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Abstract: In this article, we theoretically and numerically study the chirality and saddle-splay
elastic constant (K24)-enabled stability of multiple twist-like nematic liquid crystal (LC) structures
in cylindrical confinement. We focus on the so-called radially z-twisted (RZT) and radially twisted
(RT) configurations, which simultaneously exhibit twists in different spatial directions. We express
the free energies of the structures in terms of dimensionless wave vectors, which characterise the
structures and play the roles of order parameters. The impact of different confinement anchoring
conditions is explored. A simple Landau-type analysis provides an insight into how different model
parameters influence the stability of structures. We determine conditions for which the structures are
stable in chiral and also nonchiral LCs. In particular, we find that the RZT structure could exhibit
macroscopic chirality inversion upon varying the relevant parameters. This phenomenon could be
exploited for the measurement of K24.

Keywords: liquid crystals; chirality; saddle-splay elasticity; double twist deformations

1. Introduction

Chirality is pervasive in nature and refers to cases where an object and its mirror image are
different [1–3]. It signals the absence of inversion symmetry, giving rise to a right-handed and
left-handed appearance and behaviour. Chirality is present throughout physics and often impacts
or even dominates numerous important natural phenomena. For example, chiral symmetry plays
an important role in the Standard Model of physics [4]. The functionalities of several essential
components of biological cells rely heavily on chirality [3]. Furthermore, it could be exploited in various
technological and medical applications [5–7]. By exploiting chirality, one could engineer new materials
with extraordinary properties (e.g., metamaterials exhibiting negative refractive index [8]). Therefore,
a deep understanding of chirality and its related emergent behaviours is of interest throughout the
physical and biological sciences.

However, several issues related to chirality remain unresolved, even at a fundamental level.
For instance, the molecular origins of chirality and the relative role of chiral symmetry-breaking
remain an open problem [9]. In particular, the mechanisms involved in the transfer of chirality from
microscopic to macroscopic level [10] are not sufficiently understood. Convenient systems with which
to gain a deeper understanding of the latter features are chiral uniaxial nematic liquid crystals (NLCs;
a list of abbreviations appears at the end), one of the simplest representatives of anisotropic soft
materials [11,12]. These systems are relatively easily accessible experimentally, structural changes can
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be triggered by relatively weak external stimuli, and a macroscopic chiral response can be achieved
using different pathways.

Uniaxial NLCs consist of approximately rod-shaped objects that, in bulk equilibrium, exhibit
long-range orientational order and the absence of translational order [11]. The local orientational
order is commonly described by the mesoscopic nematic director field

→
n , exhibiting head-to-tail

invariance–the states ±
→
n are physically equivalent. In the classical Oseen–Frank approach [11],

the elastic free energy is expressed as the sum of the so-called splay, twist, bend, and saddle-splay
contributions, weighted by Frank splay (K11), twist (K22), bend (K33), and saddle-splay (K24) elastic
constants. These contributions penalise different elastic distortions and determine equilibrium nematic
director field patterns.

In the bulk achiral nematic phase,
→
n is spatially homogeneously aligned along a single

symmetry-breaking direction. In a simple chiral nematic (also referred to as the cholesteric) phase,
in the bulk equilibrium structure,

→
n twists in space, describing a helix where

→
n is always perpendicular

to the helix axis. This structure exhibits only a single twist (i.e., it twists only along one spatial
direction) deformation.

Even more complex structures could be formed in chiral materials exhibiting a propensity for
saddle-splay deformations [13,14], which in liquid crystals (LCs) is controlled by the saddle-splay
elastic constant K24. The energy elastic term weighted by K24 equals the Gaussian curvature of a
hypothetical local surface [11], whose surface norma is determined by

→
n . This term is different from

zero for the nematic structures displaying, e.g., double twist-like deformations, in which
→
n varies in

two orthogonal directions. Consequently, such structures could decrease the overall free energy for a
large enough value of K24. Note that the saddle-splay elastic term can be expressed as pure divergence,
and can be mathematically integrated out to the surface confining the LC. Therefore, it affects LC
order through boundary conditions. In most cases, the saddle-splay-enforced boundary tendency is
masked by stronger surface anchoring conditions. For this reason, the K24 contribution is often ignored
in theoretical modelling [11,14]. Its magnitude range is determined by Ericksen’s inequality [15]
0 < K24 < K(min)

