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Abstract: Due to the rapid increase in current density encountered in new chips, the phenomena
of thermomigration and electromigration in the solder bump become a serious reliability issue.
Currently, Ni or TiN, as a barrier layer, is widely academically studied and industrially accepted
to inhibit rapid copper diffusion in interconnect structures. Unfortunately, these barrier layers are
polycrystalline and provide inadequate protection because grain boundaries may presumably serve
as fast diffusion paths for copper and could react to form Cu–Sn intermetallic compounds (IMCs).
Amorphous metallic films, however, have the potential to be the most effective barrier layer for
Cu metallization due to the absence of grain boundaries and immiscibility with copper. In this
article, the diffusion properties, the strength of the interface between polycrystalline and amorphous
ZrCuNiAl thin film, and the effects of quenching rate on the internal microstructures of amorphous
metal films were individually investigated by molecular dynamics (MD) simulation. Moreover,
experimental data of the diffusion process for three different cases, i.e., without barrier layer, with
an Ni barrier layer, and with a Zr53Cu30Ni9Al8 thin film metallic glass (TFMG) barrier layer, were
individually depicted. The simulation results show that, for ZrCuNiAl alloy, more than 99% of the
amorphous phase at a quenching rate between 0.25 K/ps and 25 K/ps can be obtained, indicating that
this alloy has superior glass-forming ability. The simulation of diffusion behavior indicated that a
higher amorphous ratio resulted in better barrier performance. Moreover, a very small and uniformly
distributed strain appears in the ZrCuNiAl layer in the simulation of the interfacial tension test;
however, almost all the voids are initiated and propagated in the Cu layer. These phenomena indicate
that the strength of the ZrCuNiAl/Cu interface and ZrCuNiAl layer is greater than polycrystalline
Cu. Experimental results show that the Zr53Cu30Ni9Al8 TFMG layer exhibits a superior barrier effect.
Almost no IMCs appear in this TFMG barrier layer even after aging at 125 ◦C for 500 h.

Keywords: thin film metallic glasses (TFMGs); ZrCuNiAl; diffusion barrier layer; molecular dynamics
(MD); microbump; intermetallic compounds (IMCs)

1. Introduction

In the current semiconductor device industry, 2.5-dimensional (2.5D) integrated circuit (IC) flip
chip assembly packages with microbump are widely used for high-end niche applications [1]. On the
other hand, copper is gradually replacing aluminum as a lead and trace material due to 40% lower
resistance than aluminum. However, the major drawback of using copper as metallization is that
copper has a diffusion coefficient much higher than aluminum [2]. In addition, copper and tin can easily
react to form Cu–Sn intermetallic compounds (IMCs) at temperatures even as low as 200 ◦C. Although
the formation of an IMC layer signifies good bonding between the solder and Cu pad, it becomes the
most brittle part in the solder joint and, thus, easily results in premature failure of electronic devices
caused by excessive growth of IMCs. Hence, the issue of selecting a proper material to act as a diffusion

Crystals 2020, 10, 540; doi:10.3390/cryst10060540 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
http://dx.doi.org/10.3390/cryst10060540
http://www.mdpi.com/journal/crystals
https://www.mdpi.com/2073-4352/10/6/540?type=check_update&version=2


Crystals 2020, 10, 540 2 of 25

barrier between copper and tin to prevent interaction is becoming more important in the trend of
minimization of electronics devices. In recent years, materials of TiN [3–6], Ni [7–9], and Ta [10] as
barrier layers were widely investigated, and they are industrially accepted to inhibit rapid copper
diffusion in interconnect structures. Unfortunately, TiN and Ni barrier layers are polycrystalline and
provide inadequate protection because grain boundaries may presumably serve as fast diffusion paths
for copper and could react to form Cu–Sn IMCs. In particular, when the bump size dimensions become
small toward 30 µm and below, IMCs tend to occupy a large volume ratio in the solder bumps as
shown in Figure 1. In addition, the current density in the solder bump needs to be further increased.
Under such high current density, the thermomigration and the electromigration in the solder bump
become a serious reliability issue [11–14]. Prevention of the growth of IMCs continues to be a critical
limitation for improving the performance of integrated circuits.
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Figure 1. Cross-section of a microbump in a 2.5-dimensional (2.5D) integrated circuit (IC) package.

