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Abstract: The utilization of layered nanofillers in polymer matrix, as reinforcement, has attracted
great interest in the 21st century. This can be attributed to the high aspect ratios of the nanofillers and
the attendant substantial improvement in different properties (i.e., increased flammability resistance,
improved modulus and impact strength, as well as improved barrier properties) of the resultant
nanocomposite when compared to the neat polymer matrix. Amongst the well-known layered
nanofillers, layered inorganic materials, in the form of LDHs, have been given the most attention.
LDH nanofillers have been employed in different polymers due to their flexibility in chemical
composition as well as an adjustable charge density, which permits numerous interactions with
the host polymer matrices. One of the most important features of LDHs is their ability to act as
flame-retardant materials because of their endothermic decomposition. This review paper gives
detailed information on the: preparation methods, morphology, flammability, and barrier properties
as well as thermal stability of LDH/polymer nanocomposites.

Keywords: nanocomposites; nanofillers; thermal stability; flammability; polymer matrix

1. Introduction

Polymer matrices are normally reinforced with inorganic fillers in order to improve their properties
and widen their applications [1]. The well-known fillers include silicate, carbon based, calcium
carbonate, fibres, etc. It is apparent that the incorporation of filler requires high content in order to have
any significant influence of the properties of the polymer matrices. A higher composition of fillers,
in most cases, results in increased weight of the resultant composites, which limits the applications of
such systems. In order to solve the problem of weight, nanoparticles have recently emerged as the
filler of choice to enhance the properties of the resultant polymer matrix. This is due to the ability of
nanoparticles to influence the properties of a polymer matrix with considerably low contents, thereby
allowing the nanocomposites to maintain low density of the polymer matrix.

The incorporation of layered inorganic fillers into polymer matrices to form polymer/layered
inorganic nanocomposites has attracted a lot attention due to their distinctive properties [2]. Layered
double hydroxides/polymer nanocomposites belong to an important class of polymer/layered inorganic
nanocomposites because they have shown significant improvement in the composites’ thermal stability,
flame retardancy, and improvement in overall physical properties [3,4]. Due to high pressure that
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can limit or prohibit the use of halogen flame retardant materials because of environmental concerns,
LDHs have emerged as a suitable candidate for halogen-free flame-retardant material [5–8]. It is well
documented in the literature that the methods used for the synthesis of LDH include: urea hydrolysis,
hydrothermal synthesis, co-precipitation, and ion exchange [9,10].

From a chemistry point of view, the structure of LDH can be presented by the following formula:
[MII

1−x Mx
III (OH)2] intra [Ax/m

m−
·nH2O] inter.

In the formula, inter and intra are the intralayer crystalline domain and interlayer spaces,
respectively. The layers of the LDHs are positively charged edge-shared octahedral coordinated metal
hydroxide crystal structures, sandwiched by charge compensating interlayer anions with optional
solvation in water. Furthermore, MII (M2+) is the divalent cation, whereas MIII (M3+) is the trivalent
cation and A is described as an anion with the valency m. Nevertheless, it is apparent that LDHs
consist of high charge density in the interlayer and they seem to have an impenetrable action between
the hydroxides when compared with the well-known layered silicates, which makes exfoliation very
difficult [2]. Furthermore, the fact that polymers are hydrophobic results in further hindrance of the
polymer chains into the LDHs. It is very clear that there is the need to incorporate anionic materials in
order to improve the intercalation of polymers into the LDHs layers. The easiest and convenient route
for fabrication of polymer/LDHs with improved properties is to modify the clay with surfactant or
other materials with the aim of preparing a stable LDHs/polymer nanocomposite system. This review
paper discusses the different modifications of LHDs and the preparation of polymer nanocomposites
with enhanced properties, i.e., better dispersion, flammability resistance, and thermal stability.

2. History of Layered Double Hydroxides (LDHs)

The existence of LDHs dates back to 1842, where minerals consisting of LDHs were discovered in
Sweden. The laboratory synthesis of LDHs began in 1942 and was based on the reaction of dilute metal
solutions with bases. Due to their structural similarities to the hydrotalcites, LDHs were referred to as
hydrotalcite-like compounds (HTLCs). Hydrotalcites are compounds that exist as hydroxycarbonates
of magnesium and aluminium or magnesium and iron (pyroaurite). These hydroxycarbonates are
found in nature, in the form of foliated and twisted plates [11]. In the early 1970s, hydrotalcites
began to be used as catalysts and precursors of various catalysts. This triggered a lot of interest
towards the research of LDHs [11,12]. The first studies on the single crystal X-ray diffraction of
minerals revealed that LDHs possessed a layered structure. Each layer consists of two cations and
the interlayer space was filled with water and carbonate ions. However, at first, this was debated
by several researchers. The reason for this was that even though the main components of the LDH
structure had been identified, some researchers still felt that the intrinsic details associated with the
structural components of LDHs were not yet understood [13]. LDHs can be formed naturally through
natural processes and synthetically in the laboratory. In nature, LDHs are formed naturally by natural
processes, such as the weathering of basalt rocks [14,15] and the precipitation [16] of saline water.
As mentioned earlier, the structure of LDHs resembles that of naturally occurring hydrotalcites with
the formula, [Mg6Al2(OH)16]CO3·4H2O and a general formula, [M(II)1−x M(III)x (OH)2](Yn−)x/n·YH2O,
where M(II) and M(III) are divalent and trivalent metals, respectively; 0.2 < x < 0.33 and Yn− are
exchangeable interlayer anions [17–19]. Synthetically formed LDHs have a highly hydrophilic nature
with an amorphous or semicrystalline hexagonal structure. The structure of the LDH layers is based
on the brucite compound [Mg(OH)2]. The layers that are adjacent to each other are usually tightly
bound together [11]. The structure of LDHs is shown in Figure 1.
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Figure 1. General chemical structure of layered double hydroxides (LDHs). Adapted from Scarpellini, 
D., Falconi, C., Gaudio, P., Mattoccia, A., Medaglia, P.G., Orsini, A., Pizzoferrato, R., Richetta, M., 
Morphology of Zn/Al layered double hydroxidenanosheets grown onto aluminum thin films, 
Microelectron. Eng. 2014, 126, 129–133. With the kind permission of Elsevier [10]. 
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of LDHs has the potential of forming LDHs with a wide range of compositions and metal-ion 
combinations. Their preference over clay is also due to the fact that LDHs have high charge density. 
The charge density of the LDHs is determined by the ratio of the divalent and trivalent metal cations. 
If the divalent/trivalent ratio is low, the charge density increases [11]. LDHs have unique physical 
and chemical properties that are closely related to those of clays. The positively charged layered 
structure of LDHs induces properties, such as anion mobility, surface basicity, and anion 
exchangeability. The water and the anions found between the layers of LDHs are labile. Therefore, 
exchange reactions can be used to replace these interlayer anions with various inorganic or organic 
anions [23]. When LDHs are calcinated, mixed metal oxides with properties, such as large surface 
area and surface basicity are obtained. At elevated temperatures, the metal oxides formed also form 
a homogenous mixture with small crystallite sizes [11]. The LDHs and metal oxides formed during 
calcination also have a high catalytic activity. 

LDHs possess a structural reconstruction or memory effect property that is only unique to them. 
Structural reconstruction is a property that is induced by the calcination of LDHs and the treatment 
of metal oxides with a specific anionic solution [24]. These materials can easily adsorb anions and 
cations [25,26]. The magnetic properties of LDHs are usually regulated by the chemical nature of the 
interlayer spaces in them. The chemical environment in these spaces can be modified by the 
intercalation with organic anions of different chain lengths. This results in hybrid materials with 
tunable magnetic properties [27]. The intercalation of LDHs with long-chain surfactants, e.g. dodecyl 
sulphates, forms hybrid materials that swell in organic solvents. This swelling characteristic is usually 
exploited in the fabrication of monolayers used in nanohybrid and nanocomposite synthesis [28]. The 

Figure 1. General chemical structure of layered double hydroxides (LDHs) [10].

