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Abstract: With the rapid improvement of the global economy, the role of energy has become even
more vital in the 21st century. In this regard, energy storage/conversion devices have become a major,
worldwide research focus. In response to this, we have prepared two-dimensional (2D)-hierarchical
sheet-like ZnCo2O4 microstructures for supercapacitor applications using a simple hydrothermal
method. The 2D-hierarchical sheet-like morphologies with large surface area and smaller thickness
enhanced the contact area of active material with the electrolyte, which increased the utilization rate.
We investigated the electrochemical performance of sheet-like ZnCo2O4 microstructures while using
Cyclic voltammetry (CV), Galvanostatic charge-discharge (GCD), and Electrochemical impedance
spectroscopy (EIS) analysis. The electrochemical results demonstrated that the ZnCo2O4 electrode
possesses 16.13 mF cm−2 of areal capacitance at 10 µA cm−2 of current density and outstanding
cycling performance (170% of capacitance is retained after 1000 cycles at 500 µA cm−2). The high
areal capacitance and outstanding cycling performance due to the unique sheet-like morphology of
the ZnCo2O4 electrode makes it an excellent candidate for supercapacitor applications.

Keywords: supercapacitors; hydrothermal method; areal capacitance; sheet-like ZnCo2O4

1. Introduction

It is necessary to generate energy from renewable and inexhaustible energy sources in response to
the rapid growth of global energy consumption and increasing climate changes, such as global warming
and air pollution caused by non-renewable energy consumption. The energy that is produced from the
renewable sources, like wind, solar, and tidal, etc., has become important due to the aforementioned
global issues and rapidly increasing energy needs of the modern human society. However, this energy
is still minimal and intermittent. Under these circumstances, it is necessary to well develop the clean
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and highly efficient energy storage technology to enable continuous and more stable supply of energy
from renewable energy sources. Among all of the clean energy technologies, Supercapacitors (SCs)
are considered as one of the best candidates for energy storage/conversion systems in the near future
because of their high-power density, long cycle stability, fast charging capability, small size, safe
operation, low maintenance, and eco-friendly characteristics. However, the successful exploitation
of renewable energy sources needs more efficient, reliable, low cost, and eco-friendly energy storage
devices. SCs have been used in various applications, such as hybrid electric vehicles, industrial power
grids, military equipment, etc. However, the low energy density of SCs prevents their use in many
applications. Most of the current research work is focused on increasing the energy density of SCs to
overcome this limitation and make them comparable to batteries [1–4].

Electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) are the two main
classifications of supercapacitors and they are distinguished by their energy storage mechanisms.
For EDLCs, the charge is stored at the electrode/electrolyte interface due to reversible electrolyte
ion adsorption (non-Faradaic), but, for PCs, the charge is stored due to rapid, reversible Faradaic
redox reactions of the active material [5]. Carbonaceous materials, such as carbon nanotubes (CNTs),
mesoporous carbon, activated carbon, and graphene nanosheets are used for EDLCs, due to their higher
surface area, low cost, and greater number of established fabrication techniques when compared to other
materials, whereas several metal oxides/hydroxides with various nanostructured morphologies have
been investigated for PCs. There has been extensive research, which has focused on pseudocapacitive
materials as compared to carbon-based EDLC materials due to their high energy density [6,7].
Electrode materials are one of the important factors for improving the electrochemical performance of
supercapacitors. Generally, electrode materials are classified into carbonaceous materials, conductive
polymers, and transition metal oxides. The application of supercapacitors as electrode material has
decreased due to the low specific capacity of carbonaceous materials and mechanical deterioration
of conductive polymers. Transition metal oxides have been widely studied as electrode materials
due to their high theoretical specific capacitance and abundant oxidation states. Binary transition
metal oxides with their rich redox chemistry and ability to use the advantages of both metal ions,
provide higher specific capacities, especially when compared to single-component metal oxides [8].
In this scenario, the electrochemical properties of two-dimensional nanostructured materials with
large specific surface areas, higher surface-to-volume ratios, and shorter ion transportation channels,
which provide more surface area for accessibility of the electrolyte and are more suitable than
traditional bulk materials for supercapacitor applications [9–11]. Binary transitional metal oxides,
such as ZnCo2O4 [12], NiCo2O4 [13], CuCo2O4 [14], ZnFe2O4 [15], and MnCo2O4 [16], have been
broadly explored for their application as advanced supercapacitor electrode materials owing to their
excellent properties regarding electrochemical analysis. In particular, cubic spinel-structured ZnCo2O4

has received much attention, due to its environmentally benign nature, low cost, easy preparation,
controllable morphology, and good electrochemical properties [17,18].