Thin film metallic glasses (TFMGs) are regarded as excellent diffusion barriers in integrated
circuit applications [15]. In particular, refractory metal nitrides, deposited by reactive sputtering, were
shown to be promising diffusion barriers. These kinds of barriers block the interaction between the
interconnect materials and the silicon, and they are potentially useful as a diffusion barrier in other
systems, in addition to those between the interconnect materials and the silicon [16,17]. Recently,
TFMGs were gradually recognized and accepted as the most effective barriers layer for Cu metallization
due to the absence of grain boundaries and immiscibility with copper [18–20]. Since the diffusion
coefficient for Sn in Cu is 10 orders of magnitude smaller than that for Cu in Sn [21], IMCs are
scarcely found and grown in Sn. As long as the diffusion of Cu from the Cu pad into the barrier layer
can be effectively reduced, it represents that this barrier layer can also slow down the IMC growth.
Zr–Cu–Ni–Al bulk amorphous alloy is a unique material due to its superior glass-forming ability and
high strength [22]. As a potential candidate of TFMGs, its diffusion behavior and interface strength
with the Cu layer are crucial and need further investigation. In this study, the material properties,
especially diffusion behavior and strength, of ZrCuNiAl amorphous metal films were systematically
examined using both numerical and experimental methods. Some important findings are illustrated in
detail. The overall schematic diagram of this work is depicted in Figure 2.
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Figure 2. Overall schematic diagram of this study.

2. Methodology

2.1. Molecular Dynamics Simulation

2.1.1. Amorphous Geometry Structure

The initial structure of the molecular dynamics (MD) simulation model was constructed using
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) ( a free and open-source
software from Sandia National Laboratories, distributed under the terms of the GNU General Public
License at https://lammps.sandia.gov/) [23] and the Open Visualization Tool (OVITO) package (a free and
open-source scientific visualization and analysis package for atomistic and particle-based simulation
data at https://www.ovito.org/) [24]. The embedded-atom method (EAM) potential was adopted to
model the atomistic interactions among Cu, Zr, Ni, and Al atoms [25,26]. This potential was successfully
applied to simulate the structure, surface, and transformation of amorphous metallics. The amorphous
structure of the Zr–Cu–Ni–Al layer at a temperature of 300 K was obtained by performing simulations
with specific parameter settings and heat treatments. Firstly, a crystal Zr–Cu–Ni–Al alloy was created
with a face-centered cubic copper lattice of 185,000 atoms and enough copper atoms were randomly
replaced with Zr, Ni, and Al in disordered substitution to give the system the desired composition. The
system was initially relaxed under periodic boundary conditions at 300 K for 200 ps within a canonical
ensemble (NVP) and then heated from 300 K to 2200 K at a constant heating rate of 5 × 1011 K/s to
5 × 1013 K/s. To make the state of the system as natural as possible, the liquid system was relaxed
for 20 ps at 2200 K. Finally, the system was quenched from 2200 K to 300 K at a quenching rate of
0.5 K/ps, followed by relaxation for 20 ps at 300 K. This quenching rate is fast enough to achieve an
amorphous phase. Figure 3 shows the atomic configurations of the Zr–Cu–Ni–Al model prior to and
after quenching.

https://lammps.sandia.gov/
https://www.ovito.org/


Crystals 2020, 10, 540 4 of 25
Crystals 2020, 10, x FOR PEER REVIEW 4 of 25 

 

 

Figure 3. Atomic snapshots of Zr–Cu–Ni–Al model: (a) initial atomic configuration and (b) after 

quenching (quenched from 2200 K to 300 K at a quenching rate of 0.5 K/ps, followed by relaxation 

for 20 ps at 300 K). 

2.1.2. Procedure for Interface Model Preparation 

To obtain the Cu (polycrystalline)/Zr–Cu–Ni–Al (after quenching) interface model of size 30 

nm width (x-axis) × 30 nm height (z-axis) × 5 nm thickness (y-axis), we started by constructing a 

Cu/Zr–Cu–Ni–Al crystalline model. The bottom layer was filled with Cu atoms (15 nm height) and 

the simulation box above it was filled with Zr–Cu–Ni–Al atoms. Initially, both Cu and Zr–Cu–Ni–

Al layers were kept in contact along the interface in the x–y plane with a separation distance of 3.5 

Å . The interface separation distance was chosen based on the equilibrium bond lengths. It was 

previously shown that, as long as the interface separation distance is not too small or not too large, 

it does not affect the results [27].  

2.1.3. Procedure for Diffusion and Deformation  

Models for diffusion and deformation are shown in Figure 4. Two additional rigid regions of 

dimensions 30 nm width (x-axis) × 5 nm height (y-axis) × 12 nm thickness (z-axis) were imposed for 

the latter at the top and bottom of the model. A uniform velocity in opposite direction, 

corresponding to a strain rate of 10 × 10 s−1, was individually applied to the top and bottom rigid 

regions along the z-axis direction. The tensile test was simulated at a temperature of 300 K under 

the NVT ensemble. In the numerical simulations, the derivatives in equations of motion were firstly 

predicted at time t + Δt by applying Taylor expansions at t. Gear’s Predictor–Corrector integration 

algorithms [28] were then used for the second-order differential equations to correct all predicated 

positions. The time integration of motion was performed with a time step of 2 fs. 

