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Abstract: An unusual self-assembled hetero-bimetallic [Ni(II)-Sm(III)] coordination
polymer, [Ni(L)Sm(NO3)3(4,4′-bipy)]n, is prepared through a hexadentate chelating ligand
2,2′-[1,2-ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L). The Ni(II)-Sm(III) coordination
polymer is validated through elemental analyses, Fourier-transform infrared and UV-Visible
spectroscopies, and X-ray single-crystal diffraction. The Ni(II) atom forms a twisted six-coordinated
octahedron, and the Sm(III) atom is ten-coordinated, adopting a twisted bicapped square antiprism.
An infinite three-dimensional-layer supramolecular structure is obtained through extensive π···π

stacking and intermolecular hydrogen bonding interactions. The polymer has a good antibacterial
effect against Staphylococcus aureus.

Keywords: salamo-based compound; coordination polymer; crystal structure; fluorescence;
antimicrobial activity

1. Introduction

Salen-based compounds have been reported and studied previously [1–6]. Products gained
by the reaction of salicylaldehyde with diamines are significant and common ligands for inorganic
and coordination chemistry. The salen-based compounds and their transition metal complexes have
attracted increased attention in the last few years. They often have unique crystal structures [7–15],
interesting industrial catalyses, and ion recognitions [16–19], including their biological activities [20–27].
Based on the salen-based ligand, new salamo-based ligands were synthesized by introducing –C=N–O–
groups [28–42]. Compared to salen-like compounds, the preparation of Salamo-like compounds is more
laborious. Moreover, with the O-alkyloxime moiety [–CH=N–O–(CH2)n–O–N=CH–] replacing the
[–CH=N–(CH2)n–N=CH–] part, the high electronegativity of the oxygen atom can strongly influence
the electronic properties of the N2O2-donor environment, which can give rise to the novel structures and
potential application values of the obtained complexes [1,13]. Their metal complexes studied include
supramolecular modes of action, the growth of crystals, and optical and magnetic properties [43–49].

Symmetrical 3-alkoxy salamo-based ligands give relatively easy access to 3d–4f complexes, because
the N2O2 cavity in the ligand can coordinate with transition metal ions, while the outer coordination
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site of the O4 cavity can accommodate rare-earth elements. Interestingly, anionic and solvent molecules
are also coordinated with metal atoms. Transition metal atoms usually form distorted octahedral
or triangular biconical configurations, while rare-earth atoms usually form a twisted tricapped
trigonal prism with nine-coordination or form a twisted bicapped square antiprismatic coordination
arrangement with ten-coordination [47].

According to the previous work of our research group [47], heterobimetallic [Ni(L)Ln] units can
be adjusted to form a coordination polymer with a three-dimensional structure by adjusting the ratio
of reactants and adding the auxiliary ligand 4,4′-bipyridine. In this paper, the symmetrical 3-MeO
hexadentate chelating ligand H2L was prepared and used for the formation of 3d–4f coordination
polymers, together with the exo-dentate auxiliary ligand 4,4′-bipy.

2. Experimental

2.1. Materials and Physical Measurements

3-Methoxysalicylaldehyde (99%) bought from Alfa Aesar (Tianjin, China) was used. The other
reagents (Ni(OAc)2·4H2O, Sm(NO3)3·6H2O, 4,4′-bipy, and 1,2-dibromoethane) and solvents (ethanol,
trichloromethane, etc.) were purchased from Shanghai Darui Chemical Fine Chemicals Company
(Tianjin, China), and were of analytical purity.

Elemental analyses for Ni and Sm were carried out on an IRIS ER/SWP-1 ICP atomic emission
spectrometer (Elementar, Berlin, Germany). C, H, and N analyses were determined on Elementar GmbH,
VarioEL V3.00 automatic elemental analysis equipment (Elementar, Berlin, Germany). Melting points
were tested through an X4 microscopic melting point apparatus (Beijing Taike Instrument Limited
Company, Beijing, China).

