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Abstract: This paper presents the basic elementary tools for describing the global symmetry obtained
by overlapping two or more crystal variants of the same structure, differently oriented and displaced
one with respect to the other. It gives an explicit simple link between the concepts used in the
symmetry studies on grain boundaries on one side and group–subgroup transformations on the
other side. These questions are essentially of the same nature and boil down to the resolution
of the same problem: identifying the permutation groups that are images of the corresponding
applications. Examples are given from both domains, classical grain boundaries with coincidence
lattices and group–subgroup phase transformations that illustrate the profound similarities between
the two approaches.
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1. Introduction

Understanding how geometric order can propagate in solids, for example with the generation of
fascinating Moiré patterns in the superimposition of two or more identical twisted lattices, the specific
relative orientations between twinned crystals or the distribution of ordered variants in the morphology
of an initial single crystal after a phase transition, is a major part of describing the properties of coherent
interfaces in crystals. The subject has met a particular revival since the discovery [1] of bilayers of
twisted extended 2D structure like graphene and similar structures with very interesting electronic
properties of the bilayer depending crucially on its symmetry. Our intention here is to give some
general theoretical elements of an answer to this fascinating symmetry problem.

The notion of bicrystal is issued from the studies of grain boundaries in metals and minerals as first
discussed by Bollman [2] after the seminal approach of Friedel on the symmetries of twinned crystals
(see for instance [3,4]). First designated as dichromatic pattern (see Pond and Bollman [5] and Pond &
Vlachavas [6]), the notion of bicrystal was implicitly based on the lattice symmetry mostly because
examples at that time were specific studies of grain boundaries of simple metals the atomic structure
of which can be described by symmorphic space groups with one unique atom per unit cell. This lack
of generality has been discussed by Gratias & Portier [7] who used space groups and group action
theory [8] to construct a general crystallographic framework for describing the geometry of homophase
grain boundaries. In all these approaches, the basic idea was to decipher which symmetries appear
in the abstract construction of the superimposition of two crystals of the same nature in different
orientations for finding which elementary domain in space should be examined to discuss all the
possible interfaces—grain boundaries or twins—that can actually exist between the two crystals.

The overall discussion addressed in the present paper takes its roots on the works of
Guymont et al. [9] and Gratias & Portier [7] giving the basic tools for handling the symmetry properties
of bicrystals using elementary group action theory [8]. Our present goal is to generalize this notion to
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that of N-crystals, an abstract construct built of the superimposition of N identical crystals displaced
and disoriented with respect to each other. This generalization allows the inclusion of the description of
symmetry breaking in solids due to group–subgroup phase transformations that generate an assembly
of crystalline domains of the low-symmetry phase out of a single crystal of the high-symmetry phase.
Classical example of these phase transformation are the many chemical order–disorder transitions
in metallic alloys. This leads to a complete geometric description of the interconnection between the
variants generated by a group–subgroup phase transition.

The paper has three main sections:

• the first section “Standard bicrystallography” discusses the basic tools used to characterize
interfaces in homogeneous crystals; a special attention is given to the building of the space
group Wα that define all possible space groups Pτ of the bicrystal as function of the rigid-body
translation τ; another key point here is to emphasize the fact that the symmetry group of the
bicrystal results from only two kind of symmetry operations these that keep both crystals
simultaneously invariant and those that exchange the crystals: there is an homomorphism
between the group of the bicrystal and the permutation group of two elements;

• the second section shows how to generalize the bicrystal concept to the N-crystal one by
constructing all sets of symmetry operations, if any, that realize one of the permutations of
N objects;

• the third and last section proposes a direct application of the notion of N-crystal in the case of the
group–subgroup transformations.

To make the reading easy, the following notations are used all over the paper:

• point groups are designated by uppercase letters as G or Hα; point symmetry elements are
designated by lowercase letters as g or α;

• space groups, including translation groups, are noted by calligraphic letters like G or Uα and
space symmetry elements by ĝ or α̂;

• for simplicity, the term lattice is indiscriminately used as a set of vectors defining the lattice nodes
λ = na + mb + pc, n, m, p ∈ Z or as a set of symmetry elements (1|λ) belonging to a translation
group;

• the space group of the crystal is G with point group (symmetry class) G and lattice Λ.

2. Standard Bicrystallography

The crystal is characterized by its space group G of lattice Λ as defined in the International Tables
for Crystallography [10,11]. The space group is represented by the set of symmetry elements ĝ = (g|t)
defined by a point symmetry operation g (rotation, mirror, inversion, . . . ) associated with a translation t:

ĝ r = (g|t) r = g r + t

The elements of G with the identity as point symmetry operation define the lattice Λ = {(1|λ) ∈ G }.
The geometric operation that transforms crystal I into crystal II is an isometric transformation that

takes the same form as the symmetry elements of the crystal α̂ = (α|τ) where α is the point operation
(rotation, mirror, inversion, . . . ) and τ a rigid-body translation: α̂r = (α|τ)r = αr + τ.

