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Abstract: Cu2ZnSnS4 (CZTS) is a quaternary semiconductor that has emerged as a promising
component in solar absorber materials due to its excellent optical properties such as band-gap
energy of ca. 1.5 eV and significant absorption coefficient in the order of 104 cm−1. Nevertheless,
the energy conversion efficiency of CZTS-based devices has not reached the theoretical limits yet,
possibly due to the existence of antisite defects (such as CuZn or ZnCu) and secondary phases.
Based on electronic similarities with Zn, Mg has been proposed for Zn substitution in the CZTS
structure in the design of alternative semiconductors for thin-film solar cell applications. This work
aims to study the properties of the CZTS having Mg incorporated in the structure replacing Zn,
with the following stoichiometry: x = 0, 0.25, 0.5, 0.75, and 1 in the formula Cu2Zn1−xMgxSnS4

(CZ-MTS). The semiconductor was prepared by the hot injection method, using oleylamine (OLA)
as both surfactant and solvent. The presence and concentration of incorporated Mg allowed the
fine-tuning of the CZ-MTS semiconductor’s structural and optical properties. Furthermore, it was
observed that the inclusion of Mg in the CZTS structure leads to a better embodiment ratio of the
Zn during the synthesis, thus reducing the excess of starting precursors. In summary, CZ-MTS
is a promising candidate to fabricate high efficient and cost-effective thin-film solar cells made of
earth-abundant elements.
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1. Introduction

The development of sustainable resources to obtain clean energy as an alternative to fossil
fuel has become a fundamental challenge of the 21st century, for both industry and academia.
Solar energy is one of the best options among all renewable energies able to cover current energy
demand. Significant efforts have been made searching for a cheaper and non-toxic photovoltaic
material in order to improve the record efficiency (above 20%) [1,2] of chalcopyrites Cu(In,Ga)Se2

or CIGS [3–5]. In this context, kesterites as Cu2ZnSn(S,Se)4 (CZTSSe) are attractive and promising
materials for absorber layers in thin-film solar cells because all its components are earth-abundant and
environment-friendly [6]. CZTSSe is isoelectronic to CIGS [2], so they share their material properties
while all the know-how related to preparation (like colloidal [1], spray pyrolysis [7,8] and sol-gel [9,10]
techniques) and characterization methods used in chalcopyrites may be transferred and applied
to kesterites.

The current record efficiency is 12.6% for CZTSSe [3,4,11–13] with band gaps between 1.0
and 1.5 eV [11,12], which is still lower than the requirement for commercial solar cell devices.
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Possible reasons for low device performance could be the existence of antisite defects (CuZn or
ZnCu) in the CZTS(Se) absorber layer [11,13–15] that acts as recombination centers. Also, the presence
of secondary phases like Cu2SnS3, Cu2S, SnS2 and ZnS [16,17] are responsible for the low open
circuit voltage and high series resistance [2,3]. Furthermore, some secondary phases are difficult to
detect [16,18], and they appear even in successfully grown CZTSSe, because of the large number of
components and the small region of single phase CZTSSe.

The intrinsic difficulty of increasing CZTS absorber layer performances in thin-film solar cells has
been addressed faced by taking different paths. Some researchers have developed and studied the
possibility to override or drastically decrease the amount of defect and spurious phases. For example,
Rudisch et al. [19] proposed to design a synthesis that takes into account a critical temperature (Tc)
where the order/disorder of the kesterite CZTS begins, and Kumar et al. [2] listed different ways to
passivate defects and avoid secondary phases. Also, many authors report the complete and/or partial
substitution of Zn by another elements like Cu, Fe, Mn, Cd, Ca or Mg [3,11,13,14,17,20,21] to study
their influence on the properties in the CZTSSe absorber layer [11,22]. Whithin this context, there
are only a few reports of the substitution of Zn by Mg, and half are purely experimental [11,13,21].
In contrast, others studied the viability of Cu2MgSnS4 (CMTS) by theoretical calculations [12,14,20].
Nevertheless, all of them concluded that CMTS is a promising absorber layer in solar cells being
thermodynamically stable and having a bandgap between 1.63 and 1.80 eV.