FT-IR spectroscopy was carried out with a VERTEX70 FT-IR spectrophotometer (Bruker, Billerica,
MA, USA, KBr, 400–4000 cm−1).

UV/Vis absorption spectra were recorded by a UV-3900 spectrophotometer (Hitachi, Tokyo, Japan).
Fluorescence was measured on an F-7000 FL 220-240V spectrophotometer (Hitachi, Tokyo, Japan). 1H
NMR spectra were measured by a Bruker AVANCE DRX-400 spectrometer (Bruker AVANCE, Billerica,
MA, USA).

X-ray single-crystal structure determination was carried out on a Bruker APEX-II CCD
diffractometer (Bruker AVANCE, Billerica, MA, USA).

The antimicrobial activities of H2L, Ni(II) acetate, and the title polymer were tested by a disk
diffusion method, Staphylococcus aureus being selected as Gram-positive bacteria.

2.2. Preparation of H2L

The preparation of H2L is depicted in Scheme 1.
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First, 1,2-di(aminooxy)ethane was prepared based on a similar method previously reported [47].
3-Methoxysalicylaldehyde (304.2 mg, 0.02 mmol) was added to 1,2-di(aminooxy)ethane (92.1 mg,
0.01 mmol). The solvent of the two reactants was ethanol, each with a volume of 25 mL. At the
temperature of 55– 60 ◦C, the product was gained by reaction for 7 h. Colorless crystals of the ligand
H2L were obtained by recrystallization from ethanol, yield: 85%.m.p: 130–132 ◦C. 1H NMR (400 MHz,
CDCl3, 25 ◦C, TMS): δ = 3.90 (s, 6H, –OMe), 4.48 (s, 4H, –CH2), 6.82 (dd, J = 7.9, 1.9 Hz, 2H, –ArH), 6.87
(t, J = 7.9 Hz, 2H, –ArH), 6.90 (dd, J = 7.9, 1.9 Hz, 2H, –ArH), 8.25 (s, 2H, –N=CH), 9.75 (s, 2H,–OH).
Anal. Calcd. for C18H20N2O6 (%): C 59.99; H 5.59; N 7.77. Found C 60.22; H 5.67; N 7.53.

2.3. Preparation of the Ni(II)-Sm(III) Polymer

An ethanol solution (2 mL) of Ni(OAc)2·4H2O (2.49 mg, 0.01 mmol) and an ethanol solution (2 mL)
of Sm(NO3)3·6H2O (4.45 mg, 0.01 mmol) were successively added to a trichloromethane solution
(2 mL) of H2L (3.60 mg, 0.01 mmol), and the same amount of ethanol solution (2 mL) of 4,4′-bipy
(1.56 mg, 0.01 mmol) was then added to the mixture. After stirring for ten minutes, the mixed solution
was filtered. After standing for ten days, several colorless block-shaped single crystals were obtained
by natural evaporation (Scheme 2). Yield: 37%. Anal. Calcd. for C28H26SmN7NiO15 (%): C 36.97; H
2.88; N 10.78; Ni 6.45; Sm 16.53. Found C 34.88; H 2.79; N 10.81; Ni 6.43; Sm 16.46.
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2.4. Crystal Structure Determination of the Ni(II)-Sm(III) Polymer

The crystal structure was obtained by X-ray single-crystal diffraction on a Bruker APEX-II CCD
diffractometer (Table 1). The X-ray single-crystal diffraction data of the Ni(II)-Sm(III) polymer were recorded
and collected by using a Bruker APEX-II CCD diffractometer with Mo-Kα radiation (λ = 0.71073 Å),
and corrected via the Lorentz and polarization factor with a multi-scan method. The program
Shelxs-2018 and Fourier difference techniques were used to solve the structure. It was corrected via
the full-matrix least-squares on F2. The structure included a large void, and the positive or negative
ions and the solvent water molecules in the void could not be confirmed, owing to it being highly
disordered. Thus, SQUEEZE in the PLATON program was used to remove the highly disordered ions and
solvent. (Solvent Accessible Volume = 1275, Electrons Found in S.A.V. = 133). Anisotropic displacement
parameters were applied for the non-hydrogen atoms and isotropic parameters for the hydrogen atoms.
Hydrogen atoms were added geometrically and refined using a riding model.
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Table 1. Crystal data and structure refinement for the title polymer.