  

(a)                                 (b) 

Figure 3. Atomic snapshots of Zr–Cu–Ni–Al model: (a) initial atomic configuration and (b) after
quenching (quenched from 2200 K to 300 K at a quenching rate of 0.5 K/ps, followed by relaxation for
20 ps at 300 K).

2.1.2. Procedure for Interface Model Preparation

To obtain the Cu (polycrystalline)/Zr–Cu–Ni–Al (after quenching) interface model of size 30 nm
width (x-axis) × 30 nm height (z-axis) × 5 nm thickness (y-axis), we started by constructing a
Cu/Zr–Cu–Ni–Al crystalline model. The bottom layer was filled with Cu atoms (15 nm height) and
the simulation box above it was filled with Zr–Cu–Ni–Al atoms. Initially, both Cu and Zr–Cu–Ni–Al
layers were kept in contact along the interface in the x–y plane with a separation distance of 3.5 Å.
The interface separation distance was chosen based on the equilibrium bond lengths. It was previously
shown that, as long as the interface separation distance is not too small or not too large, it does not
affect the results [27].

2.1.3. Procedure for Diffusion and Deformation

Models for diffusion and deformation are shown in Figure 4. Two additional rigid regions of
dimensions 30 nm width (x-axis) × 5 nm height (y-axis) × 12 nm thickness (z-axis) were imposed for
the latter at the top and bottom of the model. A uniform velocity in opposite direction, corresponding
to a strain rate of 10 × 10 s−1, was individually applied to the top and bottom rigid regions along the
z-axis direction. The tensile test was simulated at a temperature of 300 K under the NVT ensemble.
In the numerical simulations, the derivatives in equations of motion were firstly predicted at time t +

∆t by applying Taylor expansions at t. Gear’s Predictor–Corrector integration algorithms [28] were
then used for the second-order differential equations to correct all predicated positions. The time
integration of motion was performed with a time step of 2 fs.

The configuration of the system was firstly established; it was then relaxed by energy minimization
to ensure no existence of steric clashes or inappropriate geometries. The convergence of the pressure,
temperature, potential energy, and volume as a function of different times was conducted to ensure
that the system reached a proper equilibrium, as shown in Figure 5. In these figures, the pressure and
density have no significant change with time, and the energy potential and temperature gradually
tend to stabilize when the time is greater than 100 ps. In other words, the simulation model can be
presumed to be convergent, and it reaches a steady state. To verify the correctness of the intermolecular
potential functions, Table 1 shows the elastic constants of calculated data by LAMMPS and experimental
data [25,29–34]. It can be seen that, except for the elastic modulus C44 of the Zr atom, the errors of
other elements were within 5% between calculated data and experimental data. The error in C44 might
be attributed to the improper shearing model to predict C44 or the incorrect parameterization for the
hexagonal close packed (HCP) structure of the Zr atom. However, as shown in the literature [35,36],
it should be emphasized that classical models are not always reliable and should be subjected to
careful fitting to first-principle data. Furthermore, other more detailed verifications, such as atomic
equilibrium distance, coefficient of thermal expansion, Tg and Tm, and so on were individually
performed and discussed.
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Figure 5. Graphs of the (a) potential energy minimization, (b) temperature, (c) pressure, and (d) volume
equilibration of the Zr–Cu–Ni–Al alloy simulation system prior to simulation.

To analyze the thermodynamic properties of the Zr–Cu–Ni–Al alloy for different compositions
and quenching rates, the relationship between volume and temperature was compared. Figure 6
shows the volume of 185,000 atoms versus temperature curves at different quenching rates of 0.25,
2.5, and 25 K/ps, which reveals the quenching rate dependence of glass transition temperature. In
order to acquire a more refined estimate of glass transition temperature, the data were captured with
smaller increments in temperature, i.e., 1 K, from 200 to 2000 K. During the quenching process, the
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volume vs. temperature curve with a quenching rate of 25 K/ps showed a slope change at about 725 ±
30 K, which indicates that glass transition occurs at this temperature. Similar results were obtained in
the experiments by Chang et al. [37] and Jang et al. [38]. As the quenching rate is within the range
from 2.5 K/ps to 25 K/ps, there exists no significant difference in turning points due to no obvious
crystalline structure at these quenching rates. The glass transition temperature of Tg slightly decreases
with the decrease in quenching rate. The result shows that a decrease in quenching rate causes an
essential decrease in the volume at T < Tg, and the system is better equilibrated at a lower quenching
rate. Figure 6 also shows that a higher quenching rate leads to a larger free volume in the final glassy
state. When the quenching rate increased 10-fold from 0.25 to 2.5 K/ps, the volume of Zr–Cu–Ni–Al
after quenching increased by approximately 1%. The predicted melting temperature of 1170 ± 30 K by
MD calculations is in reasonable agreement with the experimental melting temperature of 1135 K [38].
In addition, the coefficient of thermal expansion (CTE) can be calculated through a volume–temperature
diagram. The CTE of Zr53Cu30Ni9Al8 amorphous alloy in this work was about (12 ± 2) ×10−6/ K,
similar to the experimental data reported in the literature [39,40]. In order to further understand the
microstructures in amorphous structures, pair analysis techniques, especially the bond-type index
method of Honeycutt–Anderson (HA) [41], were applied. The mean square displacement (MSD)
profiles at temperatures ranging from 300 to 900 K for Cu–Ag and Zr–Cu–Ni–Al amorphous metal
were used to investigate their dynamical properties.
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Table 1. Elastic constants of Cu, Zr, Ni, and Al determined experimentally and via molecular dynamics (MD).