Taking into account that Mg is more available than Zn in the Earth’s crust, that Mg2+ and Zn2+

have similar radii [21], and that, according to Wei et al., MgS is not stable in solution conditions,
Mg has become a good candidate for Zn substitution in the CZTS structure [21]. Recently, CMTS
has been synthesized using the solution approach with dimethyl sulfoxide (DMSO) [11,23], co-spray
pyrolysis [13], pulsed laser deposition [24], and hot-injection methods [21]. With the hot-injection
method, it is possible to minimize the number of organic solvents involved during the synthesis,
e.g., by using oleylamine (OLA) as surfactant and solvent. The procedure consists of injecting a
cold solution of precursors into a hot surfactant solution, leading to the fast nucleation and growth
of nanocrystals [21,25]. It has been a successful method to synthesize a variety of semiconducting
nanocrystals, such as CdX (X = S, Se, and Te), CIGS, and Cu2XSn(S,Se)4 (X = Cd, Zn, and Co), providing
good control over the composition and morphology with a low-cost fabrication of solar cells through
drop-casting, dip coating, spin coating, or screen printing [21,22,25].

The incorporation of Mg in the synthesis of kesterite draws the attention not only for the promising
theoretical works that have been publishing, but also for the encouraging experimental results that
can be consulted in literature. For example, Caballero et al. reported that a low concentration of Mg
in Cu2Zn1−xMgxSn(S,Se)4 results in the kesterite structure, but if the Mg content exceeds 0.55 there
is a phase separation [11]. Nevertheless, Wei et al., 2014 successfully produced Cu2MgSnS4 without
any secondary phase and with a suitable bandgap for the fabrication of solar cells [21]. Therefore,
the incorporation of Mg in the CZTS kesterite structure is a relatively recent topic, which demands
further theoretical and experimental research in order to get a better understanding of the system and
to take advantage of its benefits. The purpose of this work is to contribute to the study of Magnesium
incorporation in the CZTS, exploring the effects of the partial and complete of substitution Zn by Mg
on the CZ-MTS optical and structural properties.

2. Materials and Methods

Nanoparticles of Cu2Zn1−xMgxSnS4 (CZ-MTS) were prepared using the hot-injection method,
starting from metal chlorides, pure sulfur powder, and oleylamine (OLA), avoiding the excess
of organic content and expensive reagents.The following reagents were used without further
purification: Copper(II) chloride dihydrate (CuCl2-2H2O, Aldrich, >99.0%), zinc chloride (ZnCl2,
Aldrich, >98%), magnesium chloride hexahydrate (MgCl2-6H2O, Aldrich >99%), tin(II) chloride
dihydrate (SnCl2-2H2O, Aldrich, >98%), sulphur powder (Meyer, >99.5%), oleylamine (OLA, Aldrich,
70%), ethanol (Meyer, >99.5%), and toluene (Meyer, >99.5%).
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In a typical synthesis, the metal precursor solution was prepared with 20 mL of OLA in a
three-neck flask connected to a Schlenk line. Samples were divided into two groups: The KA series
was prepared with Mg excess, directly doubling the amount of Mg with respect to the KB series
of samples. Metal precursors were mixed with the following criteria: 2 mM of CuCl2, (1−x) mM of
ZnCl2, xy mM of MgCl2, and 1 mM of SnCl2, where x = 0, 0.25, 0.5, 0.75, 1 is the amount of Mg that
substitutes the Zn in the CZTS structure (Cu2Zn1−xMgxSnS4), and y corresponds to the Mg excess
factor. Therefore, y = 2 for the KA series, while y = 1 for the KB series.

The syntheses were performed under oxygen-free conditions through the use of the Schlenk line.
At room temperature, the precursor solution was degassed and refilled with nitrogen three times
and then heated to 180 ◦C under vacuum for 1 h. At this temperature, the flask was degassed and
refilled again with nitrogen six times; then, the temperature was raised to 270 ◦C under nitrogen for
1 h. At this point, 10 mL of a solution of Sulphur powder/OLA 1M was rapidly injected and kept at
270 ◦C under a nitrogen atmosphere for an hour, and then cooled to room temperature naturally.

The final product was purified by mixing a solution of ethanol:toluene = 5:1 by volume inside
the flask with the precipitated nanoparticles. The mixture was centrifuged for 10 min at 3000 RPM
to separate the OLA from the CZ-MTS nanoparticles, and was then dispersed in toluene for further
characterization. Thin films were deposited on a silicon wafer by spin coating with nanoparticles
dispersed in 2 mL of toluene for X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy
(EDX) characterizations, and in soda lime glass for subsequent Ultraviolet/Visible/Near Infrared
Spectroscopy (UV–Vis-NIR) measurements. Spin coating deposition was performed by a two-step
procedure: for the first step, speed of 500 rpm for 10 s is used in order to assure a good film
homogeneity, while in the second one, spining at 900 rpm for 15 s permitted the drying purposes.
DLS measurements were performed in a solution of 4 mL of toluene with a concentration of ca.
1 mg/mL of nanoparticles diluted.