Polymer The [Ni(II)-Sm(III)] Coordination Polymer

Empirical formula C28H26N7NiO15Sm
Formula weight 909.62

T, K 173(2)
Radiation; wavelength (Å) Mo Kα; 0.71073

Crystal system monoclinic
Space group P21/c

a, Å 11.3928(4)
b, Å 19.4539(7)
c, Å 19.4229(8)

β, deg 98.689(2)
Volume, Å3 4255.4(3)

Z 4
Dcalcd, g cm−3 1.42

Crystal size, mm3 0.18 × 0.20 × 0.22
Absorption coefficient, mm−1 1.9

range data collection, deg 2.400 to 26.000
F(000), e 1812
hklrange ±14, ±24, ±24

Refl. collected/unique/Rint 60159/9380/0.0196
Data/restraints/ref. parameters 9380/11/471

Final R1/wR2 [I > 2 σ(I)] a,b 0.0332/0.1039
Final R1 wR2(all data) a,b 0.0405/0.1063

GoF c 0.989
∆ρmax/min,e Å−3 1.02/–1.01

a R1 = Σ||Fo | − |Fc ||/Σ|Fo |; b wR2 = [ÿ w(Fo
2
− Fc

2)2/ÿ w(Fo
2)2]1/2, w = [σ2(Fo

2) + (AP)2 + BP]−1, where P = (Max(Fo
2,

0) + 2Fc
2)/3; c GoF = S = [ÿ w(Fo

2
− Fc

2)2/(nobs − nparam)]1/2.

CCDC 1939692 contains the supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.
uk/data_request/cif.

3. Results and Discussion

H2L and the title polymer have been gained and validated by IR spectra, UV/Vis absorption
spectra, and X-ray single-crystal diffraction and fluorescence spectra. Their antimicrobial activities
were investigated. The compounds were stable in air.

3.1. PXRD Analysis

A PXRD test was conducted for the title polymer to demonstrate whether the structure is truly
representative. The PXRD result of the title polymer is given in Figure 1. Through detailed comparison,
the experimental result is coincident with the simulation result. Therefore, the synthesized samples have
high purity and can be used for further study of spectral characterization and fluorescence properties.

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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3.2. FT-IR Spectra of H2L and the Title Polymer

The FT-IR spectra of H2L and the title polymer are depicted in Figure 2.
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The band of H2L appearing at 3437 cm−1 is attributed to the O-H stretching band [47].
The characteristic C=N stretching band is found at approximately 1606 cm−1 in the spectrum of
H2L, and moves to a lower frequency in the polymer, indicating the metal coordination at the nitrogen
atoms of oxime groups [15,50]. The Ar–O stretching vibration band of H2L emerges as an intensive
band at 1253 cm−1 as reported for analogous salen-based compounds [6,28,43], while the title polymer
shows this band at 1210 cm−1, again due to complexation.

3.3. Description of the Molecular Structure of the Title Polymer

The structure of the heterobimetallic [Ni(II)-Sm(III)] salamo-based coordination polymer is
depicted in Figure 3, complemented by data in Table 2.
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The title polymer crystallizes in the monoclinic space group P21/c with Z = 4, consisting of one
Sm(III) atom, one Ni(II) atom, one deprotonated (L)2− unit, one 4,4′-bipyridine ligand, three bidentate
chelating nitrate anions, and three water molecules.

Each Ni(II) (Ni1) atom is sited in a N2O2-donor cavity of the salamo ligand, and is octahedrally
hexacoordinated by two oxime N atoms (N2 and N1), two phenoxo O atoms (O5 and O2), and two
N atoms (N4 or N3) from two 4,4′-bipyridine ligands [50]. The equatorial coordination sites have
distances Ni1–N2 = 2.030(4) Å, Ni1–N1 = 2.072(4) Å, Ni1–O2 = 2.0370(19) Å, and Ni1–O5 = 2.0399(19)
Å, and the axial positions are at the distances Ni1–N4 = 2.167(2) and Ni1–N3 = 2.172(2) Å (Table 2).