1,2 , where K(min)
1,2 corresponds to the lower elastic modulus of the twist (K22) and splay

(K11) elastic deformations. Furthermore, due to the anchoring strength-“masking” effect it is relatively
difficult to measure the magnitude of K24. In other words, for strong enough anchoring [11] (i.e.,
RW/K>>1, where R is the characteristic confinement length, K stands for the average Frank elastic
constant, and W is the surface anchoring strength coefficient), the surface anchoring contribution
overrides the competing K24 contribution in the relevant surface Euler-Lagrange equilibrium equations.
Consequently, only a few experimental measurements of K24 have been reported [16–18]. Several of
these measurements report values of K24 that are close to K(min)

1,2 .
We note that a natural decomposition of representative nematic elastic distortions was recently

proposed by Selinger [19]. Four bulk elastic normal modes were introduced, representing distinct
irreducible representations of the rotational symmetry group characterising NLC symmetry. These
are referred to as the double splay, double twist, bend, and biaxial splay mode, which could be
separately and independently excited. On the contrary, the classical (single) splay, (single) twist, bend,
and saddle-splay distortions [11,19] are, in general, coupled. For instance, the saddle-splay term can
be expressed as a sum of double splay, double twist, and biaxial splay mode.

Nematic structures exhibiting nonplanar 3D nematic distortions (e.g., double twist deformations)
impose elastic frustrations, which can be resolved in bulk by introducing assemblies of topological
defects [20,21], as manifested in Blue Phases (BPs) [22–24]. In NLCs, a description of defects would
require a more complex structural description in terms of the tensor nematic order parameter [11],
which allows for the local melting of the LC order and the presence of biaxial states [25]. On the other
hand, such deformations could be realised without defects in appropriate confinement geometries,
where cylindrical confinements [26–31] are most often used. Note that stable 3D realisations of
topological defects are of interest for science in general. For instance, if physical fields represent
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fundamental entities of nature [32], then topological defects might represent [33] fundamental particles
in the conventional “particle”-based natural description.

In this contribution, we consider nematic structures within chiral LCs in cylindrical confinement.
We focus on the (meta) stability of multiple twist-type structures, which exhibit variations in the
nematic molecular field simultaneously in at least two orthogonal spatial directions. We show that
several structural properties can arise in the context of a simple Landau-type model. A more general
analysis is carried out numerically. We determine regimes where one could observe a change in the
handedness of structures by varying relevant material parameters. Furthermore, we determine regimes
in which the saddle-splay elasticity sensitively controls the stability of competing structures.

2. Results

Of interest are defect-free spontaneously twisted NLC structures within an infinitely long cylinder
of radius R. For this reason, we use cylindrical coordinates {r,ϕ, z}, defined by the unit vector triad
{
→
e r,
→
e ϕ,

→
e z}. We consider two different ansatzes, which give a good approximation of two qualitatively

different families of solutions that are expected to be stable for the geometries and boundary conditions
of interest well [26,27].

The first class is represented by [26,27]

→
n
(i)

= cosψ sinΩ
→
e r + sinψ sinΩ

→
e ϕ + cosΩ

→
e z, (1)

where ψ = q1z−ϕ, Ω = π
2 − q2r sinψ, the wave vectors q1 and q2 are variational parameters. A typical

representative structure is shown in Figure 1a and in the Supplementary Materials.
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→
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In the Cartesian coordinates {x, y, z} the ansatz reads
→
n
(i)

= cos(q1z) sinΩ
→
e x + sin(q1z) sinΩ

→
e y +

cosΩ
→
e z Cases q1 , 0 and q2 , 0 determine multiple twisted solutions. In these patterns, which we

refer to as radially z-twisted (RZT) structures, twist deformation is realised both along the
→
e r and

→
e z directions [26]. This ansatz also encompasses single twisted structures. For example, for q2 = 0 a
structure twisting around the z axis is expressed as

→
n
(i)