Element Methods C11 (GPa) C12 (GPa) C44 (GPa)

Cu

Experimental data [25] 168.4 121.4 75.4

Calculated data by MD 168.5 120.8 75.2

Error 0.06% 0.49% 0.27%

Zr

Experimental data [29] 144 74 33.4

Calculated data by MD 141 74.2 44

Error 2.1% 2.7% 31.7%

Ni

Experimental data [25] 253 152 124

Calculated data by MD 240.4 144.1 122.7

Error 4.98% 5.20% 1.05%

Al

Experimental data [25] 107.3 60.1 28.3

Calculated data by MD 102.6 58.8 27.7

Error 4.38% 2.16% 2.12%

2.2. Sample Preparations and Experimental Verification

To compare with the simulation results, the diffusion behaviors for three different samples, i.e.,
without a barrier layer, with an Ni barrier layer, and with a Zr53Cu30Ni9Al8 TFMG barrier layer, were
individually investigated experimentally. The thickness of the Ni and Zr53Cu30Ni9Al8 TFMG barrier
layers was 2.5 µm and 100 nm, respectively. A normal package test vehicle of 1.4 × 1.4 mm was used
as the substrate. The substrates were cleaned by acetone and ethanol. Prior to depositions of barrier
layers, the organic solderability preservative (OSP) on the Cu pad can be properly removed by formic
acid. ZrCuNiAl barrier layers were coated onto a Cu pad surface substrate by means of a vacuum DC
MDX 1000 sputtering system (MeiVac Inc., San Jose, CA, USA). Sputtering involved firing ions toward
a ZrCuNiAl bulk metallic glass (BMG) target to displace atoms, which were then deposited onto a
Cu pad substrate to form a ZrCuNiAl thin film. A bare Cu pad substrate was used as a comparison.
The schematic deposited structures for three kinds of samples of a full solder ball system, called a
bump, were as shown in Figure 7. This full solder ball system is generally composed of a solder ball,
Cu pad, barrier layer, and package substrate colored by green. Figure 7a represents the sample with no
barrier layer, while Figure 7b,c show the sample with Ni and Zr53Cu30Ni9Al8 TFMG barrier layers,
respectively. The operating conditions of the DC sputtering system were set at a base pressure of
6 × 10−6 torr, a working pressure of 4 millitorr, argon (Ar) flow of 5.4 standard cm3, sputtering time of
30 min, and varying sputtering powers of 15 W to 40 W.

In order to confirm the structure of the Zr53Cu30Ni9Al8 TFMG deposited by sputtering, this TFMG
was investigated by scanning electron microscopy (SEM) (JEOL JSM-7000F) and energy-dispersive
X-ray spectroscopy (EDS). The accelerating voltage for SEM/EDS was set to 5 kV, with a 30-s lifetime.
The results of X-ray diffraction revealed that the Zr53Cu30Ni9Al8 alloy film exhibits a typical amorphous
diffraction pattern. The ratio between Zr, Cu, Ni, and Al as an atomic percentage in the amorphous
thin film was identified by SEM/EDS. The elemental composition data on the amorphous thin film
are shown in Figure 8 and Table 2. The ratio between Zr, Cu, Ni, and Al as an atomic percentage in
the amorphous thin film identified by SEM/EDS for Zr51Cu32Ni10Al7 was very close to the designed
Zr53Cu30Ni9Al8 goal. When the barrier layers were deposited, the SAC305 solder balls of 300 µm
diameter could be placed manually on the Cu pad and were held in place with a flux. Immediately,
Cu pads of the substrate and the solder ball were joined together in an oven at 260 ◦C for 30 min.
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Figure 7. Schematic diagram and SEM image of full solder ball without a barrier layer (a,b), with an Ni
barrier layer (2.5 µm thick) (c,d), and with a Zr53Cu30Ni9Al8 thin film metallic glass (TFMG) barrier
layer (100 nm thick) (e, f).
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Table 2. Elemental composition data on amorphous Zr53Cu30Ni9Al8 TFMG.