During the synthesis of LDHs, many different combinations of divalent and trivalent metal cations
are used; these include: magnesium, aluminium, zinc, nickel, chromium, iron, copper, indium, gallium,
and calcium [17,20–22].

LDHs are usually preferred over clays or other layered materials. This is because the synthesis of
LDHs has the potential of forming LDHs with a wide range of compositions and metal-ion combinations.
Their preference over clay is also due to the fact that LDHs have high charge density. The charge
density of the LDHs is determined by the ratio of the divalent and trivalent metal cations. If the
divalent/trivalent ratio is low, the charge density increases [11]. LDHs have unique physical and
chemical properties that are closely related to those of clays. The positively charged layered structure of
LDHs induces properties, such as anion mobility, surface basicity, and anion exchangeability. The water
and the anions found between the layers of LDHs are labile. Therefore, exchange reactions can be
used to replace these interlayer anions with various inorganic or organic anions [23]. When LDHs
are calcinated, mixed metal oxides with properties, such as large surface area and surface basicity are
obtained. At elevated temperatures, the metal oxides formed also form a homogenous mixture with
small crystallite sizes [11]. The LDHs and metal oxides formed during calcination also have a high
catalytic activity.

LDHs possess a structural reconstruction or memory effect property that is only unique to them.
Structural reconstruction is a property that is induced by the calcination of LDHs and the treatment
of metal oxides with a specific anionic solution [24]. These materials can easily adsorb anions and
cations [25,26]. The magnetic properties of LDHs are usually regulated by the chemical nature of
the interlayer spaces in them. The chemical environment in these spaces can be modified by the
intercalation with organic anions of different chain lengths. This results in hybrid materials with
tunable magnetic properties [27]. The intercalation of LDHs with long-chain surfactants, e.g., dodecyl
sulphates, forms hybrid materials that swell in organic solvents. This swelling characteristic is usually
exploited in the fabrication of monolayers used in nanohybrid and nanocomposite synthesis [28].
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The chemical environment in between the layers of LDHs is usually altered by the exchange of anions.
The exchange of anions follows the following order of preference:

NO−3< Br− < Cl− < F− < OH− < SO4
2− < CO2−

3

Here, the NO−3 anion can be easily replaced by the CO2−
3 anion. Therefore, in the preparation

of a precursor for interaction, the NO−3 anion is preferred over the CO2−
3 anion. This is because the

interaction has to happen in such a manner that the introduction of the guest molecule does not
change the structure of the host. During this interaction, the existing ion is replaced by the guest
molecule. The anions that are weakly bonded to the hydroxide layers are usually the most vulnerable
for replacement by other ions [29–31].

Many different methods are used for the synthesis of LDHs. The type of method used depends
on the required characteristics and applications of the resultant material. The most commonly used
methods/techniques are methods such asco-precipitation, hydrothermal synthesis, urea hydrolysis,
sol-gel, ion-exchange, and rehydration. There also are other methods often employed, such as self-oxide
method, template synthesis method, and surface synthesis method. The co-precipitation method is
one of the commonly used methods. In this method, the LDH structure is formed by the mixing of
aqueous solutions of M(II), M(III), and interlayer anions. This method gives the liberty to prepare
LDHs that consist of a wide range of anions and cations. The co-precipitation method is uniquely
used to prepare organic-anion LDHs [13]. The co-precipitation method can be further subdivided
into three other methods, viz co-precipitation by filtration, co-precipitation at lower supersaturation,
and co-precipitation at higher supersaturation methods.

The hydrothermal synthetic method is usually employed to regulate particle size and particle size
distribution. The hydrothermal synthesis method follows two synthesis routes. The first route is where
the materials are prepared at temperatures above 373 K in a pressured autoclave. Here, the LDHs are
synthesized from MgO and Al2O3 precursors or from mixtures formed through the decomposition
of the precursor nitrate compounds [11,32,33]. In the other synthesis route, LDHs are prepared at
low temperatures and are also subjected to a process of aging. During the aging process, the LDH
precipitate is refluxed at a specific temperature for 18 h.

In the urea hydrolysis method, urea is used as a precipitation agent in the synthesis of LDHs,
at specific temperatures. The degree of crystallinity of LDHs depends on the synthesis temperature
and decomposition rate. At low temperatures, large particles are formed due to the slow nucleation
and slow decomposition rates of the urea [34,35]. The urea hydrolysis method is uniquely used in the
synthesis of LDHs with a high charge density [34].

In the sol-gel method, LDHs are produced by first forming a sol via the hydrolysis and partial
condensation of a metallic precursor, followed by the formation of a gel. Here, the hydrolysis and
condensation rates of the metallic precursors determine the properties of the resultant LDHs [36].
The condensation and hydrolysis rates of the metallic precursors are also susceptible to modification
by various reaction parameters, such as pH, type and concentration of the precursor, synthesis
temperature, and solvent used. The sol-gel method forms LDHs with a larger surface area than those
formed by the co-precipitation method [37–39]. However, properties such as basicity as well as the
divalent and trivalent metal ion molar ratios of LDHs synthesized with the sol-gel method are still not
understood [38–40].

The ion-exchange method involves the exchange of interlayer anions with other guest anions
introduced into the LDH structure in order to obtain the LDH-guest compound. Several factors, such as
affinity towards the guest anions, the medium of exchange, pH, and the chemical nature of the brucite
layers affect the ion-exchange in LDHs [41].

In the rehydration method, the mixed metal oxides formed after the calcination of LDHs at high
temperatures between 500–800 ◦C are rehydrated and formed into an LDH structure in the presence of
the desired anions [42–47].
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3. Selective Polymer Matrices for Fabrication LDHs

Polymer matrices are frequently reinforced by different nanofillers to reduce the limitations of
polymers and widen their applications. LDHs nanofillers have been incorporated into polymer matrices
to improve the mechanical properties, flammability resistance, and the overall physical properties of
polymers. Polymer matrices in nanofiller polymer nanocomposites are used to provide shape and
durability in the nanocomposites.

Different polymer matrices have been used for fabrication of polymer-LDHs nanocomposites.
The polymer matrices include polymethyl methacrylate (PMMA), epoxy, polylactic acid (PLA),
polyvinyl chloride (PVC), polypropylene (PP), poly(ethylene terephthalate)(PET), polystyrene (PS),
polyaniline, low-density polyethylene (LDPE), acrylonitrile-butadiene-styrene (ABS), ethylene vinyl
acetate (EVA), linear low density polyethylene (LLDPE), cellulose, and poly(caprolactone) [48–60].
Based on the polymer matrices mentioned above, it is clear that thermoplastic and thermosets
were used as host matrices for preparation of LDHs-nanocomposites. However, it is apparent
that thermoplastic matrices were preferred over the thermosets because the former are lightweight,
can be re-melted, and shaped. Due to an environmental protection, there is a slight shift towards
fabrication of biopolymer matrix/LDHs nanocomposites. The resultant nanocomposite is termed
“green nanocomposite”, and these nanocomposites are favourites to replace petroleum-based plastics.
Table 1 summarizes selective polymer matrices for preparation of LDHs nanocomposites.

Table 1. LDHs nanocomposites with selective polymer matrices.