= cos(q1z−ϕ)
→
e r + sin(q1z−ϕ)

→
e ϕ, (2)

which corresponds to a classical cholesteric solution with wave vector q1.
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The second family of solution corresponds to the radially twisted (RT) structures [26,27], where
the twist is realised along

→
e r, see Figure 1b. For this purpose, we use the ansatz

→
n
(ii)

= sinα
→
e ϕ + cosα

→
e z. (3a)

Here, α = α(r) and to avoid a singularity at the cylinder axis we impose the condition α(0) = 0.
Previous numerical studies [26,31] have revealed that the dependence of α(r) is roughly linear in r,
even for large twists of

⇀
n . Consequently, we use the approximation:

α = qRTr. (3b)

These structures were numerically studied in Refs. [26,27,31], where their stability was analysed.
Our proposed ansatzes mimic the numerically obtained structures for the anchoring conditions
of interest well for relatively small wave vectors and in the approximation of equal Frank elastic
constants K11 = K22 = K33. In the cases examined, the free energies of structures obtained (i)
numerically by solving the relevant Euler–Lagrange equations or (ii) using our ansatzes differ by
less than 10%. By using the analytical ansatzes, we were able to carry out a Landau-type approach,
which enabled a more detailed insight into the stability of structures of interest for various different
material-dependent parameters.

In the following, we use the approximation of equal elastic constants K ≡ K11 = K22 = K33, but
allow K24 , K. At the cylinder’s lateral wall, r = R, we impose, for the positive anchoring strength,
W > 0 (see Equation (19) in Methods) either (a) homeotropic anchoring

(
→
e =

→
e r

)
, (b) tangential

anchoring along
→
e z (i.e.,

(
→
e =

→
e z

)
, or (c) tangential anchoring along

→
e ϕ

(
→
e =

→
e ϕ

)
. We henceforth refer

to these cases as (a) homeotropic, (b) zenithal tangential), and (c) azimuthal tangential anchoring,
respectively. For W < 0, these cases correspond to isotropic tangential anchoring in a plane with a
normal surface in the direction

→
e . Note that, in our study, the latter case is sensible only for condition (a).

For convenience, we introduce the following dimensionless quantities: Q = qR, Q1 = q1R, Q2 = q2R,
QRT = qRTR, k24 = K24/K, w = RW/K, and the dimensionless free energy is scaled in units of F0 = πKH.
Therefore F→ F/F0, where H is the height of the cylinder. For numerical convenience, we suppose
that H is either large in comparison with the period p = 2π/q1, or an integer number of p.

2.1. Free Energies of Structures

Using the ansatzes Equations (1) and (3) and the scaling described above, we calculate the free
energies F of the structures (see Equation (1)). For later convenience, the energies are decomposed as
F(i) = F(i)

e + F(i)
s and F(ii) = F(ii)

e + F(ii)
s for the first (RZT) and second class (RT) of solutions, respectively.

We consider first the family of solutions labelled by
→
n
(i)

(Equation (1)). The elastic contribution is

F(i)
e =

(Q−Q2)
2

2
+

Q2
1Q2

2

8
+

Q1

2

(Q1

2
+ (1− k24)Q2 −Q

)(
1 +

J1(2Q2)

Q2

)
(4)

Now let F(i)
s stand for the interface contribution, which is different for (a) homeotropic (F(i)

s = F(i)
s,h),

(b) zenithal (F(i)
s = F(i)

s,z), and (c) azimuthal F(i)
s = F(i)

s,ϕ anchoring:

F(i)
s,h =

3w
4
−

w
4

J1(2Q2)

Q2
(5a)

F(i)
s,z =

w
2
−

w
2

J0(2Q2), (5b)

F(i)
s,ϕ =

3w
4

+ w
(

J1(2Q2)

4Q2
−

J0(2Q2)

2

)
. (5c)



Crystals 2020, 10, 576 5 of 15

where J0 and J1 stand for the Bessel functions in the order of zero and one, respectively.
The second class of solutions is determined by the elastic term:

F(ii)
e =

1
2
(Q + QRT)

2 +

(
1− k24 +

Q
QRT

)
sin2QRT +

∫ 1

0

sin2(QRTx)
x

dx, (6)

and surface contributions:
F(ii)

s,h = w, (7a)

F(ii)
s,z = w sin2QRT, (7b)

F(ii)
s,ϕ = w cos2QRT (7c)

We obtain solutions by varying the variational parameters Q1, Q2 and QRT for the given material
properties (determined by Q, k24, w) and boundary conditions.