Element Weight% Atomic%

Al 2.40 6.62

Ni 8.14 10.04

Cu 31.44 32.50

Zr 58.02 50.84

Totals 100.00
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3. Results and Discussion

3.1. Simulation Results

3.1.1. Radial Distribution Function (RDF)

To analyze the structural differences for different compositions and quenching rates, the RDF
curves for all configurations were compared. The results indicated that changes in quenching rates have
only slight effects on the structure rearrangement when Zr53Cu30Ni9Al8 alloy is quenched from 2000 K
down to 200 K. This is due to the Zr53Cu30Ni9Al8 alloy containing four elements, with differences in the
atomic radii, which satisfies the Inoue group argument [42]. In addition, it can be seen from Figure 9
that, as the quenching rate went from 0.25 to 25 K/ps, the amorphous ratio of the samples was high. In
other words, the Zr53Cu30Ni9Al8 alloy has a high probability of forming as an amorphous state in this
quenching rate interval. Figure 10 shows that, as the temperature was decreased from 1800 K to 200 K,
the first peak of the RDF curve increased while the full width at half maximum (FWHM) decreased
gradually. For instance, as shown in Figure 10a, the height of the first peak under a quenching rate
of 0.25 K/ps increased from 2.2 to 2.8, while the FWHM decreased from 1.9 nm to 1.4 nm as the
temperature decreased from 1800 K to 200 K. Same situations can be found for the quenching rates of
2.5 K/ps and 25 K/ps, as shown in Figure 10b,c, respectively. This indicates that the density of atoms
was distributed at higher concentration as a function of distance from a reference particle at lower
temperatures, exhibiting a more crystalline state, especially when comparing the glassy and the liquid
state. In addition, the second peaks of RDF curves became more explicit, splitting as the temperature
decreased, which is a common feature of amorphous metal. Therefore, the results confirmed the
structural change of microstructures as being in short-range order under the fast quenching rates.
For the total pair, the first splitting occurred at about 500 K with a higher quenching rate, but the first
splitting occurred at about 300 K with a lower quenching rate, below the temperature of Tg. Tsplit is
determined by visual inspection of the RDF curve at different temperatures. The results revealed that
some substructures formed in like atom pairs before reaching the final glassy state.
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3.1.2. Honeycutt–Anderson (HA) Bond Pair Analysis

To obtain a three-dimensional description of the local atomic configuration of Zr53Cu30Ni9Al8,
the Honeycutt–Anderson (HA) approach [41] is considered to be capable of analyzing in detail the
transformation between local structures at different temperatures. According to the definition of
the HA bond-type index, pairs of atoms under consideration in a system can be described by four
numbers ijkl. The first integer i of 1 denotes that they are bonded in the root pair; otherwise, i is 2.
The second integer j represents the number of near neighbors shared in common by the two given
atoms. The third integer k is the number of bonds among the shared neighbors. These three numbers
are not sufficient to characterize a diagram uniquely; thus, a fourth integer l is added to resolve the
ambiguity with respect to the arrangement of the atomic bonds. Applying this HA bond-type index, the
bond types between two atoms can be determined clearly. The HA indexes of 1421 and 1422 represent
face-centered cubic (FCC) and HCP crystal structures, respectively, and those of 1431, 1541, and 1551,
which occupy the largest fraction in the amorphous or liquid state, are used to search the icosahedral
local structures. The 1551 pair is particularly characteristic of the icosahedral ordering; 1541 and
1431 are indexes for the defect icosahedra and FCC defect local (or distorted icosahedra) structures,
respectively. HA indexes 1661 and 1441 are employed to identify the local body-centered cubic (BCC)
structure. Finally, the indexes 1321 and 1311 represent the packing related to rhombohedral pairs that
tend to evolve when the 1551 packing forms, which can be viewed as the side product accompanying
icosahedral atomic packing. Figure 11 shows the HA index distribution of Zr53Cu30Ni9Al8 under
different quenching rates, where the fraction of icosahedra-like local structures (1551, 1541, and 1431)
is over 70%. The fractions of these three icosahedra-like structures are very close, and each of them
occupies about 25% of all HA fractions. For other HA indexes, the HCP local structure (1422), BCC local
structures (1441 and 1661), and FCC local structure (1421) constitute about 12.5%, 2.5%, 5.2%, and 5.9%,
respectively. The HA index distribution of icosahedra-like structures verifies the amorphous structure,
which is consistent with the HA analysis results reported previously for MGs [43].

Crystals 2020, 10, x FOR PEER REVIEW 12 of 25 

 

3.1.2. Honeycutt–Anderson (HA) Bond Pair Analysis 

To obtain a three-dimensional description of the local atomic configuration of Zr53Cu30Ni9Al8, 

the Honeycutt–Anderson (HA) approach [41] is considered to be capable of analyzing in detail the 

transformation between local structures at different temperatures. According to the definition of the 

HA bond-type index, pairs of atoms under consideration in a system can be described by four 

numbers ijkl. The first integer i of 1 denotes that they are bonded in the root pair; otherwise, i is 2. 