The Sm(III) is surrounded by an O10 environment containing four O atoms (O6, O5, O2, and O1)
from the (L)2− units and six O atoms (O14, O13, O11, O10, O8, and O7) from the three bidentate
nitrate ligands. The decacoordinated Sm(III) atom possesses a geometry of a twisted bicapped square
antiprism. The Sm–O distance is in the normal range of 2.353(2)–2.653(4) Å.
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Table 2. Selected bond lengths (Å) and angles (deg) for the title polymer.

Bond Lengths Bond Lengths Bond Lengths

Sm1-O1 2.653(4) Sm1-O10 2.617(4) Ni1-N1 2.072(4)
Sm1-O2 2.353(2) Sm1-O11 2.518(4) Ni1-N2 2.030(4)
Sm1-O5 2.416(2) Sm1-O13 2.510(3) Ni1-N3 2.172(2)
Sm1-O6 2.6013(19) Sm1-O14 2.481(2) Ni1-N4 #1 2.167(2)
Sm1-O7 2.529(3) Ni1-O2 2.0370(19)
Sm1-O8 2.463(4) Ni1-O5 2.0399(19)

Bond Angles Bond Angles Bond Angles

O1-Sm1-O2 61.11(7) O5-Sm1-O10 173.74(9) O10-Sm1-O13 63.93(10)
O1-Sm1-O5 117.08(7) O5-Sm1-O11 124.32(10) O10-Sm1-O14 102.11(9)
O1-Sm1-O6 143.61(9) O5-Sm1-O13 114.44(8) O11-Sm1-O13 73.92(12)
O1-Sm1-O7 71.32(11) O5-Sm1-O14 73.25(7) O11-Sm1-O14 73.63(10)
O1-Sm1-O8 78.12(11) O6-Sm1-O7 73.41(10) O13-Sm1-O14 51.02(7)
O1-Sm1-O10 64.15(10) O6-Sm1-O8 73.12(10) O2-Ni1-O5 78.33(8)
O1-Sm1-O11 72.52(11) O6-Sm1-O10 121.02(9) O2-Ni1-N1 90.31(12)
O1-Sm1-O13 128.07(9) O6-Sm1-O11 140.94(10) O2-Ni1-N2 167.66(12)
O1-Sm1-O14 143.78(9) O6-Sm1-O13 69.80(10) O2-Ni1-N3 90.61(12)
O2-Sm1-O5 65.35(7) O6-Sm1-O14 72.59(7) O2-Ni1-N4 #1 89.60(12)
O2-Sm1-O6 126.96(7) O7-Sm1-O8 51.43(10) O5-Ni1-N1 168.08(12)
O2-Sm1-O7 88.84(9) O7-Sm1-O10 108.73(9) O5-Ni1-N2 90.42(12)
O2-Sm1-O8 131.26(10) O7-Sm1-O11 143.58(12) O5-Ni1-N3 87.88(12)
O2-Sm1-O10 111.99(10) O7-Sm1-O13 127.65(10) O5-Ni1-N4 #1 95.18(12)
O2-Sm1-O11 77.41(10) O7-Sm1-O14 142.47(9) N1-Ni1-N2 101.20(15)
O2-Sm1-O13 143.33(9) O8-Sm1-O10 66.71(12) N1-Ni1-N3 88.64(14)
O2-Sm1-O14 99.12(7) O8-Sm1-O11 116.21(12) N1-Ni1-N4 #1 88.27(14)
O5-Sm1-O6 62.10(6) O8-Sm1-O13 82.62(10) O10-Sm1-O13 94.07(14)
O5-Sm1-O7 77.17(7) O8-Sm1-O14 129.42(10) O10-Sm1-O14 86.35(14)
O5-Sm1-O8 119.44(10) O10-Sm1-O11 49.60(12) O11-Sm1-O13 176.91(14)

Symmetry transformations used to generate equivalent atoms: #1 1 + x, y, z.