Nanocomposites Type of Polymer (Thermoset or
Thermoplastic) Typical Example of Nanocomposite References

Polyaniline (PANI)/LDHs Thermoset PANI/Mg– Al-LDH [48]

Polyaniline (PAn)/LDHs Thermoset PAn/(3:1; Zn/Al-LDHs) [49]

Polypropylene (PP)/LDHs Thermoplastic, polyolefin PP/MgAl-layered double hydroxides [50]

PLA/LDHs Thermoplastic, polyester PLA/(Mg-Al-LDH-C12) and
PLA/Mg- Al -LDH-CO3

[51]

Epoxy (EP)/LDHs Thermoset
EP/Zn-Al-CO3 -HA LDH and

EP/Mg-Al-CO3-HA LDH,
HA = Hydroxyapatite

[52]

Ethylene propylene diene
(EPDM)/LDH Thermoplastic, elastomer EPDM/Cu–Al –LDHs [53]

LLDPE/LDH Thermoplastic LLDPE/Zn Al-LDH [54]

LDPE/LDHs Thermoplastic LDPE with (i) Mn2Al-LDH-stearate and (ii)
Co2Al-LDH-stearate [55]

poly(3-hydroxybutyrate-co-3
-hydroxyvalerate) (PHBV) Thermoplastic, polyester PHBV/Mg- Al layered double hydroxide [56]

Thermoplastic Polyurethane Thermoplastic TPU/CoAl-LDH and TPU/APP@ Co Al –LDH
APP = ammonium polyphosphate [57]

Poly(ε-caprolactone)
(PCL)/LDH Thermoplastic, polyester PCL/Zn Al -LDH [58]

Highly amorphous vinyl
alcOHol (HAVOH)/LDH Thermoplastic HAVOH/Zn Al -LDH-CNTs

CNTs = carbon nanotubes [59]

Polybutylene succinate
(PBS)/LDH Thermoplastic, polyester PBS/Mg Al-LDH [60]

4. Preparation and Morphology of Polymer-LDHs Nanocomposites

In most studies, it was explained that dispersion of the filler/nanofiller within a polymer matrix
plays a very important role in the properties of the fabricated polymer nanocomposite. In an
LDHs/polymer system, the LDHs are normally modified with organic anions in order to enhance
their interactions with polymer matrices. The main reason for improving the interaction between
the two components, i.e., polymer and LDHs, is because the polymer is hydrophobic and LDHs is
hydrophilic [61]. Furthermore, the method of preparation was also found to have a huge impact on
the dispersion of the LDHs within the polymer matrix. The literature has shown that in most cases,
LDHs are fabricated with different metals, depending on the desired applications. Leng and co-workers
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investigated the structure-property relationship of composites formed from polylactic acid (PLA) and
layered double hydroxides and the comparison of MgAl and NiAl LDH as nanofillers [62]. The metal (s)
LDHs were organically modified with sodium dodecyl benzene sulfonate (SDBS). LDHs and PLA
were prepared by a melt mixing process at a temperature of 190 ◦C (463 K). The morphological
comparison was based on a 3 wt.% content of LDH. Large particles with an estimated size of 100 nm
with less agglomerates were obtained for MgAl LDH/PLA (Figure 2A). According to the authors,
this arrangement will allow partial exfoliation of the metal Al/LDH layers. However, in the system
fabricated from NiAl/LDH-PLA, more aggregates were reported. The structures obtained are more
favourable to intercalation than exfoliation. With the findings obtained above, it can be summarized that
the system of NiAl/LDH-PLA favoured intercalation, whereas the MgAl/LDH-PLA nanocomposites is
a typical exfoliated system.Crystals 2020, 10, x FOR PEER REVIEW 7 of 31 
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NiAl/LDH–PLA size bare 200 nm [62]. Adapted from Leng, J.; Kang, N.; De-Yi, W.; Falkenhagen, J.; 
Thünemann, A.F.; Schönhals, A. Structure-property relationship of nanocomposites based on 
polylactide and layered double hydroxides-comparison of MgAl and NiAl LDH as nanofiller. 
Macromol. Chem. Phys. 2017, 1700232, 1–12. With the kind permission of John Wiley and Sons. 
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masterbatch melt mixing was undertaken by dissolving PLA and MgAl-DBS in methylene chloride 
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investigated compositions. The particle size of the metal (s)-LDHs nanofiller has been proven to have 
an influence on the dispersion of the nanofiller within a polymer matrix [64]. It was reported that the 
fabrication of LDH with gel resulted in large particle sizes (of between 3−4 µm), whereas the 
preparation of LDH nanoparticles through sonication produced smaller nanoparticles (of between 
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Figure 2. TEM picture for nanocomposites with an LDH concentration of 3 wt.%. (A) MgAl/LDH–PLA
size bare 2 µm; (B) MgAl/LDH–PLA size bare 200 nm; (C) NiAl/LDH–PLA size bare 1 µm;
(D) NiAl/LDH–PLA size bare 200 nm [62].

Quispe-Dominguez et al. [63] investigated two types of mixing methods in order to compare which
method provides better dispersion of MgAl-DBS LDH in a PLA matrix. LDH was modified with sodium
dodecylbenzene sulfonate (DBS). The methods employed in this study include: (i) sonication-assisted
masterbatch melt mixing and (ii) direct melt mixing. Sonication-assisted masterbatch melt mixing was
undertaken by dissolving PLA and MgAl-DBS in methylene chloride as a solvent. After 12 h and at a
temperature of 80 ◦C, the solvent was evaporated, with the masterbatch formed, processed at 170 ◦C
in a twin-screw compounder for 10 min. However, for direct mixing, there was no need for solvent
mixing; PLA and MgAl-DBS were melt-mixed directly at 170 ◦C for 10 min. It was observed that
the sonication-assisted masterbatch melt mixing method resulted in better dispersion, intercalation,
and exfoliation of LDH when compared to direct mixing for all investigated compositions. The particle
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size of the metal (s)-LDHs nanofiller has been proven to have an influence on the dispersion of the
nanofiller within a polymer matrix [64]. It was reported that the fabrication of LDH with gel resulted
in large particle sizes (of between 3−4 µm), whereas the preparation of LDH nanoparticles through
sonication produced smaller nanoparticles (of between 50–200 nm) (Figure 3). The nanocomposites
with compositions of between 1–10 wt.% of Mg−Al LDH were prepared by the modified solution
mixing method. The authors reported better dispersion for smaller sonicated LDH nanoparticles
within isotactic polypropylene (iPP) matrix, as confirmed by wide angle x-ray diffraction (WAXD) and
atomic force microscopy. Table 2 illustrates the summary of some selective studies on the preparation
and morphology of polymer-LDHs nanocomposites.Crystals 2020, 10, x FOR PEER REVIEW 8 of 31 
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Figure 3. Graphic representation of the preparation of isotactic polypropylene/Mg–Al LDH layered
double hydroxide nanocomposites [64].
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Table 2. Selective studies on preparation and morphology of polymer-LDHs nanocomposites.

Polymer/LDHs System Synthesis of the Metal-LDH Nanofiller Preparation Method of the
Nanocomposites Summary of the Resultant Morphology References

Polyurethane (Pu)/CoAl-LDH Urea hydrolysis In-situ intercalation polymerization The exfoliation of the nanofiller within a matrix was reported. [65]

Functionalized Poly (vinyl
chloride) (PVC)/Mg-Al LDH Co-precipitation method Solution intercalation method

Four different nanocomposites were prepared depending on the chemical
functionalizing of PVC: (i) PVC/Mg-Al LDH (ii) (PVC+thiosulfate)/Mg-Al

LDH (iii) (PVC+sulfate)/Mg-Al LDH (iv) (PVC+thiourea)/Mg-Al LDH.
Amongst all formed nanocomposites, more exfoliated structures were

observed for (PVC+thiourea)/Mg-Al.

[66]

Polyacrylonitrile (PAN)/Zn-Al
LDH Co-precipitation In-situ polymerisation technique

Different LDH content (viz 2, 4, 6, 8%) were synthesized with PAN.
Transmission electron microscopy (TEM) showed disordered dispersion of
nanofiller in the PAN matrix. However, at higher content of the nanofiller

(viz 8%), more agglomerates were obtained.