Because of the intrinsic internal symmetries of the crystal, a generic point r1 has infinitely many
equivalent points G r1, called its G -orbit, that can as well be chosen for defining α̂; the same applies in
the second crystal. Thus, the chain of equivalences:

rI
G−→
I

G rI
α̂−→

I→I I
α̂G rI

α̂G α̂−1
−→

I I
α̂G α̂−1α̂G rI ≡ α̂G rI

shows that the most general transformation from crystal I to II, is equivalently described by any
element of the left coset α̂G (see for instance Guymont et al. [9]):
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rI
α̂G−→ rI I = α̂G rI

The inverse transformation from II to I is characterized by the right coset G α̂−1 as shown in Figure 1.

Figure 1. Passing from crystal I of space group G to crystal II of space group α̂ G α̂−1 is achieved using
any element of the left coset α̂ G ; the inverse transformation from crystal II to I is described by using
any element of the right coset G α̂−1.

2.1. Translation Invariants

For a generic interface, the lattices Λ and Λ′ of respectively crystal I and I I have no translation
in common in the sense that no translation of crystal I I can be expressed as a linear combination with
integer coefficients of the basic vectors of crystal I.

There are specific cases however, like coincidence grain boundaries and twins, where the
two crystals share a same translation subset of rank 3 of Λ, called the coincidence lattice (see [12]) and
noted Tα, which is defined by:

Tα = {(1|T) ∈ Λ : ∃ (1|T′) ∈ Λ such that T′ = αT} (1)

This coincidence lattice Tα is a subgroup of order Σ of Λ and Λ′ = α Λ α−1 and is better defined as the
intersection of these two lattices:

Tα = Λ ∩ α Λ α−1

The second important translation group is the group Uα generated by the union:

Uα = Λ ∪ α Λ α−1

This group is a supergroup of order Σ of both Λ and Λ′ and is also independent of the rigid-body
translation. It has often been called the Displacement Shift Complete lattice but is now better defined as
Displacement Symmetry Conserving lattice (see [5]) with the same acronym DSC.

The translation group Uα is the invariance translation group of the rigid-body translation τ.
The rigid-body translation is indeed defined up to any translation of crystal I and any translation of
crystal I I: for a given point operation α, any rigid-body translation τ′ deduced from τ by a translation
of Uα leads to an equivalent bicrystal.

The translation groups Tα and Uα have their image in reciprocal space as demonstrated by
Grimmer [13]: the intersection of the reciprocal lattices Λ∗ and Λ′∗ = α Λ∗ α−1 is the reciprocal lattice
of Uα : U ∗α = Λ∗ ∩ α Λ∗ α−1 whereas the union group is the reciprocal lattice of Tα. These general
group relations are shown in Figure 2.
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Figure 2. Tree of the partial order of the translation groups Tα, Λ, Λ′ = α Λ α−1 and Uα in direct and
reciprocal spaces (see [13]). The order sequence goes from Tα being a subgroup of Λ (Λ′) of order Σ
and Λ (Λ′) being a subgroup of Uα of same order. This corresponds in reciprocal space to exchanging
the roles of Tα and Uα : T ∗α is the union of the reciprocal lattices and U ∗α is the intersection of the
reciprocal lattices.

2.2. Symmetry and Rigid-Body Translation

Once a specific operation α generating a coincidence lattice is given, the question arises of which
kind of space groups Pτ can be found depending on the value of the associated rigid-body translation
τ. For that purpose, we will first determine the space group Wα that generates the orbit of all equivalent
of τ whatever its value: as will be discussed next, the little group of τ in Wα will thus generate the
space group Pτ .

We have seen in the preceding section that the invariant translation group of τ, whatever its value,
is the union group Uα since τ is defined up to any translation of either crystals I or I I. Concerning the
orientational symmetries and since τ is a global translation of one of the crystals with respect to the
other, only the point symmetry operations must be considered.

We use the general rule that determining the global symmetry of the union of two equivalent objects
(their normalizer) is made in searching for the symmetry elements that are common to both objects and the
possible additional external elements, if any, that exchange these two objects.

Let us designate by G the point group of G and let αG be the (point) coset representing the
transformation of I to I I. We designate by:

Hα = G ∩ αGα−1 or H(α) = {g ∈ G such that ∃g′ ∈ G with αg = g′α} (2)

the point group intersection of the points groups of crystals I and I I. This point group, keeping both I
and II invariant, is part of the construction of Wα(α).

On the other hand, the elements common to αG and Gα−1,

Eα = αG ∩ Gα−1 or E(α) = {αg ∈ αG such that ∃g′ ∈ G with αg = g′α−1} (3)

transform crystal I into I I and vice-versa, generate other equivalent of τ, but in flipping it in the opposite
direction τ → −τ. This set, if not empty, is also part of the construction of Wα.