The second integer j represents the number of near neighbors shared in common by the two given 

atoms. The third integer k is the number of bonds among the shared neighbors. These three 

numbers are not sufficient to characterize a diagram uniquely; thus, a fourth integer l is added to 

resolve the ambiguity with respect to the arrangement of the atomic bonds. Applying this HA 

bond-type index, the bond types between two atoms can be determined clearly. The HA indexes of 

1421 and 1422 represent face-centered cubic (FCC) and HCP crystal structures, respectively, and 

those of 1431, 1541, and 1551, which occupy the largest fraction in the amorphous or liquid state, 

are used to search the icosahedral local structures. The 1551 pair is particularly characteristic of the 

icosahedral ordering; 1541 and 1431 are indexes for the defect icosahedra and FCC defect local (or 

distorted icosahedra) structures, respectively. HA indexes 1661 and 1441 are employed to identify 

the local body-centered cubic (BCC) structure. Finally, the indexes 1321 and 1311 represent the 

packing related to rhombohedral pairs that tend to evolve when the 1551 packing forms, which can 

be viewed as the side product accompanying icosahedral atomic packing. Figure 11 shows the HA 

index distribution of Zr53Cu30Ni9Al8 under different quenching rates, where the fraction of 

icosahedra-like local structures (1551, 1541, and 1431) is over 70%. The fractions of these three 

icosahedra-like structures are very close, and each of them occupies about 25% of all HA fractions. 

For other HA indexes, the HCP local structure (1422), BCC local structures (1441 and 1661), and 

FCC local structure (1421) constitute about 12.5%, 2.5%, 5.2%, and 5.9%, respectively. The HA index 

distribution of icosahedra-like structures verifies the amorphous structure, which is consistent with 

the HA analysis results reported previously for MGs [43]. 

 

(a) 

Figure 11. Cont.



Crystals 2020, 10, 540 13 of 25

Crystals 2020, 10, x FOR PEER REVIEW 13 of 25 

 

 

(b) 

 

(c) 

Figure 11. The variations of the Honeycutt–Anderson (HA) indexes for the Zr53Cu30Ni9Al8 alloy 

quenched at (a) 25K/ps, (b) 2.5K/ps, and (c) 0.25K/ps at different temperatures during quenching 

process. 

The atomic radii of Zr, Cu, Ni, and Al are 1.55, 1.35, 1.35, and 1.25 Å , respectively, with the 

atomic size of Al smaller than that of Zr by about 20%, while the HA fraction distributions for 

different atom type pairs maybe different. For this reason, it is necessary to further explore the 

relationship between different atom pairs and the HA index distribution. Therefore, a more detailed 

analysis of the HA indexes of different atomic pairs in Zr53Cu30Ni9Al8 after quenching of 25 K/ps at 

100 K is shown in Figure 12. The Zr-related HA indexes (Zr–Zr, Zr–Cu, Zr–Ni, and Zr–Al) form the 

highest fractions of 1541 and 1431 among all pair types, where 1541 and 1431 are indexes for the 

defect icosahedra and FCC defect local (or distorted icosahedra) structures, respectively. The Cu, Ni, 

and Al-related HA indexes (Cu–Cu, Cu–Ni, Cu–Al, Ni–Al, Ni–Ni, and Al–Al) form the highest 

fractions of 1441 among all pair types, which are employed to identify the local BCC structure. This 

indicates that the zirconium atoms more easily produce an amorphous state with other atoms due 

to a larger difference in atomic radius. 

Figure 11. The variations of the Honeycutt–Anderson (HA) indexes for the Zr53Cu30Ni9Al8 alloy
quenched at (a) 25K/ps, (b) 2.5K/ps, and (c) 0.25K/ps at different temperatures during quenching process.

The atomic radii of Zr, Cu, Ni, and Al are 1.55, 1.35, 1.35, and 1.25 Å, respectively, with the atomic
size of Al smaller than that of Zr by about 20%, while the HA fraction distributions for different atom
type pairs maybe different. For this reason, it is necessary to further explore the relationship between
different atom pairs and the HA index distribution. Therefore, a more detailed analysis of the HA
indexes of different atomic pairs in Zr53Cu30Ni9Al8 after quenching of 25 K/ps at 100 K is shown in
Figure 12. The Zr-related HA indexes (Zr–Zr, Zr–Cu, Zr–Ni, and Zr–Al) form the highest fractions of
1541 and 1431 among all pair types, where 1541 and 1431 are indexes for the defect icosahedra and FCC
defect local (or distorted icosahedra) structures, respectively. The Cu, Ni, and Al-related HA indexes
(Cu–Cu, Cu–Ni, Cu–Al, Ni–Al, Ni–Ni, and Al–Al) form the highest fractions of 1441 among all pair
types, which are employed to identify the local BCC structure. This indicates that the zirconium atoms
more easily produce an amorphous state with other atoms due to a larger difference in atomic radius.
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3.1.3. Diffusion Between Zr–Cu–Ni–Al and Cu