[67]

Poly(methyl
methacrylate)/Mg–Al LDH

(PMMA/LDH)
Co-precipitation In-situ polymerisation

The PMMA nanocomposites consisting of 2, 4, 6, 8% composition of LDH
was prepared by in situ polymerisation. The authors reported a random

dispersion of the nanofiller with a polymer matrix. There was an
observation of exfoliation of the nanofiller with partial intercalation at

higher content of the nanofiller.

[68]

Poly (ethylene terephthalate)
(PET)/CaAl-LDH and

MgAl-LDH

The urea-assisted hydrothermal method was
used for preparation of MgAl-LDH, while the

co-precipitation method was used for
fabrication of CaAl-LDH. The co-precipitation

method was employed for MgAl-LDH with
stearic acid (MgAl-LDH-SA)

Solution blending method Scanning electron microscopy (SEM) and TEM showed homogenous
distribution of both CaAl-LDH and MgAl-LDH within a PET matrix. [69]

Linear Low Density
Polyethylene/ZnAl-PDP LDH High-energy ball milling Melt blending and blowing

The nanofiller in this study were modified by Potassium dodecyl
phosphate (PDP). SEM pictures showed uniform dispersion of the

nanofiller into the polymer matrix. The results were supported by XRD,
which indicated no diffraction peak for LDH.

[70]

Poly(methyl
methacrylate)/Co–Al LDH

(PMMA/LDH)
Instinctive self-assembly approach Solvent blending technique

The PMMA nanocomposites were prepared by the solvent blending
technique. The authors reported a wide dispersion of the nanofiller within

the PMMA matrix. There was an observation of exfoliation of the
nanofiller with partial intercalation at higher content of the nanofiller.

[71]

Linear Low Density
Polyethylene (LLDPE)/LDH Anion exchange method Solution intercalation method

The nanofiller in this study was modified by dodecyl sulfate (DS). TEM
results showed uniform dispersion of the nanofiller into the polymer
matrix. Moreover, XRD and TEM results showed the formation of a

mixture of intercalated-exfoliated structures in the
LLDPE/LDH composites.

[72]
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5. Thermal Stability of Polymer/LDHs Nanocomposites

Different studies have investigated the thermal stability of LDH/polymer nanocomposites [63,65,73–84].
Various thermal stability results (decrease or increase in the thermal stability of the nanocomposites)
were recorded, depending on the LDH/polymer nanocomposites system. Lee et al. [84] reported an
increase in the thermal stability of a composite that had the addition of the nanofiller into an ethylene
vinyl acetate (EVA) matrix. In this study, an LDH nanofiller was modified with anionic surfactant,
such as sodium dodecyl sulfate (DS), sodium dodecylbenzene sulfonate (DBS), and stearate (SA).
When comparing the thermal stability (at 50% weight loss) of the three modifications, 6 phr of
DS-LDH/EVA nanocomposites showed 19 ◦C increment, while both the 6 phr of DBS-LDH/EVA and
SA-LDH/EVA nanocomposites recorded 12 ◦C increase from the pristine EVA (Figure 4). However,
Quispe-Dominguez et al. [63] reported a decrease in thermal stability with the incorporation of
magnesium-aluminium layered double hydroxides modified with dodecylbenzene sulfonate (DBS).
This was attributed to the catalytic effect of the modified nanofiller in the polymer matrix and as a
result, reducing the thermal stability of the overall nanocomposites. Due to the two different mixing
methods (viz: sonication-assisted masterbatch melt mixing and direct mixing) employed in this study
for preparation of the nanocomposites, differences in thermal stabilities were observed, depending on
the mixing method employed. It was reported that as much as the thermal stability decreases with
the addition and increases in nanofiller content, the nanocomposites prepared by masterbatch melt
mixing exhibited enhancement in thermal stability when compared with direct mixing, especially
when considering same nanofiller content. For example, at 1.25% of the nanofiller, masterbatch melt
mixing showed higher thermal stability than direct mixing at the same content. This behaviour was
ascribed to a finer dispersion and better intercalation of the nanofiller during masterbatch melt mixing.
Better dispersion and intercalation emphasize the fact that the PLA chains were more intercalated
in the LDHs layers, in case of the PLA nanocomposites prepared by the SMA melt mixing method,
resulting in an enhancement of thermal stability than the poorly dispersed and agglomerated nanofiller
in case of the direct mixing method. Zoromba et al. [83] modified both copper-aluminium LDH and
nickel-aluminium LDH with sodium stearate modifier and melt-mixed them with PP in an extruder.
The authors reported better improvements in the thermal stability of the modified nickel-aluminium
LDH when compared with neat PP, the unmodified nickel-aluminium LDH/PP, and copper-aluminium
LDH/PP nanocomposites. The improvement was attributed to better interfacial interaction between
the nanofiller and the polymer matrix.

In this study, PMMA nanocomposites were prepared by solution mixing by adding
flame resistant materials, such as intumescent flame retardant (IFR) (i) 1,2-Bis(5,5-dimethyl-1,3,2
-dioxyphospacyclOHexane phosphoryl amide) ethane (BPEA), (ii) graphene (reduced graphene oxide),
and (iii) magnesium aluminium-layered double hydroxide modified with sodium dodecyl sulfate.
It was reported that in the absence of IFR (BPEA), there was an increase in the thermal stability of
PMMA nanocomposites with reduced graphene oxide (rGO), LDH, and LDH+graphene as nanofillers
when compared with pure PMMA. The synergistic effect of LDH and LDH+graphene showed more
delay in the thermal decomposition of PMMA in comparison to PMMA/LDH and PMMA/graphene
alone. This is an indication that the synergistic effect of nanofillers can form a better protective
heat barrier and therefore delay the decomposition of the polymer, improving the thermal stability.
Interestingly, it became apparent from the same study that the synergy of LDH and graphene further
enhanced the thermal stability of PMMA/IFR composites. On the contrary, the synergistic effect of
two LDH nanofillers i.e., MgAl-layered double hydroxides (MgAl-LDH) and NiCo-layered double
hydroxides (NiCo-LDH) exhibited a decrease in the thermal decomposition of the nanocomposites,
in comparison to neat epoxy (EP) at the initial decomposition temperature (T5%) [85]. This was ascribed
to the catalytic effect of the metals, which speed-up the polymer degradation. However, as much as the
onset of degradation temperature decreased with the addition of the nanolayers, a combination of 2.5%
of MgAl@NiCo exhibited a slightly higher thermal stability when compared with 2.5% of MgAl in the
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epoxy matrix. Therefore, a general remark can be made such that the synergy of LDH and nanofillers
tend to produce a more compact char content than sole LDH in the polymer matrix.
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6. Flammability Properties of Polymer/LDHs Nanocomposites