The union:
Wα = Hα ∪ Eα

is a (point) group with Hα C Wα:

i. the right and left products of an element of Hα with an element of Eα is an element of Eα; let
h1 ∈ Hα, αh2 ∈ Eα, then:

h1(αh2) = h1h′2α−1 ∈ Gα−1 and h1(αh2) = αh′1h2 ∈ α G

(αh2)h1 = h′2α−1αh′1α̂−1 ∈ Gα−1 and (αh2)h1 = αh2h1 ∈ αG
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ii. the product of two elements of Eα is an element of Hα; let αh1, αh2 ∈ Eα, then:

(αh1)(αh2) = αh1h′2α−1 ∈ αGα−1 and (αh1)(αh2) = h′1α−1αh2 = h′1h2 ∈ G

Therefore, the group Wα is either Hα itself if Eα is empty, or a supergroup of order 2 of Hα if Eα is
not empty; in that later case, it can be written as:

Wα = Hα ∪ εHα

with ε ∈ Eα.
It is now trivial to find the group Wα describing all the possible symmetries of the bicrystals

generated by a given point operation α according to the rigid-body translation τ; it is given by the
direct product of Wα with Uα:

Wα = (Hα ∪ εHα)×Uα.

This space group Wα contains at once all the symmetry information for any value of τ. It is enough
to restrict τ inside the Dirichlet domain of Wα to find all the possible space groups Pτ depending on τ

using the following properties:

• the number of different possible types of space groups Pτ of the bicrystal created by a point
operator α and a rigid-body translation τ is the number of different position strata (see [14,15]) of
the space group Wα that τ can take;

• the space group Pτ of the bicrystal is determined by the point group of the symmetry stratum of
τ in Wα; in particular, high-symmetry groups appear when τ points on special positions (strata of
dimension 0) of Wα; they correspond to the so-called symmetry dictated extrema as discussed by
Cahn & Kalonji [16];

• in the construction of Pτ , the generating elements belonging to the intersection group Hα are
to be taken as they are, whereas those corresponding to the coset εHα must be multiplied by the
inversion before being injected in Pτ (for example, a mirror in the coset εHα generates a two-fold
axis perpendicular to the mirror as generator of Pτ).

2.3. The Space Group of the Bicrystal

Calculating Pτ is similar to the previous derivation in using space groups instead of point groups.
Here again, the space group Pτ is constituted of two kinds of space symmetry elements:

• those that leave invariant simultaneously I and I I: they form a subgroup of G noted Iα and
defined by Iα = G ∩ α̂ G α̂−1 ;

• those that exchange I and I I: Eα = α̂ G ∩ G α̂−1 that are outside G and can reduce to the empty
set.

The elements (For example, the subgroup Gα of G defined by the elements of G that commute
with α̂, Gα = {ĝ ∈ G such that ĝ α̂ = α̂ ĝ} is a subgroup of Iα. This is the case when α̂ is a pure
rotation sharing the same axis as a pure rotation ĝ of G , then ĝ is in Iα) of Iα are defined by:

Iα = {ĝ ∈ G : ∃ ĝ′ ∈ G such that ĝ′ = α̂ĝα̂−1 or α̂ĝ = ĝ′α̂}

The elements (For example, the binary elements of α̂ G modulo G are elements of Eα:
let (α̂ ĝ1) (α̂ ĝ1) = ĝ2, then:

α̂ ĝ1 = (α̂ ĝ1)(α̂ ĝ1) ĝ−1
1 α̂−1 = ĝ2 ĝ−1

1 α̂−1 ∈ G α̂−1.
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As an example, the product α̂ m̂ of a rotation of angle α around an axis contained in the plane of
a mirror m̂ element of G is an element of Eα : it generates a mirror of Pτ the plane of which is the
mirror plane of m̂ rotated by α/2) of Eα — if not empty — are defined by:

Eα = {α̂ĝ, ĝ ∈ G : ∃ ĝ′ ∈ G such that α̂ĝ = ĝ′α̂−1}

As in the preceding section, it is easily demonstrated that the union of the two sets Iα and Eα

(if not empty) forms a group Pτ :

Pτ = Iα ∪ Eα = Iα ∪ ε̂ Iα, ε̂ ∈ Eα, Iα C Pτ (4)

This space group of the bicrystal with translation group Tα is also designated as the symmetry group
of the dichromatic pattern (see [17]).