Of interest is the determination of regimes where radially z-twisted (RZT) or radially twisted
(RT) structures are stable. We first perform an analytic analysis of these structures, where we expand
the free energies in the limit of relatively small dimensionless wave numbers Q1, Q2 and QRT. Then,
we perform a more detailed stability analysis numerically.

2.2. Landau-Type Analysis

We first consider RZT (class 1) structures using the ansatz of Equation (4). By minimising the total
free energy F(i) with respect to Q1, it follows that:

Q1 =
Q + (k24 − 1)Q2

1 +
Q2

2

2
(
1+

J1(2Q2)
Q2

) (8)

In the following, we examine only the regimes of relatively low wave vectors Q2 (i.e., Q2 � 1),
for which Equation (8) yields:

Q1 ∼ Q + (k24 − 1)Q2 −
Q2

2Q

4
. (9)

Taking this into account, we expand F(i) up to the fourth power in Q2. It follows that:

F(i)
h =

w
2
+

(Q−Q2)
2

2
− k24QQ2 +

8k24 − 4k2
24 + 2Q2 + w

8
Q2

2 +
Q(k24 − 1)

2
Q3

2+

24− 48k24 + 24k2
24 − 5Q2

− 2w

96
Q4

2,

(10a)

F(i)
z =

(Q−Q2)
2

2
− k24QQ2 +

4k24 − 2k2
24 + Q2 + 2w

4
Q2

2 +
Q(k24 − 1)

2
Q3

2+

24− 48k24 + 24k2
24 − 5Q2

− 12w

96
Q4

2 ,

(10b)

F(i)
ϕ =

w
2
+

(Q−Q2)
2

2
− k24QQ2 +

8k24 − 4k2
24 + 3w

8
Q2

2 +
Q(k24 − 1)

2
Q3

2+

24− 48k24 + 24k2
24 − 10w

96
Q4

2.

(10c)

where F(i)
h , F(i)

z , and F(i)
ϕ denote F(i) for homeotropic, zenithal, and azimuthal anchoring, respectively.

We thus obtain a Landau-type expansion of the form F(i) = F(i)
0 + α1Q2 + α2Q2

2 + α3Q3
2 + α4Q4

2, where
Q2 and {α1,α2,α3,α4} play the role of order parameter and Landau expansion coefficients, respectively.
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For achiral LCs (Q = 0), one obtains:

F(i)
h =

w
2
+

8k24 − 4k2
24 + w + 4

8
Q2

2 +
24− 48k24 + 24k2

24 − 2w

96
Q4

2, (11a)

F(i)
z =

4k24 − 2k2
24 + 2w + 4

4
Q2

2 +
24− 48k24 + 24k2

24 − 12w

96
Q4

2, (11b)

F(i)
ϕ =

w
2
+

8k24 − 4k2
24 + 3w + 4

8
Q2

2 +
24− 48k24 + 24k2

24 − 10w

96
Q4

2. (11c)

The spatially homogeneous order becomes unstable with respect to the RZT class of solutions
where the coefficients α2 that weight the Q2

2 contribution in Equation (11) change signs. From the
condition α2 = 0, one could deduce a critical value, k24, above which the RZT structures become stable:

k(h)24 = 1 +

√
1 +

w
4

(12a)

k(z)24 = 1 +
√

1 + w (12b)

k(ϕ)24 = 1 +

√
1 +

3w
4

(12c)

where k(h)24 , k(z)24 , and k(ϕ)24 determine the critical values of k24 for homeotropic, zenithal, and azimuthal
anchoring, respectively. Note that, in the approximation of equal elastic constants, the Ericksen critical
value of K24 is given by k(e)24 = 2. Therefore, in the absence of chirality, K24 could trigger twisted
structures only for w < 0, which, in our modelling, is physically meaningful for the case given by
Equation (12a).