Layered double hydroxide nanofillers have proven to be good flame-retardant materials for
protection of polymers against heat [86]. A summarized version of the flame-retardant mechanism
of LDH occurs through the endothermic process with the generation of water and metal oxide
char. A number of authors have investigated the flammability properties of LDH/polymer
and/or polymer/LDHs+another nanofiller in order to enhance the flammability resistance of the
nanocomposites [85–89]. In most of these studies, the flammability properties of the nanocomposites
were investigated by cone calorimetry and limiting oxygen index methods. Cone calorimetry
parameters include: heat release rate (HRR), total heat release (THR), time to ignition (TTI), mass loss
rate (MLR), and smoke production rate (SPR). Amongst the cone calorimetry parameters, the HRR has
emerged as an important parameter since it measures the intensity of fire. A decrease in HRR peak
symbolizes an improvement in flammability resistance of the material under investigation. Furthermore,
an increase in limiting oxygen index (LOI) values is an indication of improvement in flammability
of the nanocomposites. It was reported that the synergistic effect of LDHs with another nanofiller
and/or an intumescent flame-retardant material significantly improved the flammability resistance
of the polymer matrix when compared with LDH alone. Li et al. [87] investigated the flammability
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properties of the three LDHs (viz: MgFe-LDHs, MgAl-LDHs and MgAlFe-LDHs) incorporated into an
EVA matrix. In this study, the LDHs nanofillers were produced from bittern by the co-precipitation
method. Generally, there was a decrease in the heat release rate (HRR) of the EVA matrix with the
addition of the LDHs nanofillers. The HRR peak of pristine EVA was recorded as 1645.8 kW/m2.
It became apparent that with the addition of the three LDHs, the HRR peaks were found to have
reduced, i.e., EVA 1 (MgAl-LDHs) recorded a value of 222.65 kW/m2, while EVA 2 (MgFe-LDHs) and
EVA 3 (MgAlFe-LDHs) showed values of 311.87 and 286.96 kW/m2, respectively. It can be concluded
that the reduction in HRR is attributed to the formation of char residues in the presence of nanofillers,
which acted as a protective barrier against heat. Since ≥90% of the layered double hydroxides must
be modified in order to improve the dispersion of the nanoplatelets within the polymer matrix,
it became apparent that the surfactants played a key role in the flammability properties of the resultant
nanocomposite. Qiu et al. reported on the effect of surfactant (viz: sodium dodecyl sulfate (DDS)
and stearic) on the flammability of PP and Mg3Al LDHs nanocomposites [88]. Mg3AlLDHs were
prepared with surfactants i.e., sodium dodecyl sulfate (DBS) and stearic by employing the aqueous
miscible organic solvent modification technique, whereas the nanocomposites were prepared by the
solvent mixing technique. The addition of both sodium dodecyl sulfate and stearic modified-LDH
resulted in a decrease in the peak heat release rate (PHRR), with the stearic-based LDH nanofiller
showing moderate improvement in the flame resistance of PP than the sodium dodecyl sulfate (DDS)
modified-LDH. At both 20 wt.% of stearic modified-LDH and sodium dodecyl sulfate modified-LDH,
the pHRR decreased by 61% and 58%, respectively, in comparison to the neat PP. However, as much as
there is an improvement in the flammability resistance of the LDHs/nanocomposites, there is a need for
the formation of strong char layers during the process of burning. This can be achieved by combining
two or more nanofillers with LDHs. Another study [85] reported on the flammability properties of
the synergistic effect between NiCo-LDH and MgAl-LDH incorporated in an epoxy matrix. ZIF-67,
a type of metal organic framework (MOF), was used as a precursor to tie up the Co2+ on the layered
double hydroxide in order to convert more of it into NiCo-LDH platelets. Various weight percentages
(wt.%) of MgAl@NiCO (viz 2, 2.5 and 3) as well as MgAl-LDH (2.5 and 3 wt.%.) were mixed with
the epoxy matrix. MgAl@ZIF-67 was used as the benchmark to compare its flammability with neat
EP, EP/2.5% MgAl, and EP/2.5% MgAl@NiCo. The addition of 2.5% MgAl reduced the PHRR when
compared to neat EP, with the peak decreasing further with the addition of EP/2.5% MgAl@NiCo
(Figure 5). The reduction of PHRR in the presence of 2.5% MgAl@NiCo was attributed to the formation
of more compact char than the MgAl, which can delay the entrance of heat and oxygen into the system
and as a result, enhance the flammability resistance.

It was further proven that the addition of three metal LDHs improved the flammability resistance
of the polymer matrix more than two metal LDHs [89]. The authors investigated the flammability
properties of neat iPP, 6% Co-Al LDH, 6% Zn-AlLDH, 6% Co-Zn-AlLDH, and 10% Co-Zn-Al LDH
polypropylene nanocomposites. The three metal LDH nanocomposites showed better reduction in
flammability than the two metal LDH nanocomposites, at the same content. The behaviour was
attributed to the effective char formation for the 6% Co-Zn-Al LDH when compared with 6% Co-Al
LDH and 6% Zn-Al LDH. This thermally stable char can prevent volatile gases/products from escaping
out of the system and acting as a protective heat barrier, thereby preventing heat from entering the
system, as a result improving the flammability resistance of the overall system. It is well known that a
protective char will become fragile when more gaseous volatile products escape the system, which
will provide easier passage of oxygen and heat into the material. Hence, it is important for flame
retardant materials to form a stable and compact char in order to prevent the escape of volatiles gases
and entering of heat into the system. Table 3 summarizes selective studies on the flammability of the
polymer/LDH system.
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Table 3. Selective studies on the flammability properties of a polymer/LDHs system.

Polymer/LDHs System Synthesis of the Metal-LDH Nanofiller Preparation Method of the
Nanocomposites Summary of the Flammability Results References

Polypropylene (PP)/(AMO-LDHs)
and (O-CNT),
AMO = Aqueous miscible organic
o = oxidized

Hydrothermal method Solution mixing

It was reported that the hybrid mixture of AMO-LDH-OCNT improved the
flammability resistance of PP better than AMO-LDHs alone. A synergy
fabricated from 10 wt.% AMo-LDH+1 wt.% oCNT showed 40% reduction in
peak heat release rate (pHRR) when compared with 20 wt.% AMO-LDH
(31% reduction in pHRR).

[90]

Polypropylene (PP)/LDHs and PP/M-LDHs,
M-LDHs = Mg-Al-H2PO−4 LDHs

An ion exchange method was used for
fabrication of dihydrogen phosphate
intercalation (Mg-Al- H2PO−4 )

Melt mixing by using an extruder
The addition of LDH (Mg-Al- CO3

−2 LDH) reduced the pHRR from
1032 kW/m2 (pristine PP) to 837 kW/m2 with the pHRR decreasing
(534 kW/m2) further with the addition M- LDHs (Mg-Al-H2PO−4 LDHs).

[81]

Polypropylene (PP)/APP-LDHs and ZB,
APP = Ammonium polyphosphate,
ZB = Zinc borate

Solvent treatment (Aqueous miscible
organic) was used for treatment of LDHs.
Mg3Al-APP LDH and Mg3Al-CO3 LDH
were synthesized by the
hydrothermal method

Solvent mixing

The addition of 10 and 20 wt.% of APP-LDH resulted in an improvement in
flammability resistance in comparison to carbonate LDH (Mg3Al-CO3 LDH).
The synergistic effect of ZB and APP-LDH improved the flammability
resistance further in comparison to APP-LDH alone.

[91]

Thermoplastic
polyurethane/LDHs-graphene oxide
(TPU/LDHs-GOs)

NO−3 -LDHs-GO was fabricated by the
co-precipitation method Melt mixing method

The investigated samples include: TPU (100%), TPU/NO−3 -LDHs-GO (80/20
mass %), TPU/SDS-LDHs (80/20 mass %), TPU/SDS-LDHs-1%GO (80/20
mass %), TPU/SDS-LDHs-3%GO (80/20 mass %) and TPU/SDS-LDHs-5%GO
(80/20 mass %). The addition of the nanofillers into the TPU matrix reduced
the peak heat release rate (PHRR), which is an indication of flammability
resistance. The LDHs nanofiller modified with sodium dodecyl sulfate (SD)
showed better flammability resistance properties when compared with
NO−3 -LDHs. This was attributed to a better exfoliation of the SDS-modified
nanofiller, which provided a better chance of a char formation. The synergy
between GO and LDHs improved the flammability resistance more than
NO−3 -LDHs-Go and SDS-LDHs samples, with TPU/SDS-LDHs-5%GO (80/20
mass %) showing more reduction in PHRR. This is due to the ability of Go to
be an effective flame-retardant material.