In order to understand the diffusion behavior between copper and various structures of
Zr–Cu–Ni–Al alloys, the interface between Cu and Zr–Cu–Ni–Al alloy layers was investigated at
various time steps. Figure 13 shows the cross-section snapshots of the Cu/Zr–Cu–Ni–Al interface under
quenching rates of 0.25, 2.5, and 25 K/ps at 600 K after a 2000-ps equilibration process. As demonstrated
in this figure, no obvious proliferation was found of Zr–Cu–Ni–Al with quenching rates between
0.25 K/ps and 25 K/ps, while only some of the Cu atoms deviated from their original lattice positions.
However, as the time increased, the thickness of the inter-diffusion layer (also called the interfacial
region), where the individual concentrations of Cu and Zr–Cu–Ni–Al were both over 5 at%, became
thicker. To further quantitatively characterize the diffusion process, the concentration profile was
acquired. Figure 14 shows the concentration distributions of Cu and Zr–Cu–Ni–Al along the diffusion
couple (Z-axis) direction obtained at 600 K after 2000 ps with different quenching rates. The thickness
of the interfacial region was only approximately 1 nm when the quenching rate ranged between
0.25 K/ps and 25 K/ps. This indicates that the effects of the three different quenching rates on the
diffusion are very small since the microstructure became highly amorphous (>98%) at these quenching
rates. The mean square displacement (MSD) of atoms in the interfacial region was used to investigate
their dynamical properties. Figure 15 shows the MSD of Cu and Zr–Cu–Ni–Al as a function of time
within the temperature range from 500 K to 900 K obtained in the present work. It is clear that the
slopes of the MSD profile are generally larger at a higher temperature. However, the effects of the three
different quenching rates on the diffusion are also very small. According to the different temperatures
and the MSD curves of the Einstein equation, the total diffusion coefficient near the Cu/Zr–Cu–Ni–Al
interface at different temperatures could be obtained as shown in Figure 16. It can be inferred that
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the diffusion coefficients between Cu and Zr–Cu–Ni–Al significantly increased with the increase in
temperature when the system temperature exceeded the glass transition temperature. The values of
these diffusion coefficients had no significant difference at different quenching rates, indicating that
there was no significant difference in structure at these quenching rates.
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Figure 13. Cross-section of Zr53Cu30Ni9Al8/Cu interface with Zr53Cu30Ni9Al8 alloy under quenching
rates of 0.25, 2.5, and 25 K/ps at 600 K after a 2000-ps equilibration process (Cu atoms in the polycrystalline
layer are colored in orange, while the atoms of Zr53Cu30Ni9Al8 are colored in gray).
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3.1.4. Tensile Behavior

In order to explore the mechanical behavior of the amorphous state alloy, Zr–Cu–Ni–Al MGs
at three different quenching rates were exerted by tensile deformation. It was found that the effects
of the three different quenching rates on the mechanical behavior under tensile test were very small.
Henceforth, we only show the tensile results with the quenching rate at 25 K/ps of Zr–Cu–Ni–Al.
Figure 17A represents the stress–strain curve of the bilayer material composed of Cu and Zr–Cu–Ni–Al
MG under tensile loading of the perfect interface model at a temperature of 100 K and strain rate of
1 × 1010 %/s. It can be seen that the tensile stress increased gradually with increasing strain from (a) to
(b) and reached a maximum value. After that, the stress suddenly dropped at (c). This was followed
by a more steady flow regime during which some serrations are evident from (c) to (e). The sudden
drop was caused by the formation of voids arising from the Zr–Cu–Ni–Al/Cu interface. However,
for samples produced with a short quenching time, the stress–strain curves were smoother and the
behavior was close to the ideal elastic–perfectly plastic response. This phenomenon of sudden drop
in stress is the combined effect of dislocations undergoing slippage along the slip plane and void
nucleation in the polycrystal copper. The void nucleation is attributed to the fact that there exist
more defects in this local region. They are generally formed by the coalescences of the free volume
present in the crystal metallic, and they become the site of weakness during tensile deformation.
Figure 17B shows (I) the atomic position, (II) common neighbor analysis (CNA), and (III) local atomic
strain snapshots of the interface model captured at different strains until fracture. The extension of
the model began with an elastic deformation from its initial state to the first yield state. The initial
position of the void occurred in polycrystal Cu, which indicates that the Cu/Zr–Cu–Ni–Al interface
and Zr–Cu–Ni–Al MG are stronger than polycrystal Cu. In addition, from this figure, the local strain
almost occurred concentrically in the polycrystal Cu layer. On the contrary, the distributions of strain
in the Zr–Cu–Ni–Al layer were much more uniform and smaller than in the polycrystal Cu layer.
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3.2. IMC Formation with Different Barrier Layers Via Experiment