Presently, there have been many reports on ZnCo2O4- based supercapacitors with theoretical and
practical evidence. They include ZnCo2O4 micro-flowers and micro-sheets [8], ZnCo2O4 nanorods [9],
ZnCo2O4 nanoflakes [19], ZnCo2O4 porous microspheres [20]. ZnCo2O4 nanosheets [21], ZnCo2O4

nanowires [22], and ZnCo2O4 nanotubes [23]. Among the various morphologies of ZnCo2O4,
the sheet-like morphologies with high specific surface area and smaller thickness possess high
electronic conductivity [24]. However, improving the cycling stability and energy density is necessary
in the electrode material for supercapacitors [25]. In this view, we have chosen to prepare 2D-hierarchical
sheet-like ZnCo2O4 microstructures while using hexamethylenetetramine (HMTA) as a surfactant
via a simple hydrothermal synthesis method. Based on various analysis techniques, the as prepared
material shown good pseudocapacitor properties for supercapacitor applications.
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2. Materials and Methods

2.1. Material Synthesis

Typically, 10 mmol Zn(NO3)2·6H2O,20 mmol Co(NO3)2·6H2O, and 1 g of HMTA were dissolved
in 35 mL of deionized water and stirred well at room temperature. Once a homogeneous clear solution
formed, the solution was transferred to a 50 mL Teflon-lined stainless-steel autoclave. The autoclave
was heated at 160 ◦C for six hours and then allowed to cool to room temperature. After the reaction
was complete, the precipitate that had settled at the bottom of the autoclave was collected, washed
several times with DI water, was then washed with absolute ethanol to remove residual nanoparticles
debris, and then dried at 70 ◦C for 12 h. Finally, the nanoparticle powder was annealed at 500 ◦C for
five hours to form sheet-like ZnCo2O4 microstructures.

HMTA is used as a structure directing agent to obtain a definite morphology. Because it is a weak
base, it plays an important role in morphology direction and produce large number of hydroxyl (OH−)
ions, even at elevated temperatures. During the synthesis process, the HMTA was first dispersed
homogeneously in water to produce ammonia and formaldehyde (Equation (1)). Subsequently,
ammonia undergoes hydrolysis to produce a large number of hydroxyl ions (Equation (2)) [26].
At low temperatures, the Zn ions can easily coordinate with the OH− (Equations (3) and (4)) to form
Zn(OH)4

2−. When the temperature gradually raised, the cobalt (Co2+) and zinc (Zn2+) ions react with
the hydroxide ions to produce Zn-Co hydroxide particles under hydrothermal reaction conditions to
form the precursors of ZnCo2O4 microstructures (Equations (5) and (6)). The final products are formed
after further annealing treatment. The chemical reactions involved are as follows [27].

(CH2)6N4 + 6H2O→ 4NH3 + 6HCHO (1)

NH3 + H2O→ NH4
+ + OH− (2)

Zn2+ + 4OH−→ Zn(OH)4
2− (3)

Zn(OH)4
2−
→ ZnO + H2O + 2OH− (4)

2Co2+ + Zn2+ + 6OH−→ ZnCo2(OH)6 (5)

ZnCo2(OH)6 +
1
6

O2 → ZnCo2O4 + 3H2O (6)

2.2. Materials Characterization

X-ray diffraction (XRD) analysis was carried out using a diffractometer (PANalytical X’Pert PRO,
Malvern, UK) with Cu Kα (λ = 1.5405980 Å) as the radiation source at an operating voltage of 40 kV and
current of 30 mA to determine the crystalline nature and phase purity of the as-prepared material over a
2θ range of 10–80◦. The morphological properties were examined using a scanning electron microscope
(SEM) (Model number FE-SEM, S-4800, Hitachi, Japan) and a transmission electron microscope (TEM)
(Model number HRTEM, Tecnai G2 F20 S-Twin, Hillsboro, OR, USA).