3.4. Supramolecular Interactions in the Title Polymer

As is depicted in Figure 4, complemented by data in Table 3, in the title polymer structure, five of
the couples are weak intramolecular hydrogen bonds (C1–H1B···O10, C9–H9A···N3, C23–H23···O2,
C28–H28···O7, and C24–H24···N1) and two intermolecular hydrogen bonds (C4–H4···O9 and
C9–H9B···O13), which indicate that the supramolecular interactions exist in the title polymer [51–56].
The donor (C1–H1B) from the 3-methoxy substituent group from the (L)2− moiety forms a hydrogen
bond with an O atom (O10) of one bidentate chelating nitrate as a hydrogen bonding receptor.
The donors (C23–H23, C24–H24, and C28–H28) of the 4,4′-bipy moieties form intermolecular hydrogen
bond interactions with O and N atoms (O2, N1 and O7) of the fully deprotonated (L)2− moieties as
hydrogen bond receptors. The donor (C9–H9A) of the (L)2− unit is contained in the hydrogen bond
interaction with the N atom (N3) of the 4,4′-bipy ligand as a hydrogen bonding receptor. These ligands
are connected by C−H···π (C19–H19···Cg2) interactions (Figure 5), forming a one-dimensional chain
structure (Figure 6).
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Figure 4. View of the intramolecular hydrogen bond interactions of the Ni(II)-Sm(III) polymer (hydrogen
atoms are omitted for clarity, except those forming hydrogen bonding).

Table 3. Hydrogen bonding interactions (Å, ◦) and C-H···π stacking interactions for the
Ni(II)-Sm(III) polymer.

D–H···A. d(D-H) d(H···A) d(D···A) ∠D–H···A Symmetry Code

C1-H1B···O10 0.98 2.39 2.897(7) 111
C4-H4···O9 0.95 2.55 3.365(5) 143 x, 3/2 − y, 1/2 + z

C9-H9A···N3 0.99 2.44 3.357(5) 154
C9-H9B···O13 0.99 2.40 3.230(5) 141 1 − x, −1/2 + y, 3/2 − z
C23-H23···O2 0.95 2.58 3.093(4) 114
C24-H24···N1 0.95 2.61 3.104(5) 113 −1 + x, y, z
C28-H28···O7 0.95 2.25 3.120(5) 151 −1 + x, y, z
C19-H19···Cg2 0.98 2.56 2.897(7) 114 x, y, z

Cg6···Cg6 4.065(2)

Cg6 = C12–C13–C14–C15–C16–C.
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The π···π stacking interactions depicted in Figure 7 (Cg6···Cg6) (Cg6 = C17–C16–C15–C14–C13–C12),
and the intermolecular hydrogen bond interactions (C4–H4···O9 and C9–H9B···O13) depicted in Figure 8
give rise to the formation of a 2D supramolecular network, further linking into a 3D supramolecular
structure by C–H···π, π···π, and hydrogen-bond interactions [57–64] (Figure 9).Crystals 2020, 10, x FOR PEER REVIEW 9 of 16 
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3.5. Molar Conductance and Solubility and Mass Spectrometry Analysis of the Title Polymer

The [Ni(II)-Sm(III)] coordination polymer could be soluble in DMSO and DMF, slightly soluble in
ethanol, methanol, THF, dichloromethane, trichloromethane, acetonitrile, and acetone, and insoluble
in n-hexane, ethyl ether, and water. Molar conductance of the title polymer in DMF at 25 ◦C
(1 × 10−3 mol·L−1) is 179.6 Ω−1

·cm2
·mol−1. The result of molar conductivity is inconsistent with the

1:2 electrolyte reported previously [50].
According to the data analysis of mass spectrometry (Figure S1), when m/z = 418.9292, which is

almost equal to the relative molecular mass of [NiL], when m/z = 158.9381, it is the relative molecular
mass of 4,4′-bipy, indicating that 4,4′-bipy exists in the solution in the free form, while samarium
nitrate might exist in the solution in the form of [Sm(NO3)(DMF)3]2+ due to the peak of m/z = 430.9834.