[92]

Acrylonitrile-Butadiene-Styrene/(CaMgAl
-Layered Double Hydroxides)
(CaMgAl-LDHs)

CaMgAl-LDHs was fabricated by
Co-precipitation method. Borated
CaMgAl-LDHs was prepared by
dissolving CaMgAl-LDHs into boric acid
solution. In order to form
O-CaMgAl-LDHs, B-CaMgAl-LDHs was
dissolved in sodium oleate solution.

Melt blending by two-roll mix

The addition of 10, 20, 30 and 40% of O-CaMgAl-LDHs increased with the
addition and increasing in o-CaMgAl-LDHs content. The synergistic of
O-CaMgAl-LDHs, ammonium polyphosphate (APP) and graphite (EG)
showed higher values than O-CaMgAl-LDHs.

[93]
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7. Barrier Properties of Layered Double Hydroxides (LDH)

Layered double hydroxides (LDHs) are usually combined with polymer matrices to form films
with good gas barrier properties, for applications in food packaging and encapsulation of electronic
devices [94,95]. LDHs consist of crystalline layered structures [96–99] that induce gas barrier properties
by increasing the diffusion length of gases, therefore resisting permeating gases in the resultant polymer
film. The development of organic-inorganic composite materials with gas barrier properties, e.g.,
LDH/polymer films, still faces a few challenges. One of them is that the diffusion of gas molecules is
only suppressed in the direction of the film, i.e., the gas molecules flowing parallel to the inorganic
structural layers are not resisted [100–102]. In such a case, the gas barrier properties of the film are
usually improved by increasing the content of the crystalline layered structures. However, the loading
with these inorganic crystalline structures reduces the flexibility and toughness of the barrier materials.
Another challenge is that the incorporation of highly oriented inorganic structural layers into polymer
matrices also causes polymer aggregation. This aggregation creates voids through which gas molecules
permeate easily. This results in a film with compromised gas barrier properties [103]. In a quest to
curb the challenges faced by the development of LDH-based gas barrier materials, considerable efforts
have been directed towards developing the structure of LDHs. Dou et al. [104] discovered that the
incorporation of plate-like LDH (P-LDH) into a polymer matrix, e.g., chitosan (CTS), improved the
oxygen barrier properties of the resultant films. However, the challenge was that the oxygen barrier
properties were not that good for very thin films. Hence, in another study [95], the authors converted the
LDH with a plate-like structure to one with a hierarchical structure (H-LDH). The oxygen transmission
rate of the resultant H-LDH/CTS films was reduced by almost 37% when compared to that of the
original P-LDH/CTS films, indicating that the structural conversion of the LDHs improved their gas
barrier properties. The synthesis of H-LDH was performed via the continuous calcination-rehydration
treatment of P-LDH. The resultant H-LDH was then used as a scaffolding material for the fabrication
of chitosan multi-layered films via an alternate spin-coating process. This process led to the formation
of (H-LDH/CTS)n films with excellent oxygen barrier properties. The (H-LDH/CTS)n films exhibited
an oxygen transmission rate (OTR) that was below the detection limit of commercial instruments
(<0.005 cm3/m2 day atm).This was attributed to the capabilities of H-LDH to resist the migration of
oxygen molecules from multiple directions by creating a longer diffusion pathway. Large amounts
of oxygen molecules were also absorbed by the large surface area of the H-LDH. The large surface
area of the H-LDH filled-in all the gaps between H-LDH and the polymer matrix, thus closing-up
the space for oxygen permeation [95]. During the development of LDH/polymer gas barrier films,
improving the durability of the films is quite important, especially for applications such as food
packaging and encapsulation of electronic devices. In order to achieve this, LDH/polymer films with
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self-healing properties are designed and fabricated. This results not only in a film with excellent gas
barrier properties, but also one with the ability to repair itself after damage by external stimuli. In a
study by Dou et al. [94], (LDH/PSS)n-PVA films with self-healing properties triggered by humidity
were fabricated via the layer-by-layer assembling of layered double hydroxide nanoplatelets and
poly(sodium styrene-4-sulfonate) (PSS), followed by the subsequent incorporation of poly(vinyl alcohol)
(PVA). The even distribution of the highly oriented LDH nanoplatelets in the film was responsible for
the resistance of permeating gases by creating a long diffusion pathway. The PVA was responsible for
the humidity-stimulated self-healing properties of the films. When the films were exposed to humidity
after the development of the stimuli crack, the water molecules triggered the formation of hydrogen
bonds among the hydroxyl groups of PVA, thus causing the stimuli crack to close. Hydrogen is usually
used as an alternate fuel to fossil fuels because its combustion only produces water, which implies
less air pollution. However, amongst many other methods of storing hydrogen, LDHs have been
considered as the best substances for the storage of hydrogen gas. This is achieved through the
conversion of LDHs into microporous materials through intercalation with other anionic substances.
Huang and Cheng [105] intercalated Li-Al layered double hydroxides with various organic anions
via a co-precipitation method. The maximum hydrogen absorption per micropore surface area of the
LDHs prepared in this study was higher than that of metal organic frameworks (MOFs) reported in
the literature, hence confirming the microporous nature of the prepared LDHs. Table 4 summarizes
selective studies on the barrier properties of polymer-LDHs nanocomposites.
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Table 4. Selective studies for the preparation and barrier properties of polymer-LDHs nanocomposites.

Polymer/LDHs System Synthesis of the Metal-LDH
Nanofillers

Preparation Method of the
Nanocomposites Summary of the Resultant Barrier Properties References

Cellulose nanofibrils
(CNFs)/MgAl-CO3-LDHs

LDHs were synthesized via the
hydrothermal method

CNFs/MgAl-CO3-LDHs with different LDH
ratios were prepared by a
filtering/evaporation process that induced
barrier and strengthening properties in the
composite films.

The resultant composite films exhibited improved gas-barrier properties.
The water vapour penetration of the films decreased significantly at low
MgAl-CO3-LDHs concentrations of: 5 wt.% and 10 wt.%. At 5 wt.%
MgAl-CO3-LDHs, the water vapour penetration was reduced by 50 % as
compared to the pure CNFs film. When the concentration was increased to
10 wt.%, the water vapour penetration decreased further, reaching a low of
1927 g/m2

·24 h, which was the lowest content of penetrated water vapour
compared to all the MgAl-Co3-LDHs loadings.

[106]

Nitrile butadiene rubber
(NBR)/polyvinyl pyrrolidone
modified ultrathin LDH
nanoplatelets (U-mLDHs).

The U-mLDHs nanoplatelets were
prepared by a slightly improved
co-precipitation method.

The NBR/U-mLDH composites were
prepared by a layer-by-layer spin-coating
assembly technique.

The oxygen transmission rate (OTR) of the films with a higher aspect ratio,
(U-mLDH/NBR)30, was reduced by 92.2% compared with the pure NBR film.
The improved gas barrier properties were due to the decreased diffusion
pathway of the oxygen molecules. The free space between the U-mLDH and
NBR was due to the large aspect ratio of the U-mLDH and the improved
interfacial adhesion at the LDH-polymer interface.

[107]

Linear low density polyethylene
(LLDPE)/LDH composite films.

LDH intercalated with an aliphatic
long-chain anion was prepared by a
single pot high-energy balling
method.

The films were prepared by melt blending
and blow processing.

The water vapour barrier properties of the LLDPE composite films with 1%
LDH were enhanced by 60.36%. This was attributed to the LDH inducing a
longer diffusion pathway for the water molecules.

[70]

Poly(vinyl alcohol)(PVA)/hydrid
layered double hydroxides
(LDHs)-reduced grapheme oxide
(rGO) (LDH-rGO).

MgAl-LDH-rGO hybrids were
prepared by the co-precipitation
method.

The PVA/LDH-rGO hybrid films were
prepared by the solution casting method.

The oxygen transmission rate (OTR) of PVA/LDH-rGO films was decreased
by 86% at 1% LDH-rGO loading. The improved barrier properties were
attributed to the uniformly dispersed LDH-rGO hybrids in PVA.

