material parameters:

pq(r) = ∑
m

Pq,mei[(mκr+κ)r−(mωr+ω)t] (A13)

substituting the expressions in Equations (A12) and (A13) the in the governing equation of motion:[
−∑

s
Bseis(κrr−ωrt) ∂

∂r ∑
n

Rnein(κrr−ωrt) ∂
∂r + q2 ∑

s,l
BsΘlei(s+l)(κrr−ωrt)

]
∑
m

Pq,mei[(mκr+κ)r−(mωr+ω)t] =

∑
m
(mωm + ω)2Pq,mei[(mκr+κ)r−(mωr+ω)t]

(A14)

which can be re-written as:

−∑
s

Bseis(κrr−ωrt) ∂

∂r ∑
n,m

i(mκr + κ)Pq,mRnei{[(n+m)κr+κ]r−[(n+m)ωr+ω]t}+

+ q2 ∑
s,l,m

BsΘl Pq,mei{[(s+l+m)κr+κ]r−[(s+l+m)ωr+ω]t} = ∑
m
(mωr + ω)2Pq,mei[(mκr+κ)r−(mωr+ω)t]

(A15)
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the multiplication by eis(κrr−ωrt) yields:

∑
s,n,m

(mκr + κ)[(n + m)κr + κ]BsPq,mRnei(n+m+s)(κrr−ωrt)+

+ q2 ∑
s,l,m

BsΘl Pq,mei(s+l+m)(κrr−ωrt) = ∑
m
(mωr + ω)2Pq,meim(κrr−ωrt)

(A16)

exploiting the orthogonality of the exponential function we get to:

∑
n,m

(mκr + κ)[(n + m)κr + κ]Bw−m−nPq,mRn + q2 ∑
l,m

Bw−l−mΘl Pq,m = (wωr + ω)2Pq,w (A17)

which can be written as a quadratic eigenvalue problem (QEP)

ω2
r [M2] + ω[M1] + [M0(κ)] = 0 (A18)

where:

[M2] = [I]

[M1]ij = 2ωriδij

[M0]ij = ω2
r i2δij − [H(k)]ij

(A19)
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