The explicit computation of Pτ is made particularly simple in considering the little group of τ

in Wα:

• the elements of Iα are such that:

(g|t)(α|τ) = (α|τ)(g′|t′) or (gα|gτ + t) = (αg′|αt′ + τ)

leading to gα = αg′ and gτ − τ = αt′ − t; this is achieved for g belonging to the little group of τ

(gτ = τ) where t and t′ are translations of Tα (αt′ = t);
• the elements of Eα are such that:

(g|t)(α|τ)−1 = (α|τ)(g′|t′) or (gα−1|t− gα−1τ) = (αg′|αt′ + τ)

leading to gα−1 = αg′ and gα−1τ + τ = −αt′ + t; this is achieved for gα−1 being element of the
little group of τ multiplied by the inversion (gα−1τ = −τ) where t and t′ are translations of Tα

(αt′ = t).

This shows that the little (point) group of τ in Wα, say Wτ = Hτ ∪ ετ Hτ is directly connected to
the point group Pτ of the space group Pτ that is built with Hτ and ετ Hτ multiplied by the inversion:

Pτ = Hτ ∪ 1̄ετ Hτ (5)

The number of different strata of Wα gives the number of various kind of space groups Pτ depending
on the values of τ. In particular, the symmetry dictated values of τ are those corresponding to strata of
dimension 0 of Wα.

2.4. A Simple 2D Example

To exemplify these rules, we consider the classical case of the bicrystal generated by the rotation
of a 2D square structure (see for instance [18–21] ) onto itself as shown in Figure 3. The actual
structure belongs to either symmetry class G = 4 (space group G = p4) or G = 4mm that is the
holohedry of the square system (space groups G = p4mm and p4gm). Coincidence lattices appear
for rotations α = 2 arctan(m/n) around the origin that superimpose the node (n,−m) on top of the
node (n, m), with n, m coprime and 0 < m < n ∈ Z. This leads to the coincidence lattice defined by
the vectors T1 = (n, m), T2 = (−m, n); the index is Σ = n2 + m2 and the union lattice Uα is defined by
U1 = T1/Σ, U2 = T2/Σ.
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Figure 3. Example of two square crystals of space groups p4mm(Λ) rotated by α = 53.1301◦, drawn in
red and blue, leading to a coincidence lattice T1 = (2, 1), T2 = (−1, 2), Σ = 5, in black with same square
symmetry p4mm(T1, T2). The space group Wα = p4mm(U1, U2) is shown in turquoise with U1 = T1/5
and U2 = T2/5. The number of various possible space groups of the (red-blue) bicrystals according
to the value of the rigid-body translation are the number of position strata of p4mm(U1, U2) as given
in Table 1.

The computation of Wα(α) is quite simple. The intersection Hα is the set

H(α) = {g ∈ G such that gα = αg} = 4

and the exchange set is the set of the mirrors in αG ∩ Gα−1 corresponding to the initial mirrors,
mx(my), mxy(mxȳ) rotated by α/2 for the class 4m. This set is empty for the case of the class 4.
Therefore:

Class 4mm : Wα(α) = p4mm(U1, U2), Class 4 : Wα(α) = p4(U1, U2).

This demonstrated that whatever the value of the rotation α generating a coincidence lattice,
the bicrystal of a p4 structure can have only four space groups: p4(×2), p2 and p1 corresponding
to the four strata of the group p4, whereas structures of space groups p4mm and p4gm have seven
possible space groups from p4mm to p1 corresponding to the seven strata of the group p4mm as shown
on Table 1 and exemplified in Figure 4 for the values of τ corresponding to the special points.

Here, in the holohedral examples, all 4-fold and 2-fold rotations belong to Hα whereas the
exchange elements are the original mirrors rotated by α/2. It is interesting to observe in the case of the
strata of dimension 1 in Table 1, that, as expected, the actual mirrors of Pτ are perpendicular to those
of the little group of τ as expected in relation (5); for instance a little group mx generates a space group
pmy or pgy and a little group mxy generates a mirror mxȳ.



Crystals 2020, 10, 560 8 of 14

Table 1. The complete set of symmetry groups Pτ for general square structures of space groups
p4mm, p4gm and p4 as function of the rigid-body translation τ. Structures of groups p4mm and p4gm
share the same Wα = p4mm and structures of group p4, generating no exchange set, have Wα = p4.
The coordinates of the translation τ are given with respect to the unit cell of the union group Uα defined
by U1 = (n, m)/Σ and U2 = (−m, n)/Σ with Σ = n2 + m2. The (primitive) unit cell of the groups Pτ

are defined by T1 = (n, m) and T2 = (−m, n).