[108]
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8. Mechanical Properties of Polymer-LDHs Systems

Mechanical properties are used to determine the strength and ductility of polymer nanocomposites.
The mechanical properties of LDH-based polymer nanocomposites were investigated by different
studies [109–114]. Numerous factors were found to affect the mechanical properties of LDHs
nanocomposites, including the content of LDHs, the type of LDHs, polymer matrix, dispersion of LDH
in polymer matrix, and the preparation method. Botan et al. investigated the mechanical properties
of polyamide 6 incorporated with two types of LDHs (viz Zn/Cr-L and Zn/Cr-P, with Zn = Zinc,
Cr = Chromium, L = lauric acid and P = palmitic acid) [109]. The LDHs nanocomposites were
fabricated by in situ polymerization with various composition of the filler (viz 1, 2, and 3 wt.%).
Mechanical properties of nanocomposites were investigated with tensile tester. The modulus of
elasticity (E) decreased at lower content of Zn/Cr-L i.e., 1 wt.%, with the E values increasing at
higher compositions of Zn/Cr-L (viz 2, and 3 wt.%). The decrease in E values at lower content was
attributed to the plasticizing effect due to the absorption of the water at lower content. Similarly,
the addition of Zn/Cr-P increased the E values of the polyamide 6 nanocomposites in all investigated
filler composition. The optimum composition for both fillers was obtained at 2 wt.%, with the
Zn/Cr-P nanofiller showing higher E values when compared with Zn/Cr-L counterpart. This was
attributed to the bilayer structures, which allowed an efficient stress-transfer. The effect of stearate
intercalated LDH on the properties of PU was investigated in the literature [110]. The polyurethane
(PU)/Stearate-intercalated LDH was fabricated by solution intercalation. There was an enhancement in
tensile strength (TS) with the incorporation of stearate-LDH (viz 1, 3, 5, and 8 wt.%) into PU matrix,
when compared with the neat PU. The tensile strength was observed to increase with decreasing
in stearate-LDH nanoparticles content. A higher tensile strength (TS) at 1 wt.% of stearate-LDH
was ascribed to a better exfoliation at this content. There was a reported increase in elongation at
break with addition of stearate-LDH nanoparticles into the PU. The behaviour was ascribed to the
plasticization of the alkyl chain intercalated into the LDH in the PU/stearate-LDH system. Feng and
co-workers investigated the properties of the LDHs reinforced peroxide-cured acrylonitrile butadiene
rubber [111]. The LDHs were organically modified with sodium dodecylbenzene (SDBS) and sodium
styrene sulfonate (SSS). The LDH modified with sodium styrene sulfonate (SSS) composites showed
better mechanical properties than neat acrylonitrile butadiene rubber (NBR) and LDH modified with
sodium dodecylbenzene composites. This behaviour was attributed to a better chemical bond between
the organically modified LDHs sodium styrene sulfonate (SSS) and NBR. Based on the above study,
it became apparent that the type of organic modifier may influence the overall properties of the
LDHs-polymer nanocomposites. Suresh and co-workers [112] investigated the Co-Al layered double
hydroxide reinforced polystyrene nanocomposites. In this study, Co-Al layered double hydroxide was
organically modified with sodium dodecyl sulfate (SDS) and the composites were prepared by melt
compounding. It was observed that at 1 wt.% of Co-Al LDH nanocomposite, there is an enhancement
in both tensile and tensile modulus when compared with neat PS and 3, 5 as well as 7 wt.% Co- Al LDH
nanocomposites, respectively (Figure 6). At lower content, i.e., 1 wt.%, there is a better exfoliation of
the nanoparticles in the PS matrix as well as enhanced interfacial interaction between the two phases,
which resulted in better mechanical properties. At higher content of the nanofiller, there is a probability
of agglomerated Co-Al LDH, which formed defects, and as a result lowering the mechanical properties.
Table 5 summarizes selective studies on the mechanical properties of LDH-polymer nanocomposites.
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Table 5. Selective studies on mechanical properties of LDH-polymer nanocomposites.

Polymer-LDHs Nanocomposites Preparation of Polymer-LDHs
Nanocomposites Summary of the Mechanical Properties References

Epoxy (EP)/Mg-Al LDH
intercalated with ammonium

alcOHol polyvinyl
phosphate (AAPP)

Solution intercalation The addition of 10 and 20 mass% of intercalated LDHs
into EP showed higher tensile strength than neat EP. [113]

Poly(ε-caprolactone)
(PCL)/Silver-LDH (Ag-LDH).

LDH = Mg-Al LDH
Type of silver-LDHs used are:

Ag-LDHs@PDA
PDA = polydopamine
Ag-LDHs@TA-Fe (III)

TA = tannic acid
Fe (III) = Iron (III)
Ag-LDHs (PVP)

PVP = pyrrolidone

Solution casting method

It was reported that when the composition of Ag-LDHs
was 0.5 wt.%, the tensile strength of the

Ag-LDHs@TA-Fe(III)/PCL system decreased by 11%,
while the LDHs@PDA/PCL nanocomposite reduced by

4% when compared with neat PCL. The 0.5 wt.% of
Ag-LDHs(PVP) showed 26% reduction in

tensile strength.

[114]

Aromatic Polyimide
(PI)/Zn/Cr-LDH

Zn = Zinc, Cr = Chromium
In situ polymerization

The study investigated 1, 2, and 4% of LDH incorporated
into PI. The 2% of LDH showed higher tensile strength
value when compared with neat PI, 1% LDH/PI and 4%
LDH/PI nanocomposites. This was attributed to a better

dispersion LDH in a polymer matrix at low content.
However, at higher content, i.e., 4 wt.%, there was

formation of an aggregate, which resulted in defect in
the nanocomposite.

[6]

Cellulose nanofibrils (CNF)/Mg
Al-CO3-LDHs Filtering/evaporation method

According to the study, 5 wt.% of the LDH showed
higher tensile strength in comparison to neat CNF, 10, 15
and 25% of LDHs. Higher tensile strength at low content
was ascribed to a better dispersion of the nanofiller in

a matrix.

[106]

Poly(ethylene-co-vinyl alcOHol)
(EVAL)/LDHs,

LDH was organically
modified with: Stearate (SA),

to form SA-LDH

Melt compounding

Mechanical properties of EVAL/LDH composites were
compared with neat EVAL. The authors reported that the
charpy notched impact strength of the composites was

twice that of the neat EVAL polymer. This was attributed
to the extensive internal micro-cavitation of the highly

dispersed and randomly dispersed LDH platelets during
impact loading. The large surface area created by the

micro-cavitation enhanced the requisite energy
dissipation mechanism.