The electrochemical properties of the material were studied on an electrochemical workstation
(CHI 760E, CH instruments, city, state, USA) while using 1 M KOH aqueous solution as an electrolyte
in a three-electrode system. A platinum wire, Ag/AgCl, and the as-prepared ZnCo2O4 were used as
the counter electrode, reference electrode, and working electrode, respectively. The Ag/AgCl electrode
is equipped with ceramic frit molten into the glass body with 3 M KCl solution as reservoir. The cyclic
voltammetry (CV) measurements were carried out over a potential range of 0 and 0.6 V at scan rates of
5 to 100 mV s−1 and galvanostatic charge-discharges (GCDs) were performed at current densities from
10 to 1000 µA cm−2 in a potential range from 0 to 0.4 V. The electrochemical impedance spectroscopy
(EIS) measurements were carried out in a frequency range from 0.001 to 100 kHz at an open circuit



Crystals 2020, 10, 566 4 of 13

potential with an AC perturbation of 5 mV amplitude. The areal capacitance (Ca) was calculated from
the discharge curves according to the following equation

Ca=
(Ix∆t)
(Sx∆V)

(7)

where I is the discharge current in Amperes, ∆t is the total discharge time in secs, ∆V is the potential
drop during discharge in volts, and S is the area of the glassy carbon electrode in cm2.

2.3. GCE Preparation

To carry out the electrochemical measurements, 4 mg of active material was homogeneously
suspended in 2 mL of ethanol and 10 µL of the resulting suspension was uniformly deposited
on the glassy carbon electrode over an area of 0.06 cm2. The electrochemical measurements were
conducted after the electrode had been dried under an infrared lamp and then washed thoroughly
with de-ionized water.

3. Results and Discussion

3.1. XRD Analysis

The crystallinity of the as-prepared ZnCo2O4 microstructures were studied by XRD analysis and
they are shown in Figure 1. All of the characteristic peaks centered at 2θ values of 31.35, 36.76, 38.49,
44.67, 55.70, 59.28, and 65.23 were well indexed to the (220), (311), (222), (400), (422), (511), and (440)
planes, respectively, which confirms that the prepared ZnCo2O4 microstructures are spinel and cubic
phases of ZnCo2O4 with space group Fd3m (JCPDS No: 23-1390) [28]. Furthermore, some weak
diffraction peaks centered at 2θ values of 31.89, 34.38, 47.49, 56.65, 62.64, and 67.38◦ were observed
denotes the presence very less fraction of ZnO in the as-prepared sample, which was formed during
the synthesis [29].
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The XRD details of the as-prepared sheet-like ZnCo2O4 are compared with standard data and
they are shown in Table 1. The average crystalline size (D) of the ZnCo2O4 sample was determined for
the dominant peak (311) from XRD data using Scherrer’s equation. The structural parameters such as
micro strain (ε), dislocation density (δ), lattice parameter (a), cell volume (v), etc. were estimated while
using the following formulae [30,31] and are shown in Table 2.

crystalline size (D) =
Kλ

Hcosθ
(8)

micro strain (ε) =
Hcosθ

4
(9)

dislocation density (δ) =
1

D2 (10)

2dhklsin θhkl = λ (11)

1

d2 =
h2 + k2 + l2

a2 (12)

cell volume(v) = abc sinβ (13)

where K is the shape factor, D is the crystallite size in nm, θ is the peak position in degrees, H is full
width at half maximum in radians, and d is the interplanar distance in Å, and h, k, and l are the Miller
indices and a, b, c, and β are the lattice parameters.

Table 1. XRD data for the ZnCo2O4 microstructures.

h k l

2θ (◦) d-Spacing (Å)
JCPDS No. CompositionStandard

Value
Observed

Value
Standard

Value
Observed

Value

220 31.21 31.28 2.86 2.85

23–1390 ZnCo2O4

311 36.80 36.85 2.44 2.41

222 38.48 38.51 2.42 2.33

422 55.57 55.74 1.62 1.64

511 59.28 59.34 1.55 1.56

440 65.14 65.32 1.42 1.43

Table 2. Structural parameters of the ZnCo2O4 microstructures.