The size of the CZ-MTS nanoparticles was characterized using a Malvern Panalytical Zetasizer
Nano S, model ZEN1600 for dynamic light scattering (DLS). All data were collected at 25 ◦C, controlled
by the instrument. The optical properties were investigated by UV-Vis-NIR measurements with a
wavelength between 200 and 2500 nm with the spectrophotometer VWR, model 1600PC. The powder
diffraction pattern (XRD) was collected on a Rigaku, model Ultima UIV with CuKα (λ = 0.15406 nm),
in parallel beam configuration in a 2θ range between 5◦ to 80◦. Morphology was determined with a
scanning electron microscope (SEM/STEM) model HITACHI SU8230 with cold cathode field emission,
operated at 25 kV with a magnification of 250 k, and a working distance of 5 mm, while energy
dispersive X-ray spectroscopy (EDX) was carried out on a Bruker xflash-6/60 detector, coupled to the
same microscope.

3. Results and Discussion

3.1. Compositional Analysis

The composition of the Cu2Zn1−xMgxSnS4 nanocrystals was determined by EDX and listed in
Table 1. As for the KA series, the double of Mg content was used (imitating the Zn-rich composition),
and in the KB series, stoichiometric Mg was used; the resulting Zn content was close to the expected
stoichiometry in the KA series, but Mg was in excess in the samples KA2 to KA5, while in sample KA1
(without Mg), the Zn composition was low. On the other hand, in the KB series, the contents of Zn and
Mg were below the expected.

It can be noticed in Figure 1 that Sn content was stable for all samples. Taking into account that
in the referenced article [25], it was necessary to start with more than three times the stoichiometric
Zn content; in this work, with the presence of Mg, it was no longer required to use the excess of
starting Zn. The strong influence of Mg in the Zn content is reflected in both series, showing a better
Zn incorporation efficiency in the KA series with the double of Mg content, but also in the KB series,
leading to a satisfactory compositional stabilization. Figure 1 shows an asymptotic trend for the Zn and
Mg content in both series when moving towards the maximum and minimum Zn content, except for
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the KA5 sample, where Mg excess results in a large amount of Mg atomic percentage in the sample.
Nevertheless, it is still necessary to further optimize the amount of starting Zn and Mg in the synthesis.

Figure 1. EDX atomic percentage trend for each nominal Zn content. Continuous lines correspond to
KA series and dashed lines to KB series.

3.2. Size and Structure

Figure 2 shows the XRD profiles for all samples deposited on silicon wafers. Measurements
show a more evident presence of the hexagonal wurtzite CZ-MTS phase in the shoulders of the main
kesterite CZ-MTS peaks for the KA series (about 5% for KA and 2% for KB), which is compatible with
the nucleation mechanism proposed by Azanza et al. [25]. It is also possible to notice the presence
of secondary phases, mostly for the samples with a larger amount of Mg, but it was not possible to
identify them due to the lack of reflections. Nevertheless, the sharp peaks representing these secondary
phases (identified with asterisks in the figure) suggest large and oriented crystalline domains. It is
important to note that even if some spurious phases were observed, there is not evidence of a strong
phase separation for high-Mg-content samples, as reported by Cablallero et al. [11]. The kesterite
CZ-MTS structure showed a slight (112) preferred orientation for all samples.

Figure 2. X-ray diffraction (XRD) patterns of the KA series (left) and KB series (right) samples. MgS and
wurtzite reference data were obtained from [26,27], respectively. Secondary phases’ peaks are identified
with asterisks.
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Table 1. Samples’ IDs for each series. Energy dispersive X-ray spectroscopy (EDX) atomic percentage (fist block), atomic ratio results normalized to copper as 2 with
their corresponding errors (second block), and cation ratios (third block). Expected ratios for Sn and S are 1 and 4, respectively.