Through conductivity tests and mass spectrometry, we determined that the [Ni(II)-Sm(III)]
coordination polymer dissolved in DMF may comprise [Ni(L)], 4,4′-bipy, [Sm(NO3)(DMF)3]2+

cation, and NO3
− anions. The observed conductance would then result from the presence of

[Sm(NO3)(DMF)3]2+ cation and NO3
− anions, according to the following equilibria taking place

in solution:
[Ni(L)Sm(NO3)3(4,4′-bipy)]n
 n[Ni(L)Sm(NO3)3(4,4′-bipy)]

[Ni(L)Sm(NO3)3(4,4′-bipy)] + DMF
 [Ni(L)] + 4,4′-bipy + [Sm(NO3)3(DMF)]

[Sm(NO3)3(DMF)] + 2DMF
 [Sm(NO3)(DMF)3]2+ + 2NO3
−

3.6. UV/Vis Absorption Spectra of H2L and the Title Polymer

The UV/Vis absorption spectra of H2L and the title polymer (in 10−5 m ethanol solution) are
depicted in the Figure 10.
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Figure 10. The UV/Vis absorption spectra of H2L, its Ni(II)-Sm(III) coordination polymer,
Ni(OAc)2·4H2O, Sm(NO3)3·6H2O, and 4,4′-bipy.

The characteristic peaks of H2L appear at approximately 317, 271, and 223 nm, respectively,
the peaks at 271 and 223 nm could be ascribed to the π–π* transition of the benzene ring,
and the peak at 317 nm could be attributed to the intraligand π–π* transition of the oxime-like
group [20,47]. Compared to the peaks of H2L, the absorptions of the polymer bathochromically move
to approximately 228 and 276 nm, exhibiting coordination of the (L)2− unit to the Ni(II) atom [15,50].
Upon coordination, the intra-ligand π–π* transition of the oxime-like group disappeared again,
indicating the complexation [47,50]. A new characteristic peak at approximately 350 nm is found for
the coordination polymer, belonging to an n-π* charge transfer of the imino group [43,50].

In order to further prove that the polymer in the form of a solution is not affected by metal ions,
4,4′-bipy, we conducted UV spectrum experiments on its solution (Ni(OAc)2·4H2O, Sm(NO3)3·6H2O,
and 4,4′-bipy in 10−5 m EtOH). There was almost no change in the absorbance value of metal ions and
no characteristic absorption peak. Further, 4,4′-bipy showed a characteristic absorption peak at 239 nm.

3.7. Fluorescence Properties of the Title Polymer

The fluorescence spectra of H2L and the [Ni(II)–Sm(III)] polymer in EtOH (1.0 × 10−5 m) are shown
in Figure 11. The results show that H2L presents an intensive photoluminescence with maximum
emission at approximately 395 nm at 311 nm excitation, which can be explained as the π–π* transition
in H2L. In the title polymer, the emission peak appears at approximately 382 nm, and there is a slight
blue shift compared to H2L [50], the fluorescence intensity of the title polymer appears to be quenched,
and at the same time, it can be seen from the data of the mass spectrum that the polymer solution is
almost in the form of [Ni(L)] + 4,4′-bipy + [Sm(NO3)(DMF)3], indicating that the coordinated Ni(II)
ion has a heavy atom effect [62]. The high nuclear charge of the Ni(II) causes the electronic energy
levels of the phosphorescent molecules to be staggered, which enhances the spin–orbit coupling of
the phosphorescent molecules, thereby increasing the probability of inter-system hopping (ISC) of
S1→Tl, thereby quenching the fluorescence. In the fluorescence spectra, only the band at approximately
375–650 nm instead of the f–f emission is expected for Sm(III) ions.
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Figure 11. Photophysical properties of H2L and its corresponding Ni(II)-Sm(III) polymer in ethanol (1 × 
10–5 mol L−1) at 311 nm excitation. 
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the LB medium with a perforator. Finally, DMF sample solutions were configurated with solution 
gradients of four various concentrations (0.35, 0.7, 1.4, and 2.8 mg mL–1). 
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Then, 70 µL of samples with different concentrations were added to the samples with a pipette 
gun. After an eight-hour incubation period at 37 °C, diameters of the inhibition zones were 
measured. The experimental results are compared to Ampicillin as a reference standard with various 
concentrations. The diameters of the inhibition zones of H2L, nickel acetate, and the title polymer are 
shown in Figure 12. The title polymer shows a more enhanced antibacterial effect than H2L and the 
metal salt solution under the same conditions. At the same time, the complex [NiL] also has a certain 
antibacterial activity, but it is not as high as that of the coordination polymer, which may be due to 
the antibacterial activity of the dissolved polymer being the sum of the comprehensive activities of 
various components. It can be conjectured from the experimental results and previous literature [54], 
first of all, that this is the result of the destruction of the protein structure in bacteria due to the action 