τ Stratum Dim Little Group in Wα Pτ for p4mm Pτ for p4gm Pτ for p4

(0, 0) 0 4mm 4 p4mm p4gm p4
(1/2, 1/2) 0 4mm 4 p4gm p4mm p4
(1/2, 0) 0 2mm 2 p2mg p2gm p2
(x, y) 2 1 p1 p1 p1

(x, 0) 1 .mx. pmy pgy —
(x, 1/2) 1 .mx. pgy pmy —
(x, x) 1 ..mxȳ cmxy cmxy —

Figure 4. The possible space groups Pτ given in Table 1 for the bicrystal generated by the rotation
α = 2 arctan(m/n) (here for n = 2, m = 1, Σ = 5, α = 53.1301◦) as a function of the rigid-body
translation τ at the special points (0, 0), (1/2, 1/2) and (1/2, 0) for the three square symmetry space
groups p4mm, p4gm and p4. This scheme holds for any integer values of n and m.
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2.5. The Special Case of General Quasi-Bicrystals

The physical meaning of the rigid-body translation τ deserves special attention for the case
of general crystal superimposition with no coincidence lattice. This case corresponds to the limit
Σ→ ∞ where the bicrystal becomes a quasiperiodic structure (see for instance [22,23]). The translation
group Uα becomes thus a Z−module and the size of the unit cell of Uα reduces to zero. We call
it a quasi-bicrystal. This means that the general quasi-bicrystal is then independent of τ: any
two quasi-bicrystals built with the same I and I I crystals that differ only by a change δτ in the
rigid-body translation are locally isomorphic, i.e., any local configuration of finite size in one
quasi-bicrystal is present in the other with the same frequency and vice-versa. The two quasi-bicrystals
are thus undistinguishable in the sense that modifying the rigid-body translation between the two
crystals has the only effect of redistributing in space the atomic configurations of finite size with the
same frequencies without adding any new configurations nor removing any existing ones.

3. From Bicrystallography to N-Crystallography

We can extend the bicrystal concept to that of N−crystal where N > 2 crystals are superimposed
in observing that, for E non-empty, the quotient group P / I is isomorphic to the permutation group
of two objects S2:

P / I = S2. (6)

This basic isomorphism is the starting point for making an easy generalization to N-crystal.

3.1. The N-Crystal Generalization

The overall symmetry group of N equivalent objects for finite N, is isomorphic to a subgroup of
the permutation group SN of N objects. Thus, constructing the symmetry of the abstract N−crystal,
consists of identifying which actual symmetry elements are representative of those of SN .

For notation coherency, we note the identity as α̂1 = Id. The elements of SN , say πk, transform
the N-uplet of integers (1, 2, . . . , N) into (πk(1), πk(2), . . . , πk(N)). On the other hand, transforming
crystal i into j is achieved by the elements of the coset (if not empty) α̂j G α̂−1

i as illustrated in Figure 5.

Figure 5. Transforming variant i into j in a N-crystal is achieved by transforming i back into the
reference variant noted 1 using G α̂−1

i and then into variant j by applying α̂jG . This leads to the global
operation α̂j G α̂−1

i . Then, the transposition (i, j) → (j, i) has the image (α̂j G α̂−1
i ) ∩ (α̂i G α̂−1

j )

(possibly empty) in the standard crystallographic representation.
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At the substitution j→ pk(j), corresponds the coset α̂pk(j) G α̂−1
j . Thus, at the permutation pk of

N objects:
(1, 2, . . . , j, . . . , N)→ (pk(1), pk(2), . . . , pk(j), . . . , pk(N))

corresponds the intersection (if not empty) of the cosets α̂pk(j) G α̂−1
j for all j varying from 1 to N:

(pk(1), pk(2), . . . , pk(j), . . . , pk(N)) =⇒ ∩N
j=1 α̂pk(j) G α̂−1

j

The symmetry group P of the N-crystal is the union of the N! such intersections (many of them
can be empty) associated with the N! permutations of the group Sn:

P = ∪N!
k=1 (∩

N
j=1 α̂pk(j) G α̂−1

j ) (7)

The mapping between each element of the permutation group and its corresponding coset
intersections (possibly empty) insures P to be a group.

Introducing the invariant subgroup I C P generated by the identity permutation p1(j) = j:

I = ∩N
j=1 α̂j G α̂−1

j ,

we find the basic decomposition for the N-crystal symmetry group:

P = ∪N!
k=1 εkI , with ε1 = Id (8)

and
P/I ' σN ≤ SN

where σN is a subgroup of SN .
Expressions (7) and (8) are the explicit formula that define the symmetry group of the N-crystal

as natural extensions of formula (4) of the bicrystal.

3.2. Application to Group–Subgroup Phase Transformations

The simplest and most obvious application of using relation (8) is the classical group–subgroup
phase transformations as exemplified by the numerous cases encountered in solid state physics of
alloys with the numerous examples of order–disorder transformations. These are characterized by
a symmetry breaking at some critical temperature—or on reaching a two-phased region in the phase
diagram—from a high-symmetry group G at high temperature to a low-symmetry subgroup H of
order N in G at low temperature:

G → [G : H ], H < G , G = ∪N
i=1 ĝi H , ĝ1 = Id

The decomposition of G in cosets of H corresponds to a single crystal of space group G at
high temperature transforming, at low temperature, into numerous crystallites of phase H that
distribute into N kind of differently oriented/translated crystals H . Each family, called a variant,
gather all crystallites described by the same space group H . The coset ĝiH is the set of all equivalent
operations that transform a given chosen variant of space group H into another of space group
ĝiH ĝ−1

i . Passing from the variant i to the variant j is achieved by the set of operations ĝ jH ĝ−1
i .