Next, we focus on the RT structures using the ansatz of Equation (3). When QRT � 1, it follows that:

F(ii)
e ∼

Q2

2
+ 2QQRT + (2− k24)Q2

RT −
QQ3

RT
3

+

(
k24 −

5
4

)
3

Q4
RT. (13)

It is easy to estimate the equilibrium value of the chirality wave number QRT of the RT structure if
both Q and QRT are small. We use Equations (13) and (7) and free energy minimisation yields:

QRT = −Q/(2 + ∆ − k24), (14)

with ∆ = 0 for homeotropic anchoring, and ∆ = ±w for tangential anchorings (positive sign for
zenithal anchoring and negative sign for azimuthal anchoring). Note that Equation (14) is valid only in
the limit when |QRT | < 1.

For achiral LCs it follows that:

F(ii)
h ∼ w + (2− k24)Q2

RT +

(
k24 −

5
4

)
3

Q4
RT. (15a)

F(ii)
z ∼ (2− k24 + w)Q2

RT +

(
k24 −

5
4 −w

)
3

Q4
RT. (15b)

F(ii)
ϕ ∼ w + (2− k24 −W)Q2

RT +

(
k24 −

5
4 + w

)
3

Q4
RT. (15c)

The critical conditions read:
k(h)24 = 2, (16a)

k(z)24 = 2 + w, (16b)
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k(ϕ)24 = 2−w. (16c)

Therefore, in achiral LCs, the saddle-splay elasticity may trigger an RT structure below k(e)24 = 2
only in the case of azimuthal anchoring.

2.3. Numerical Analysis

We next explore the (meta) stability of double-twist structures in chiral LCs. Of particular interest
is the determination of regimes in which the reversal of macroscopic chirality could be realised by
varying a relevant parameter. Note that our estimates work well for dimensionless wave vectors less
than one. Most of the “interesting” phenomena are realised in this regime. Therefore, results obtained
for wave vectors larger than one are only indicative.

2.3.1. RZT Structure: Homeotropic Anchoring

We focus first on RZT (class 1) structures and homeotropic anchoring. Of interest is the exploration
of the impact of the saddle-splay constant k24 and intrinsic chirality Q for relatively weak anchoring,
which we set to w = 1. In Figure 2, we plot Q1 and Q2 equilibrium values (i.e., they determine local
minima in F) varying Q between zero and one. For the case Q = 0 (achiral nematic) the RZT structures
could be triggered only in the regime k24 > k(e)24 ≡ 2. However, for chiral LCs, k24 efficiently promotes

the stability of RZT structures well below k(e)24 . Furthermore, for k24= 0, it holds that Q2 = 0 and Q1 = Q.
This solution corresponds to the classic cholesteric structure; see Equation (2). Graphs in Figure 2 also
reveal that the value of k24 can be extracted experimentally.
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2.3.2. RZT Structure: Tangential Anchoring

For tangential anchorings, the configurational variability of RZT structures is much more
complex. This is illustrated in Figure 3, where we plot the dependencies of Q1(k24) and Q2(k24) on all
studied anchoring conditions for two significantly different values of Q, viz., Q = 0.125 and Q = 1.
The behaviour is roughly similar for homeotropic and azimuthal anchoring, whereas, for zenithal
anchoring, qualitatively different features emerge. In particular, Q1 could even change signs at a
critical value of k24, which we denote by k(c)24 . Similarly, for a given value of k24, this crossover could be
achieved by varying Q, and we label the corresponding critical value as Qc.
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Figure 3. Dependence of Q1 (solid lines) and Q2 (dashed lines) on k24 for Q = 0.125 (a) and Q = 1 (b)
and different types of anchoring, labelled by homeotropic (“h”), azimuthal (“φ”) and zenithal (“z”). w
= 1.