EDX (At%) Expected Ratios EDX/Cu = 2 Cation Ratios

ID Cu Zn Mg Sn S Total Zn Mg Zn ∆Zn Mg ∆Mg Sn ∆Sn S ∆S Cu
Zn+Mg+Sn

Zn+Mg
Sn

KA1 25.14 9.22 0 15.24 50.40 100 1 0 0.73 0.16 0 0 1.21 0.20 4.01 0.74 1.03 0.61
KA2 20.95 9.03 7.67 12.14 50.20 100 0.75 0.5 0.86 0.10 0.73 0.18 1.16 0.14 4.79 0.68 0.73 1.38
KA3 18.62 6.03 11.09 12.20 52.06 100 0.50 1 0.65 0.08 1.19 0.27 1.31 0.16 5.59 0.44 0.64 1.40
KA4 25.77 3.74 10.23 13.92 46.35 100 0.25 1.5 0.29 0.04 0.79 0.18 1.08 0.13 3.60 0.50 0.92 1.00
KA5 20.82 0 28.62 11.61 38.95 100 0 2 0 0 2.75 0.58 1.12 0.14 3.74 0.55 0.52 2.47

EDX (At%) Expected Ratios EDX/Cu = 2 Cation Ratios

ID Cu Zn Mg Sn S Total Zn Mg Zn ∆Zn Mg ∆Mg Sn ∆Sn S ∆S Cu
Zn+Mg+Sn

Zn+Mg
Sn

KB1 29.47 6.76 0 14.81 48.96 100 1 0 0.46 0.02 0 0 1.00 0.04 3.32 0.16 1.37 0.46
KB2 25.91 5.59 3.24 13.95 51.30 100 0.75 0.25 0.43 0.02 0.25 0.03 1.08 0.05 3.96 0.19 1.14 0.63
KB3 26.86 5.97 5.91 14.27 47.00 100 0.50 0.5 0.44 0.02 0.44 0.04 1.06 0.05 3.50 0.17 1.03 0.83
KB4 25.98 1.50 7.26 15.04 50.21 100 0.25 0.75 0.12 0.01 0.56 0.05 1.16 0.05 3.87 0.19 1.09 0.58
KB5 28.94 0 7.80 15.22 48.04 100 0 1 0 0 0.54 0.04 1.05 0.05 3.32 0.16 1.26 0.51
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In order to evaluate the possible modification of the unit cell volume due to the incorporation of Mg
into the CZTS structure, the deviations of the interplanar distances of selected crystallographic planes are
plotted in Figure 3 in terms of the Mg content. Some authors have already reported peak shifts with the
substitution of Zn by Fe [28] and Sn by Ge [29] in the kesterite CZTS structure, attributed to the difference
in cation sizes. Nevertheless, our results show no significant modification of the interplanar distances
with the variation of the Mg content. The low expansion values obtained are in agreement with results
reported by Agawane et al. [24], and are coherent with the very similar ionic radii of both species.

Figure 3. Normalized deviation from the corresponding peak position of the Cu2ZnSnS4 (CZTS)
structure for selected reflections in terms of the samples’ Mg content. KA series (left) and KB
series (right).

The results from average crystalline domain size computed from XRD profiles and hydrodynamic
size obtained from DLS measurements are shown in Table 2 and plotted in Figure 4. As DLS
measurements are intended to give information about the nanoparticle dispersion, the obtained
results show a higher tendency for agglomeration for samples with a lower amount of Mg, resulting
in bimodal distributions of nanoparticles over 50% of Mg content. In Table 2, the average radius is
reported for the main distribution (DLSp1) and for the secondary one (DLSp2) when present.

Table 2. Hydrodynamic size obtained from dynamic light scattering (DLS) measurements and average
crystalline domain size calculated from XRD profiles.

KA Series Size (nm) KB Series Size (nm)

ID DLSp1 DLSp2 XRD XRDerr ID DLSp1 DLSp2 XRD XRDerr

KA1 223.4 - 12.9 0.2 KB1 272.5 - 38.9 0.4
KA2 193.3 - 10.0 0.1 KB2 264.8 - 33.2 0.3
KA3 27.1 208.6 9.4 0.1 KB3 50.7 198.2 25.9 0.2
KA4 60.5 161.2 9.4 0.1 KB4 33.0 334.9 28.4 0.2
KA5 58.7 187.6 5.6 0.1 KB5 51.0 123.9 12.1 0.1

Figure 4 shows the average radius of the main DLS size distribution together with the XRD
results. Even if the information derived from these techniques is different, the tendency to obtain
smaller nanoparticles with larger Mg content is clear. Average crystalline domain size increases when
exceeding the half of nominal Mg in the synthesis (from KA to KB series), and also decreases within a
given series.