Physical Quantity (Symbol) (Units) Value

Lattice parameter (a) (Å) 8.35

Micro strain (ε) × 10−3 1.53

Dislocation density (δ) × 10−15 1.96

Cell volume (v) (≈nm3) 0.5823

Crystalline size (D) (nm) 22.6

The poor crystallinity and small crystallite size of the material, as evidenced by the sharp and
broadened diffraction peaks, play an important role in enhancing the electrochemical behavior of the
electrode material. This can be attributed to the availability of more transportation channels in a poor
crystalline material than in a highly crystalline one, which is an essential factor for supercapacitor
electrode material [32,33].
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3.2. Morphological Analysis

The morphological characteristics of the ZnCo2O4 sample were investigated via SEM and TEM
analyses. From the SEM images (Figure 2a,b), it is clear that the ZnCo2O4 microstructures are composed
of two-dimensional (2D) hierarchical sheet-like morphologies with unequal sizes and these sheets are
composed of numerous irregular pores that were generated during the annealing treatment of the
sample at 500 ◦C in air. The high aspect ratios and surface-to-volume ratios of the loosely stacked
unique 2D hierarchical sheet-like structures result in the availability of more surface area for the
electrolyte and lead to enhanced utilization rates, which increase the supercapacitor performance of
the electrode material [34].
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(inset clearly shows the sheet-like structures).

Generally, the significant parameters such as shape, size, and structure play an effective role
in applications, such as catalysis, energy storage/conversion, and sensor applications. In particular,
the 2D-structure with a porous nature strongly influences the interaction with surrounding
molecules. Surface chemistry can definitely modify the interactions between neighboring molecules,
which significantly enhances the energy storage capacity in supercapacitor applications. Furthermore,
this porous nature can also influence free accessing liquid electrolytes with low-dimension surface
atoms. Additionally, the small atoms and high surface curvature (sharp edges) are beneficial for more
reactions with nearby atoms.

A detailed evaluation of particle morphology was analyzed through HR-TEM analysis. Figure 2c,d
shows the high- and low-magnification HR-TEM images. It can be observed that, based on the
self-assembly process, the nanoparticles agglomerate to form sheet-like microstructures and their
porous nature can also be confirmed, which is consistent with the SEM analysis. The porous nature
of the material helps to provide a greater specific surface area and shortens the ion diffusion lengths
between the electrode and electrolyte. This increases the number of active redox sites and their
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utilization rate, which leads to the enhanced supercapacitor performance of the sheet-like ZnCo2O4

microstructure electrode [35].

3.3. Electrochemical Analysis

CV, GCD, and EIS were used to assess the supercapacitance characteristics of the sheet-like
ZnCo2O4 electrode in 1M KOH while using a three-electrode electrochemical cell. Figure 3a shows
the CV curves of the sheet-like ZnCo2O4 electrode at different scan rates, which ranged from 5 to
100 mV s−1 within a potential window of 0 to 0.6 V.
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Figure 3. Cyclic voltammetry (CV) curves at different scan rates (a) and anodic peak current vs. the
square root of the corresponding scan rate (b) for sheet-like ZnCo2O4.

Clearly, the pseudocapacitive behavior of the electrode can be confirmed by the pair of redox
peaks that can be observed in all of the CV curves that cannot be observed in electrical double-layer
capacitance. A pair of oxidation and reduction peaks are observed at 0.47 V and 0.42 V, respectively,
at a scan rate of 5 mVs−1. As the scan rate increased from 5 to 100 mV s−1, the oxidation and reduction
peaks shifted towards higher and lower potentials, respectively, indicating that the reaction kinetics
are reversible due to the polarization and ohmic resistance of the material during the redox process.
The faradaic redox reactions of the material is related to Co–O/Co–O–OH [36]. The possible redox
reactions in the KOH electrolyte are mainly associated with the following equations:

Co(OH)2 + OH−→ CoOOH + H2O + e− (14)

CoOOH + OH−→CoO2 + H2O + e− (15)

Figure 3b shows the variations of the anodic peak current as a function of the scan rate. The anodic
peak current increases linearly with increasing scan rate and the area of the CV curves also increases
with increasing scan rates, which demonstrates that the redox reaction is a diffusion-controlled process
that is an important factor for the pseudocapacitive nature of supercapacitors [37].