We recognize here the expressions discussed in the previous section where the operations α̂i are
identified to ĝi. Therefore, the symmetry group Pτ is the group G itself since the N-crystal is the high
temperature phase:

G = P = ∪N!
k=1 (∩

N
j=1 ĝpk(j) H ĝ−1

j ), ĝ1 = Id (9)
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The group G of the high temperature phase describes the way the N variants of the low
temperature phase transform into each other. We designate by I the invariant subgroup of order K in
H that is the intersection of the groups of the N variants:

I = ∩N
i=1 ĝi H ĝ−1

i

This intersection group is the kernel of the application G → [G : H ] of G on its coset
decomposition on H . The pertinent group to be considered for discussing the symmetry breaking
induced by the transformation is the image of the application. It is associated with the symmetry group
σN of order N × K, isomorphic to a subgroup of SN obtained by computing the coset decomposition
G = P of Iα and extracting its quotient by Iα:

G (= P) = ∪N×K
j=1 ε j Iα, σn ' G / I

This image group σN ' G /I gives the complete and faithful description of how the parent group
G operates on the variants H .

3.3. Simple Examples

3.3.1. A 2D Toy-Model

We consider the hypothetical phase transition of blue atoms decomposing by chemical ordering
into red, green and brown atoms as shown in Figure 6. This order–disorder transformation is
characterized by the group–subgroup relation:

G = p3m1(a, b)→H = cm1(a, c = a + 2b)

with standard coset decomposition [G : H ]:

p3m1(a, b) = {1̂ + 3̂
1
+ 3̂

2}cm1(a, c)

corresponding to generate 3 variants deduced from each other by the 3-fold rotation lost during
the transition.

Figure 6. Group–subgroup phase transition from (a) p3m1(a, b) to (b) cm1(a, c = a + 2b) generating
three variants (c) deduced from each other by the permutation group S3 isomorphic to 3m.
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We note ĝ1 = 1̂, ĝ2 = 3̂
1
= (31|0, 0) and ĝ3 = ĝ−1

2 = 3̂
2
= (32|0, 0). The permutation group

(equivalent here to a three-color symmetry group) is obtained by computing the quotient group of G

on the kernel I :
I = H ∩ ĝ2H ĝ−1

2 ∩ ĝ3H ĝ−1
3 = p1(a, b)

There are thus 6 cosets in the decomposition of G on I defined by the following variant
permutations and corresponding cosets intersections:

Iα : 1̂ → (1, 2, 3)←→ ĝ1 G ĝ−1
1 ∩ ĝ2 G ĝ−1

2 ∩ ĝ3 G ĝ−1
3

Eα :



3̂
1 → (2, 3, 1)←→ ĝ2 G ĝ−1

1 ∩ ĝ3 G ĝ−1
2 ∩ ĝ1 G ĝ−1

3

3̂
2 → (3, 1, 2)←→ ĝ3 G ĝ−1

1 ∩ ĝ2 G ĝ−1
3 ∩ ĝ1 G ĝ−1

2

m̂1 → (1, 3, 2)←→ ĝ1 G ĝ−1
1 ∩ ĝ3 G ĝ−1

2 ∩ ĝ2 G ĝ−1
3

m̂2 → (3, 2, 1)←→ ĝ3 G ĝ−1
1 ∩ ĝ2 G ĝ−1

2 ∩ ĝ1 G ĝ−1
3

m̂3 → (2, 1, 3)←→ ĝ2 G ĝ−1
1 ∩ ĝ1 G ĝ−1

2 ∩ ĝ3 G ĝ−1
3

and the explicit 3-crystal symmetry group can be written as:

G = P = {1̂ + 3̂
1
+ 3̂

2
+ m̂1 + m̂2 + m̂3} p1(a, b)

the image of which is the group of permutation of three objects of order 6:

σ3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (3, 2, 1), (2, 1, 3)}

isomorphic to the point group 3m. This is shown in Figure 6c where the drawing of the three-fold axis
and the three mirrors m1, m2 and m3 explicitly demonstrates how the three variants connect to each
other according to 3m .

A few other classical examples in the family of chemical ordering of metallic alloys are
the following.

3.3.2. CuZn B2 :

Here we have G = Im3m(a), H = Pm3m(a), N = 2, I = H , σ2 ' 2 = S2

Im3m(a) = {(1|000) + (1|1/2, 1/2, 1/2)}Pm3m(a)

Here, we are in the simplest case of bicrystal induced by transformation where the translation
1/2(1, 1, 1) is the generator of the exchange set (color translation). The image group is S2.