Figure 11. Photophysical properties of H2L and its corresponding Ni(II)-Sm(III) polymer in ethanol (1
× 10−5 mol L−1) at 311 nm excitation.

3.8. Antimicrobial Activity

Firstly, the Staphylococcus aureus on the plate was inoculated into Agar (2%) (LB) medium for
overnight culture, and 0.1 mL of night-cultured fresh bacterial suspension was added to the LB medium
after autoclaving and cooling to 50 ◦C. Secondly, after the mixture was mixed well, LB solid AGAR
was poured into a sterile Petri dish. After being completely solidified, we punched holes in the LB
medium with a perforator. Finally, DMF sample solutions were configurated with solution gradients
of four various concentrations (0.35, 0.7, 1.4, and 2.8 mg mL−1).

Then, 70 µL of samples with different concentrations were added to the samples with a pipette
gun. After an eight-hour incubation period at 37 ◦C, diameters of the inhibition zones were measured.
The experimental results are compared to Ampicillin as a reference standard with various concentrations.
The diameters of the inhibition zones of H2L, nickel acetate, and the title polymer are shown in Figure 12.
The title polymer shows a more enhanced antibacterial effect than H2L and the metal salt solution
under the same conditions. At the same time, the complex [NiL] also has a certain antibacterial activity,
but it is not as high as that of the coordination polymer, which may be due to the antibacterial activity
of the dissolved polymer being the sum of the comprehensive activities of various components. It can
be conjectured from the experimental results and previous literature [54], first of all, that this is the
result of the destruction of the protein structure in bacteria due to the action of heavy metal ions in
coordination polymers [32]. Secondly, the ligand H2L destroys part of the cell membrane, making
the bacteria unable to further divide and reproduce, leading to death. These results are similar to
biological activities of related Schiff base complexes previously reported [65].
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4. Conclusions

A new heterobimetallic Ni(II)-Sm(III) polymer has been prepared and structurally validated,
in which H2L represents a symmetric salamo-based bisoxime ligand. In the Ni(II)-Sm(III)
polymer, the hexacoordinated nickel(II) atom bears a slightly twisted octahedral geometry, and the
decacoordinated Sm(III) atom possesses a twisted bicapped square antiprismatic arrangement. In the
crystal, the polymer forms a self-assembling infinite 2D network further linking into a 3D supramolecular
structure by C–H···π, π···π, and hydrogen-bond interactions. Compared to H2L, the Ni(II)-Sm(III)
polymer exhibits only a very slightly hypsochromically shifted fluorescence of lower intensity, indicating
that the coordinated Ni(II) cation has a minor heavy atom effect. Antimicrobial experiments have shown
that the title polymer demonstrates stronger antimicrobial activity than H2L under the same conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/7/579/s1,
Figure S1: Mass spectrogram of Ni(II)-Sm(III) coordination polymer solution.
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