Figure 4 shows the GCD curves for the as-prepared electrode at current densities that range from
10 to 1000 µA cm−2 within a potential window of 0–0.4 V. The non-linear charge/discharge curves
obtained from GCD represent typical pseudocapacitive behavior due to the faradaic redox reactions
occur at the electrode/electrolyte interface and are in good agreement with the CV analysis [38].

The areal capacitance values of the sheet-like ZnCo2O4 microstructure electrode were estimated
using Formula 7 and are shown in Table 3. Figure 4b shows the variations in calculated areal capacitance
values as a function of various current densities.



Crystals 2020, 10, 566 8 of 13
Crystals 2020, 10, x 8 of 14 

 

 
Figure 4. Galvanostatic charge-discharge (GCD) curves at various current densities (a) and calculated 
areal capacitance values with respect to various current densities (b) for sheet-like ZnCo2O4. 

The areal capacitance values of the sheet-like ZnCo2O4 microstructure electrode were estimated 
using Formula 7 and are shown in Table 3. Figure 4b shows the variations in calculated areal 
capacitance values as a function of various current densities. The decrease in areal capacitance with 
current density might be due to the internal resistance and polarization of the electrode as well as the 
mechanical stress that is caused by insertion and removal of electrolyte ions [39]. 

Table 3. Areal capacitance values of the sheet-like ZnCo2O4 microstructure electrode. 

Current Density (µAcm−2) 10 25 50 75 100 250 500 750 1000 
Areal Capacitance (mFcm−2) 16.13 12.78 10.20 9.09 8.35 6.07 4.46 3.73 3.21 

The supercapacitor performance of the ZnCo2O4 electrode was further investigated by cyclic 
stability. Figure 5 shows the cyclic stability of a sheet-like ZnCo2O4 electrode at a constant current 
density of 500 µA cm−2 for 1000 charge-discharge cycles within a potential window of 0 to 0.4 V. 

 
Figure 5. Cycling performance and Coulombic efficiency of sheet-like ZnCo2O4 (inset shows GCD 
curves for the first ten cycles). 

Remarkably, approximately 170% of the areal capacitance was retained after 1000 cycles and it 
signifies the outstanding cycling stability of the as-prepared electrode. The increase in areal 

Figure 4. Galvanostatic charge-discharge (GCD) curves at various current densities (a) and calculated
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Table 3. Areal capacitance values of the sheet-like ZnCo2O4 microstructure electrode.

Current Density (µAcm−2) 10 25 50 75 100 250 500 750 1000

Areal Capacitance (mFcm−2) 16.13 12.78 10.20 9.09 8.35 6.07 4.46 3.73 3.21

The decrease in areal capacitance with current density might be due to the internal resistance and
polarization of the electrode as well as the mechanical stress that is caused by insertion and removal of
electrolyte ions [39].

The supercapacitor performance of the ZnCo2O4 electrode was further investigated by cyclic
stability. Figure 5 shows the cyclic stability of a sheet-like ZnCo2O4 electrode at a constant current
density of 500 µA cm−2 for 1000 charge-discharge cycles within a potential window of 0 to 0.4 V.
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Remarkably, approximately 170% of the areal capacitance was retained after 1000 cycles and it
signifies the outstanding cycling stability of the as-prepared electrode. The increase in areal capacitance
after cycling might be due to the full activation of the ZnCo2O4 electrode material. This is a phenomenon
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commonly observed in transition metal oxides. The activation process of the electrode is due to the
slow insertion of the electrolyte into the bulk structure of the material and the diffusion of ions by some
circulation to form a greater number of active sites within the electrode material [40]. The coulombic
efficiency (η) for the sheet-like ZnCo2O4 microstructures is calculated while using the following
equation [41].