3.3.3. Cu3Au L12 :

G = Fm3m(a), H = Pm3m(a), N = 4, I = Pmmm(a), σ4 ' m3 = S4

Fm3m(a) ={(1|000) + (1|1/2, 1/2, 0) + (1|0, 1/2, 1/2) + (1|1/2, 0, 1/2)}
× {(1|000) + (C3|0, 0, 0) + (C2

3 |0, 0, 0)} × {(1|000) + (mx,y|000)}Pmmm(a)

Here the image group is isomorphic to m3 (regular tetrahedron). We can represent the four variants
as the vertices of a regular tetrahedron. For example applying the translation 1/2(1, 1, 0) to the four
variants corresponds to the permutation (1, 2, 3, 4)→ (2, 1, 4, 3).

4. Conclusions

We have shown here that the symmetry group of the superimposition of two crystals related
by the boundary operation α̂ = (α|τ) is the combination of two kind of operations: those that
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leave simultaneous invariant both crystals (Iα = G ∩ α̂G α̂−1) and those that exchange them (εIα =

α̂G ∩ G α̂−1):
P = Iα ∪ εIα

and, when the exchange set εIα is non-empty, the quotient group P/Iα is isomorphic to S2,
the permutation group of two objects.

The space group P depends on both the point operation α and the translation part τ of α̂.
The number of different possible space groups associated with a given point operation α according to
the τ value is equal to the number of different strata of the group:

Wα = [(G ∪ αGα−1) ∩ (αG ∪ Gα−1)]×Uα

where G is the point group of the structure and Uα the union group of the lattices of crystals I and II.
The symmetry group of the superimposition of a finite number (if N → ∞, as for cubic variants

generated by iterative mirror twinning on the [1, 1, 1] plane, the present description fails in which case
the analysis developed by Cayron (see for instance [24]) using groupoids that is to be considered),
say N, of variants is the combination of all possible symmetry operation that permute the N variants
and can be written:

P = ∪N!
k=1 (∩

N
j=1 α̂pk(j) G α̂−1

j )

where the N structurally identical variants are related by α̂jG cosets with j = 1, N. Here again,
the quotient group σN 'P/I , where I = ∩N

j=1 ĝ j H ĝ−1
j is a subgroup of the permutation group

SN of N objects.
This generalization allows the gathering in a unique scheme of the symmetry studies of

N-crystallography on special grain boundaries of N (finite) variants and the coset decomposition in N
variants due to a group–subgroup solid state transformation.

The only problem here was to determine the mapping between the actual symmetry
crystallographic elements on one side and the abstract permutation operations on the other side.
As always when using group theory, the pertinent mapping is obtained by extracting the image group
of the application, say ϕ, as the quotient of the overall symmetry group (P or G ) by the kernel of the
application given by the intersection group I that is invariant in the parent group:

G
ϕ−→[G : H ], I = ∩N

j=1 ĝ j H ĝ−1
j

Im ϕ = G /I ' σN ≤ SN .

or equivalently:

G
ϕ−→P = ∪N!

k=1 (∩
N
j=1 α̂pk(j) G α̂−1

j ), I = ∩N
j=1α̂jG α̂−1

j

Im ϕ = P/I ' σN ≤ SN .

In both cases, the mathematical skeleton is essentially the natural concept of permutations between
objects: symmetry operations in crystallography do nothing but swapping equivalent objects with
each others.

Author Contributions: Conceptual derivation, D.G. and M.Q.; writing–original draft preparation, D.G.;
writing–review and editing, M.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding beyond the salaries of the authors from CNRS-France.

Acknowledgments: The authors are pleased to acknowledge fruitful discussions on bicrystals and dichromatic
patterns with Sylvie Lartigue-Korinelk and Richard Portier, and on the general notion of variants with
Cyril Cayron.

Conflicts of Interest: The authors declare no conflict of interest.



Crystals 2020, 10, 560 14 of 14

References and Notes

1. De Laissardière, G.T.; Mayou, D.; Magaud, L. Localization of Dirac Electrons in Rotated Graphene Bilayers.
Nano Lett. 2010 10, 804–808. [CrossRef]

2. Bollmann, W. Crystal Defects and Crystalline Interfaces: Springer: Berlin/Heidelberg, Germany, 1970.
3. Friedel, G. Leçons de Cristallographie; 2nd ed.; Paris, Berger-Lecrault Paris Blanchard: Paris, France, 1964.
4. Friedel, G. Etude sur les Groupements Cristallins. In Bullettin de la Société de l’Industrie Minérale; Quatrième

Série, Tomes III e IV; Société de l’Imprimerie Thèolier J. Thomas et C: Saint-Etienne, France, 1904.
5. Pond, R.C.; Bollmann, W. The symmetry and interfacial structure of bicrystals. Philos. Trans. R. Soc. Lond.