Note that the value of k(c)24 depends relatively strongly on Q. Because the uniaxial twist with Q1 = 0
can be observed easily by polarised optical microscopy, this phenomenon may be exploited to measure
the splay−bend elastic constant. This is illustrated in Figure 4, where we plot the Qc(k24) dependence
for different anchoring strengths. Experimentally, one could vary Q by adding a chiral dopant to LC.
The reversal of the sign of Q1 exists in the interval 0 < k24 < 1, well below k(e)24 . In the strong anchoring
limit W→∞, the graph Qc(k24) approaches a straight line.
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Figure 4. The dependence of the critical intrinsic chirality Qc (where Q1 = 0) on k24 in the case of
zenithal anchoring for different values of anchoring strength. The results were calculated in points
labelled with symbols and lines to serve as guides for the eye. From left to right: w = 0.2 (circles), 0.5
(diamonds), 1 (open circles), 2 (stars) and 5 (triangles).

2.3.3. Relative Stability of RZT and RT Structures

The minimum energies (corresponding to local minima in varying variational parameters) of
both types of structures (RZT and RT) were compared for different sets of parameters. In general,
homeotropic anchoring favours RZT configurations. This is obvious since the nematic director of the
RT structure is always parallel to the boundary plane at the cylinder boundary. On the other hand,
for both types of tangential anchoring, the stability regimes of different structures depend on a specific
set of parameters, k24, Q and w. Due to a broad parameter space, we limit our analysis to a few cases
relevant to our study. For example, Figure 4 reveals the parameters for which Q1 = 0 (chirality reversal)
is realised for the RZT configuration for zenithal anchoring. It is essential to compare its free energy
with the competitive RT structure. Some representative examples are depicted in Figures 5 and 6.
In Figure 5, we plot the minimum energies of the competing structures on varying Q for k24 = 0.5
and weak (w = 1) zenithal anchoring for the case exhibiting chirality reversal. In this case, the RZT
structure with Q1 < 0 is metastable with respect to RT. However, Figure 5 illustrates the existence of
a regime for which the configuration with Q1 < 0 is stable for k24=0.25. Thus, chirality reversal may
be found experimentally in this case. The arrows in Figure 5 approximately indicate the energy of
the RZT structure at the reversal of the sign of Q1, together with the calculated chirality parameters.
For lower values of Q, it holds that Q1 < 0, and vice versa. Although the energies for k24 = 0.25 and 0.5
are not very different, the critical value of Q (Qc = Q, where Q1 changes signs) differs significantly:
Qc = 0.554 for k24 = 0.5, whereas Qc = 1.097 for k24 = 0.25.
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Figure 6. Dependence of the minimum energies of the RZT and RT structures on the intrinsic chirality
Q. Solid lines: k24 = 0.5. Dashed lines: k24 = 0.25. Zenithal anchoring with w = 1. Arrows indicate the
sign reversal of Q1 for both values of k24. For k24 = 0.25, the chirality Q1 reverses its sign in the regime
where FRZT < FRT.
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Note that we have tested the stability of RZT and RT structures with respect to the nonchiral
escaped radial structure [18], in which the director profile exhibits cylindrical symmetry. It tends to
be radially oriented at the cylinder wall and gradually reorients along the z axis on approaching the
cylinder axis. For homeotropic anchoring, it exists for w = RW/K > 1, and its free energy is given
by [18]:

F
πKH

= 3− k24 −
1
σ

(17)

where σ = w + k24 − 1. In the region of interest, this structure is energetically costlier with respect to
the competing RZT or RT structure.

Finally, in Figures 7 and 8, we show calculated optical polarising microscopy patterns for the
competing RZT and RT structures for two different polarisation directions of the polariser and analyser,
where we set Q1 = Q2 = QRT = 1. Simulation details are described in [29]. The polarisations of
the polariser and analyser are mutually perpendicular. The angle between the polariser and x-axis
(horizontal axis) is 0◦ or 45◦. One sees that the textures are significantly different and that one could
easily distinguish these structures by using polarising optical microscopy.Crystals 2020, 10, x FOR PEER REVIEW 12 of 15 
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Figure 7. Calculated optical patterns for the RZT structure with Q1 = Q2 = 1. The transmitted
polarisation of the polariser is in the x direction (left figure) and at an angle of 45◦ with respect to the x
direction (right figure). Optical data: R = 1 µm, laser light wavelength λ = 445 nm, refraction indices:
no = 1.544, ne = 1.821, corresponding to nematic liquid crystal (NLC) E7.
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3. Conclusions