The morphology of the samples with 25% of Mg content is shown in Figure 5. Small sphere-like
nanoparticles can be observed in both micrographs; the larger the ones correspond to the KB series.
This result is in agreement with the average crystalline domain size reported before. On the other
hand, large particles (∼20 nm) are visible in the KB2 sample, which is in accordance with the large
hydrodynamic particle size obtained from the DLS measurements. Nevertheless, no sharp peaks
are observed in the corresponding XRD pattern (Figure 2), as for the low-Mg-content sample in the
A-series. Even if it is not possible to exclude that these large particles are positioned in the powder
sample in such a way that diffraction condition is not achieved for any reflection, it is also possible to
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assume that smaller crystalline domains likely conform them with the same size of the surrounding
sphere-line nanoparticles.

Figure 4. Hydrodynamic size (DLS) and average crystalline domain size (XRD) for all samples’ trends
with nominal Mg content variation.

Figure 5. STEM images of the 25% Mg content samples: KA2 (left) and KB2 (right).

3.3. Optical Properties

Optical properties were investigated using UV-vis-NIR measurements in the 200–2500 nm
wavelength range, obtaining a transmittance and reflectance spectrum of the CZ-MTS nanoparticles
deposited as thin films. The absorption coefficient was computed from raw data using the
following equation:

α = −1
d

ln
T

(1 − R)2 , (1)

where d corresponds to the thickness of the film, and T and R are the transmittance and reflectance,
respectively. The common practice is to construct the Tauc plot ((αE)2 vs. E) for the determination of the
band-gap of the direct band-gap semiconductor through the extrapolation of a linear fit. Nevertheless,
the selection of the linear region of the plot has always been controversial. In this work, we will use
the so-called E04 value, which corresponds to the energy for an absorption coefficient of 104 cm−1 [30].
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Table 3. E04 values for all samples.

Sample E04 (eV) Sample E04 (eV)

KA1 1.24 KB1 1.42
KA2 1.88 KB2 1.07
KA3 1.96 KB3 1.50
KA4 2.49 KB4 1.60
KA5 2.56 KB5 1.96

Figure 6. E04 plot in terms of the EDX Mg measured atomic ratio (left) and Tauc plot for the partially
substituted samples of the KB series (right).

E04 values are reported in Table 3 and plotted in Figure 6 (left). As stated before, this parameter
is convinient for comparative purposes, but it can be an excellent estimation for the band-gap
of the material, as can be seen from the Tauc plots in Figure 6 (right). It can be noticed that the
material band-gap increases with the increase of the incorporated Mg, which is in agreement with
Agawane et al. [24]. In fact, larger band-gap values are obtained for the KA series, because it was
produced with the twice the Mg content. Band-gap enlargement has been previously reported due
to cation substitution in CZTS [23,28] as well as for other materials, such as CIGS [31]. The main
explanations of this phenomenon are related to structural modifications, such as crystal lattices and
anion–cation bond lengths and angle variations, which are not applicable for Mg substitution, as shown
in Figure 3. Actually, there is no significant change in cell volume, as the interplanar distances remain
almost the same with Mg variation. Furthermore, Oueslati et al. [23] and Khadka et al. [28] reported
a band-gap increase with decreasing Fe content in CZTS, and they explain this behavior with the
possible electron exchange and redistribution due to the difference in electronegativities of Zn (1.65)
and Fe (1.83). Taking into account the lower electronegativity value for the Mg (1.31), an opposite
trend is expected, i.e., a band-gap increase with the increase of the incorporated Mg.

The obtained results indicate a systematic control of the optical properties within the substitution
region, leading to possible engineering of thin films with band-gap gradients. Furthermore, the
stabilization effect that arises from the presence of Mg in the nanoparticle synthesis is evident, avoiding
the use of a larger amount of precursors in order to obtain the desired stoichiometry.

4. Conclusions

The synthesis of CZ-MTS (Cu2Zn1−xMgxSnS4) nanoparticles was carried out through the
hot-injection method using OLA and metal chlorides, which is a cost-effective method. The presence
of Mg permitted to decrease the nominal precursor’s amount in order to get the desired stoichiometry,
leading to an adequate control of the optical properties of the obtained materials (i.e., bandgap
modulation [28]). The final product has CZ-MTS hexagonal (wurtzite) and CZ-MTS tetragonal
(kesterite) structures, as proposed by Azanza et al. [25], with no structural decomposition for high Mg
substitution values. Larger average crystalline domain size and higher agglomeration tendency were
found for samples with smaller nominal Mg content, while larger band-gap values were obtained for
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high Mg incorporation ratios. The obtained results show that CZ-MTS is a promising candidate to
fabricate high-efficiency, cost-effective, and Earth-abundant thin-film solar cells.
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