1979, 292, 449–472.
6. Pond, R.C.; Vlachavas, D.S. Bicrystallography. Proc. R. Soc. Lond. 1983, 386, 95–143.
7. Gratias, D.; Portier, R. General geometrical models of grain boundaries. J. Phys. Colloques 1982, 43, 6–15.

[CrossRef]
8. Bourbaki, N. Structures algébriques. In Eléments de MathéMatiques; Editions Hermann: Paris, France, 1970.
9. Guymont, M.; Gratias, D.; Portier, R.; Fayard, M. Space group theoretical determination of translation, twin,

and translation-twin boundaries in cell-preserving phase transitions. Phys. Stat. Solidi 1976, 38, 629–636.
[CrossRef]

10. Hahn, T. International Tables for Crystallography Volume A: Space-Group Symmetry; Springer: Berlin/Heidelberg,
Germany, 2005.

11. Grimmer, H.; Bollmann, W.; Warrington, H.D. Coincidence Site Lattices and Complete Pattern-Shift Lattices
in Cubic Crystals. Acta Cryst. 1974, A30 Pt 2, 197–205. [CrossRef]

12. The usual term coincidence site lattice [11] suggests a set of precise crystallographic sites, which are common
to both crystals. In fact, it is a set of translation operations that act the same way in both crystals by
transforming any point of either crystal into another equivalent one of the same crystal.

13. Grimmer, H. A reciprocity relation between the coincidence site lattice and the DSC lattice. Scr. Met. 1974,
8, 1221–1224. [CrossRef]

14. Each position x has a little group Gx in G defined by Gx = {g ∈ G , x = gx}; the set of all positions x with
conjugated little groups in G form a stratum also called a Wyckoff [15] position by crystallographers.

15. Wyckoff, R.G. Crystal Structures, 2nd ed.; Interscience: New York, NY, USA, 1963.
16. Cahn, J.-W.; Kalonji, G. Symmetry in solid-state transformation morphologies. In Proceedings of the

International Conference on Solid [to] Solid Phase Transformations, Pittsburgh, PA, USA, 10–14 August 1981.
17. To make the nature of the symmetry elements explicit, two different colors are usually attributed to each of

the crystals: The elements of Iα are grey elements since they do not change the crystals whereas those of Eα

are color elements since they exchange the two crystals.
18. Grimmer, H. The Generating Function for Coincidence Site Lattices in the Cubic System. Acta Cryst. 1984, 40,

108–112. [CrossRef]
19. Grimmer, H. Coincidence rotations for cubic lattices. Scr. Met. 1973, 7, 1295–1300. [CrossRef]
20. Ranganathan, S. On the Geometry of Coincidence-Site Lattices. Acta Cryst. 1966, 21, 197–199. [CrossRef]
21. Romeu, D.; Gómez, A. Recurrence Properties of O- Lattices and the Classification of Grain Boundaries.

Acta Cryst. 2006, 62, 411–412. [CrossRef] [PubMed]
22. Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic Phase with Long-Range Orientational Order and

No Translational Symmetry Phys. Rev. Lett. 1984, 53, 1951–1953. [CrossRef]
23. Levine, D.; Steinhardt, P.J. Quasicrystals: A New Class of Ordered Structures. Phys. Rev. Lett. 1984,

53, 2477–2480. [CrossRef]
24. Cayron, C. Groupoid of orientational variants. Acta Cryst. 2006, A62, 21–40. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/nl902948m
http://dx.doi.org/10.1051/jphyscol:1982602
http://dx.doi.org/10.1002/pssa.2210380225
http://dx.doi.org/10.1107/S056773947400043X
http://dx.doi.org/10.1016/0036-9748(74)90334-2
http://dx.doi.org/10.1107/S0108767384000246
http://dx.doi.org/10.1016/0036-9748(73)90079-3
http://dx.doi.org/10.1107/S0365110X66002615
http://dx.doi.org/10.1107/S0108767306025293
http://www.ncbi.nlm.nih.gov/pubmed/16926489
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.53.2477
http://dx.doi.org/10.1107/S010876730503686X
http://www.ncbi.nlm.nih.gov/pubmed/16371700
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Standard Bicrystallography
	Translation Invariants
	Symmetry and Rigid-Body Translation
	The Space Group of the Bicrystal
	A Simple 2D Example
	The Special Case of General Quasi-Bicrystals

	From Bicrystallography to N-Crystallography
	The N-Crystal Generalization
	Application to Group–Subgroup Phase Transformations
	Simple Examples
	A 2D Toy-Model
	CuZn B2 :
	Cu3Au L12 :


	Conclusions
	References