We studied the impact of chirality, the saddle-splay elastic constant and anchoring conditions on
the (meta) stability of radially z-twisted (RZT), and radially twisted (RT) configurations realised in a
cylindrical confinement of the radius, R. We used the Oseen–Frank uniaxial description in terms of
the nematic director field. Such a description is sensible because we do not consider configurations
exhibiting topological defects, which would require the local melting of the nematic order or the
presence of biaxiality. Furthermore, we used the approximation of equal Frank elastic constants K11 =

K22 = K33 ≡ K. We expressed the free energy of structures in terms of dimensionless wavenumbers
Q1, Q2, QRT, which represent order parameters in our Landau-type analysis. The parameter space
controlling the relative stability of the structures consists of the dimensionless chirality Q = Rq,
dimensionless saddle-splay constant k24 = K24/K, and dimensionless anchoring strength w = RW

K .
We found that, in the absence of chirality, the RZT structure could be (meta) stable (fulfilling

the Ericksen inequality k24 < ke ≡ 2) only for isotropic tangential anchoring, provided that k24 >
1 +
√

1− |w|/4. On the other hand, the RT structure could be (meta) stable for the azimuthal anchoring
condition and k24 > 2− |w|. However, chirality enables the stability of RZT structures for k24 values
in the interval k24 ∈ [0, 2]. Furthermore, for QRT < 1, we found that the RT structures exhibit the
wave vector QRT ∼ −Q/(2 + ∆ − k24), where (i) ∆ = 0, (ii) ∆ = |w|, (iii) ∆ = −|w| for (i) homeotropic,
(ii) zenithal, and (iii) azimuthal anchoring, respectively. In addition, we observed that the RZT
configuration could exhibit a sign reversal of the wave vector for zenithal anchoring upon varying a
relevant control parameter. This approach could be exploited for the experimental determination of
K24 values, which still require considerably more exploration.

Note that multiple twisted structures could be exploited in several applications because their wave
vectors can be adjusted to the optically visible regime. Such 3D structures could stabilise the lattices of
disclinations, as manifested in the Blue Phases and related Skyrmion-like structures. The study of the
latter structures could also provide an understanding of the fundamental workings of their nature,
which is still lacking.
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4. Methods

We used the Oseen–Frank continuum approach [11], where nematic structures are expressed in
terms of the nematic director field

→
n . The free energy of confined NLCs is expressed as:

F =
y

fed3→r +
x

fsd2→r . (18)

The first and second integrals are carried over the LC volume and over a NLC-confining
surface. The quantities fe and fs determine the elastic and NLC-confining surface free energy
density contributions.

The elastic term reads:

fe =
K11

2

(
∇.
→
n
)2
+

K22

2

(
→
n .∇×

→
n + q

)2
+

K33

2

∣∣∣∣→n ×∇×→n ∣∣∣∣2 − K24

2
∇.

(
→
n∇.

→
n +

→
n ×∇×

→
n
)
. (19)

The elastic response is determined by the splay (K11), twist (K22), bend (K33) and saddle-splay
(K24) elastic constant, respectively. The wave vector q reflects the inherent LC chirality.

We modeled the surface interaction term using a simple Rapini–Papoular [11] description:

fs =
W
2

(
1−

(
→
n .
→
e
)2)

. (20)

Here, the unit vector
→
e is commonly referred to as the easy axis. For instance, for W > 0, the

corresponding free energy is locally minimised if
→
n is aligned along

→
e . Furthermore, for W < 0, the

term is minimised for
→
n⊥
→
e .

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/7/576/s1,
Video S1: RZT structure, the Q1Q2 movie shows the radially z-twisted deformation and, here, the twist is realised
both along the

→
e ϕ and

→
e z directions. The values used in the movie were from Q1 = 0.0 to 3.0, and Q2 = 0.0 to 3.0.

Video S2: RT structure, the Qrt movie shows the radially twisted structure, and here the twist is realised along
→
e r.

The values used in the movie were from QRT = 0.0 to 3.0.
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