[115]
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9. Selective Applications of Different Polymer-LDHs Systems

Layered double hydroxides nanocomposites have been prepared for various applications including
energy, food packaging, water purification, gas sensing, biomedical, flame retardant, and agricultural
applications [68,116–119]. Qin and co-workers investigated the LDHs nanocomposites based on
PANI/ZnTI-LDHs for sensing ammonia gas (NH3) [116]. The LDHs (ZnTi-LDHs) nanofiller was
prepared by hydrothermal method and the nanocomposites were fabricated by in situ chemical
oxidative polymerization. The ability of the LDH nanocomposites in sensing NH3 was compared
with neat PANI and ZnTi-LDHs. The LDHs nanocomposites were found to exhibit a significant
NH3 sensing ability with good lengthy stability when compared with neat polymer and LDHs,
respectively. The results were ascribed to a more-loose architecture structure of the nanocomposite,
which improves the adsorption site as well as facilitation of the gas adsorption. The system consisting
of sulfonated polyaniline (SPAN) reinforced with graphene oxide (GO)-LDHs was investigated for
extraction phthalates in drinking water and distilled herbal beverages [117]. The study compared the
extraction efficiency of GO-LDH@SPAN nanocomposite with LDH and GO-LDH for extraction of
phthalates from aqueous solution. The extraction efficiency of the LDH@SPAN nanocomposite for
phthalate was higher than neat LDH and GO-LDH, with LDH showing lower extraction than GO-LDH.
The reason LDH showed lower extraction for phthalates was due to a possible weak hydrogen bond
between LDH and phthalates. The higher extraction efficiency of phthalates by GO-LDH was attributed
to a π-π bond between GO and aromatic ring of phthalates. The GO-LDH@SPAN nanocomposite
showed higher extraction of the analyte because SPAN can promote more π-π interaction with the
phthalate. Furthermore, as SPAN has O=S=O in the matrix, it presents more active sites for extraction
of the analytes. PMMA/Mg- Al LDH nanocomposites was fabricated by in situ polymerization for
a possible packaging application [68]. Two key results were significant in determining a possible
packaging application, i.e., thermal stability and gas permeability. The fabricated nanocomposites
were reinforced with 2, 4, and 8% of Mg-Al LDH. There was a decrease in the oxygen flow rate of
the nanocomposites in comparison to neat PMMA. This behavior was attributed to a dispersion of
LDH in a polymer matrix, which acts as protective barrier for oxygen permeability; as for neat PMMA,
the presence of voids resulted in oxygen penetration within the matrix. The addition of the LDH
into the PMMA enhanced the thermal stability of PMMA matrix when compared with neat PMMA.
The reduction in oxygen permeability and the enhancement in thermal stability of the PMMA/Mg-Al
LDH system suggest that the nanocomposite may be suitable for packaging application.

In recent times, the demand for highly flexible, durable, and lightweight piezoelectric
nanogenerators has led to the fabrication of piezoelectric and dielectric electrospun nanofabrics
of poly (vinylidene fluoride) (PVDF)/Ca-Al LDH composites. During the fabrication of the PVDF/Ca-Al
LDH composite nanofabrics, the Ca Al- LDH nanosheets were first synthesized via a modified
coprecipitation method before they were incorporated as filler into the PVDF matrix. The composite
nanofabrics of PVDF/Ca-Al LDH were finally obtained via the electrospinning of the composite solutions.
The synergy between the PVDF-LDH interaction and the in situ stretching, which was attributed
to the electrospinning, enhanced the nucleation of the electroactive β phase up to 82.79%. This was
an indication that these composite nanofabrics are suitable for piezoelectric-based nanogenerators.
The hand slapping and frequency-dependent mechanical vibration mode methods showed that the
piezoelectric performance of the PVDF/Ca-Al LDH composite nanofabrics can reach a maximum open
circuit output voltage of 4.1 and 5.72 V. The composite nanofabrics also had a high dielectric constant
and a low dielectric loss, which were attributed to high interfacial polarization at low frequencies with
increasing LDH loading. This showed that these materials have the potential to be used in electronic
devices [118].

Wang et al. [119] prepared Zn Al -LDH/polycaprolactone (PCL) nanocomposites for use in drug
delivery systems. The Zn Al-LDH was synthesized via the co-precipitation method while the ZnAl
-LDH/PCL nanocomposites were prepared by the solution intercalation method. The ZnAl-LDH/PCL
composite nanofabrics exhibited a higher weight loss and drug release amount when compared to neat
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PCL. The drug release kinetics followed the first-order kinetic model for the Zn Al-LDH/PCL composites,
indicating that the drug release was content-dependent. However, for the neat PCL, the drug release
kinetics followed the Ritger-Peppas kinetic model, indicating that the release followed the Fikian
mechanism. Table 6 summarizes selective studies on the applications of LDH-polymer nanocomposites.

Table 6. Summary of selective studies on the application of LDH-polymer nanocomposites.

Polymer-LDH System Preparation Method for the
Nanocomposites Intended Application References

Poly(lactide-co-glycolic acid)
(PLGA)/Mg Al-LDH

Solution mixing and casting into
thin films Drug delivery applications [120]

Polypropylene-grafted maleic
anhydride (PP-g-MA)/Dye
structure-intercalated layered double
hydroxide (d-LDH)

co-precipitation Flame retardant applications [121]

Waterborne polyurethane (WPU)/LDH
LDH = (MxAl/CO3

2−, M = Mg and/or
Zn, and x = 2, 3 and 4)

Solution mixing and casting into
thin films Coatings applications [122]

Chitosan (CS)/NiFe-LDH Low-saturation
co-precipitation method. Catalytic applications [123]

Polylactic acid (PLA)/Intumiscent flame
retardant (IFR)/Phosphotungstic acid
intercalated Mg Al-LDH (PWA-LDH)

Melt blending and hot pressing
into films Flame retardant applications [124]

CoNiMn-LDH/Polypyrrole
(PPy)/Reduced graphene oxide (RGo)

One-step route in which the
co-precipitation reaction of metal ions
(Co2+, Ni2+ and Mn2+) was used to
prepare LDH and the polymerization
of pyrrole (Py) was used to prepare
PPy. Modified Hummer’s method
was used to prepare graphene oxide

Electrocatalytic applications [125]

Isotactic polypropylene
(iPP)/ZnAl-LDH Solvent mixing method Flame retardant applications [89]

Polystyrene (PS)/MgAl -LDH Solution mixing Removal of Cd2+ ions from
aqueous media

[126]

Poly(vinyl chloride) (PVC)/MgAl LDH Solution intercalation method Biomedical applications [127]

10. Conclusions and Future Recommendations

Layered double hydroxides (LDHs) have been the nanofiller of choice in terms of improving the
flame retardancy and barrier properties of polymer matrices. However, the improvement in properties
of the LDHs/polymer systems depended on the dispersion of the nanofiller within the polymer matrices.
It is apparent that LDHs nanofillers in most cases has been organically modified in order to improve
the exfoliation of the nanofillers in polymer matrices. The dispersion of LDHs/polymer system varied
depending on the method of preparation, type of modifier, and the type of LDHs/polymer system.
Generally, there was an improvement in the flammability resistance of polymer matrices with the
addition of LDHs with different compositions. The flammability resistance improved more in the
presence of LDHs and other flame-retardant fillers. The synergy of LDHs and nanofillers improved
the flame retardancy more because it is able to form a strong and compact char layer, which can
inhibit the entry of heat into the system, thereby improving the overall flammability resistance of the
system. The gas barrier properties of LDH/polymer films were dependent on the orientation and
distribution of the LDH nanoplatelets. Highly oriented and evenly distributed LDH nanoplatelets
created a resistance for the migration of gas molecules from multiple directions by increasing the
diffusion pathway of the permeating gases. The intercalation of LDHs with organic anions altered their
gas barrier properties by converting the LDHs into microporous materials. However, although LDH
improved the properties of various polymer matrices, there is still a huge gap in terms of the thermal
conductivity of the LDHs-polymer nanocomposites. In the past, LDHs nanofillers were fabricated
with conductivity polymers such as polyaniline and polypyrrole; however, there are a few studies
investigating the thermal conductivity of LDHs in combination with well-known conductive fillers
such as expanded graphite, carbon nanotubes, carbon black, and carbon fiber to widen the applications
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of LDHs nanocomposites. The fabricated hybrid LDH/conductive filler/polymer nanocomposite
may be used in applications such as flame retardant, supercapacitors, and batteries. Furthermore,
there is also less investigation on the effect of LDHs in natural fiber reinforced biopolymer composite
to form a “green” LDH/natural fiber/biopolymer hybrid composite. The resultant hybrid material
(viz LDH/natural fiber/biopolymer hybrid composite) may exhibit enhanced mechanical properties,
thermal stability, and flammability resistance and can be used in applications such as environmental
protection and flame retardancy.
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