η =
td
tc
× 100% (16)

where td and tc are the discharge and charge times in secs, respectively.
Figure 5 also shows the coulombic efficiency of the electrode for 1000 cycles, which was retained

at approximately 135% and indicates the suitability of the material for supercapacitors with long-term
cycling stability [42]. The symmetry of the shapes of the GCD curves for the first 10 cycles (inset of
Figure 5) indicates good reversible redox behavior of the electrode [43]. The areal capacitance values of
different transition metal oxides with different combinations are compared with the present work and
are shown in Table 4. From the comparison, our present work of sheet-ZnCo2O4 microstructures can
be recommended for supercapacitor electrode application.

Table 4. Areal capacitance of different metal oxides in comparison with present work.

Different Metal Oxides
and Combinations Synthesis Method Areal Capacitance Reference

NiCo2O4/MnO2 Hydrothermal 5.3 F cm−2 @ 1 mA cm−2 [44]

ZnCo2O4/Ni(OH)2
Electrochemical

deposition 4.6 F cm−2 @ 2 mA cm−2 [45]

ZnCo2O4 Hydrothermal 2.72 F cm−2 @ 2.02 mA cm−2 [46]

2D-LiCoO2
Electrochemical

deposition 310 mF cm−2 @ 5 mV s−1 [47]

MnO2/MoS2 Magnetron sputtering 224 mF cm−2 @ 0.1 mA cm−2 [48]

NiCo2O4 Sol-gel method 40.6 mF cm−2 @ 0.133 mA cm−2 [49]

TiO2
Electrochemical

anodization 23.24 mF cm−2 @ 2 mV s−1 [50]

Co(OH)2/Ni Electrochemical
deposition 22.9 mF cm−2 @ 5 mV s−1 [51]

sheet-like ZnCo2O4 Hydrothermal 16.13 mF cm−2 @ 10 µA cm−2 present

EIS was performed before and after cycling for 1000 cycles in a frequency range from 0.001 to
100 kHz in order to study the behavior of ZnCo2O4 electrode materials for supercapacitors, as shown in
Figure 6. The Nyquist diagrams for both cases show a semicircle and straight line in the high and low
frequency regions, respectively. These are the characteristics of ion diffusion and capacitive behavior.
The diameter of the semicircle in the high-frequency region and the straight line in the low frequency
region denote the charge transfer resistance that is caused by the Faradaic reactions and Warburg
resistance, which are related to the electrolyte diffusion to the electrode surface.

These Nyquist plots are fitted to the equivalent circuit (Inset of Figure 6). The Rs, Rct values are
measured from the fitting and are shown in Table 5. The decrease in Rs, Rct represents that the ZnCo2O4

electrode material has excellent ionic conductivity and faster charge-transfer rates after 1000 cycles,
indicates the enhanced electrochemical performance of the material [52,53].
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Table 5. Series resistance (Rs) and charge transfer resistance (Rct) of sheet-like ZnCo2O4 before and
after cycling.

Resistance Before Cycling After Cycling

(Ω) 242.2 30.11

(Ω) 1160 110

4. Conclusions

In summary, 2D-hierarchical sheet-like ZnCo2O4 microstructures were prepared via a simple
hydrothermal synthesis method while using HMTA as a surfactant. The as prepared material was
systematically studied via various analytical techniques. The XRD analysis confirmed the crystalline
nature of the sample. The SEM images indicated a 2D sheet-like morphology, which was confirmed by
the HR-TEM analysis. The as-prepared ZnCo2O4 electrode delivered good electrochemical properties
in a 1 M KOH electrolyte solution. An areal capacitance of 16.13 mF cm−2 was delivered at a current
density of 10 µA cm−2. The electrode also achieved an outstanding cycling performance of 170%
capacitance retention and coulombic efficiency of 135% after 1000 cycles at 500 µA cm−2. The unique 2D
hierarchical sheet-like structure with a porous material nature helped to achieve the above-mentioned
properties. Finally, the facile synthesis method, along with the unique structural properties and good
electrochemical characteristics of the sheet-like ZnCo2O4 microstructures, can be considered as a
favorable electrode material for supercapacitor applications.
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