Figure 18 shows the cross-section morphology of the interface between the Cu and Sn layers in
the samples with and without the TFMG barrier layer just after solder joining and after aging at 125 ◦C
for 500 h. In the sample without the barrier layer, bilayer IMCs with a thick scallop-like Cu6Sn5 of
7–8 µm close to the Sn matrix and a thin Cu3Sn of 0.5 µm close to the Cu substrate were formed at
both interfaces after solder joining. These experimental results are in good agreement with the data in
the literature [44]. When aged at 125 ◦C after 500 h, the interfacial Cu6Sn5 and Cu3Sn IMCs grew to
9–10 µm and 0.5–1 µm in thickness, respectively. In the sample with an Ni barrier layer, it can be found
that relatively smooth IMCs with thin Cu6Sn5 of 1–2 µm appeared at interfaces between the Sn and Ni
barrier layer after solder joining. When aged at 125 ◦C after 500 h, the interfacial Cu6Sn5 IMCs grew
to 3–4 µm. In the sample with the TFMG barrier layer, no IMC was observed, whether after solder
joining or after aging at 125 ◦C for 500 h. These data reveal that a thin TFMG barrier layer can still
effectively block the subsequent interfacial reactions. Figures 19 and 20 as well as Tables 3 and 4 show
a typical EDS spectrum obtained from the IMCs, and the chemical compositions were identified to be
Cu6Sn5 and Cu3Sn, respectively. Furthermore, to protect the surfaces of samples from contamination,
it was our standard operation procedure (SOP) that all the surfaces of samples were deposited with a
very thin gold layer after the diffusion test. Consequently, some Au materials still remained on the
surfaces of the samples and could be detected during the measurement of the SEM/EDS. Consequently,
the peak near 2.1 keV was due to Au. These IMCs are the well-known major products that result
from Cu/Sn interactions after solid-state aging [45–47]. According to the above observation, the IMC
thickness increased with aging time in the samples without a barrier layer and with the Ni barrier
layer. In addition, Cu6Sn5 in the sample without a barrier layer grew much faster than that in the
sample with a barrier layer, while the growth of Cu3Sn was hindered with a barrier layer in this aging
condition. It is worth mentioning that, since Cu6Sn5 and Cu3Sn are quite brittle, fracture of the long
prismatic Cu6Sn5 and Cu3Sn IMCs could occur when they suffered from stress concentration and
temperature fluctuations.

Table 3. Elemental composition data of Cu6Sn5.

Element Weight% Atomic%

Cu 40.51 55.99

Sn 59.49 44.01

Totals 100.00

Table 4. Elemental composition data of Cu3Sn.

Element Weight% Atomic%

Cu 62.56 75.74

Sn 37.44 24.26

Totals 100.00
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Figure 18. SEM image of solder and Cu pad interface without a barrier layer (a,b), with an Ni barrier
layer (c,d), and with a Zr53Cu30Ni9Al8 TFMG barrier layer (e,f) after solder joining (a,c,e) and after
aging at 125 ◦C for 500 h (b, d, f).
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Figure 20. Elemental composition data of Cu3Sn intermetallic compound (IMC) identified by SEM
from electron image (a) and the data of EDS (b) (from the sample without a barrier layer after aging at
125 ◦C for 500 h; the peak near 2.1 keV is due to Au).

4. Conclusions

The microstructures, diffusion properties, and the strength of the interface between polycrystalline
Cu and an amorphous Zr–Cu–Ni–Al thin layer with different quenching rates were simulated using
molecular dynamics. Moreover, a diffusion test for three different cases was performed experimentally.
The following conclusions can be reached from these simulation and experimental results:

(1) The simulation results of quenching and diffusion tests revealed that the Zr–Cu–Ni–Al amorphous
metal exhibits excellent glass-forming ability (GFA) and diffusion barrier performance.

(2) The simulation results of the tensile test showed that all small voids are initiated, propagated,
and then coalesced to become large voids in the polycrystal Cu layer only. These large voids
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induce highly concentrated strain distributions and finally lead to the rupture of the samples.
Meanwhile, the strains induced in Zr–Cu–Ni–Al MG layer are quite uniformly distributed, and
no voids are formed on the Cu/Zr–Cu–Ni–Al interface. This implies that the Cu/Zr–Cu–Ni–Al
interface and Zr–Cu–Ni–Al MG layer are mechanically stronger than the polycrystalline Cu layer.

(3) The experimental diffusion test revealed that, for the sample of the Zr53Cu30Ni9Al8 TFMG barrier
layer, almost no IMCs were observed, even after aging at 125 ◦C for 500 h. In other words,
the Zr–Cu–Ni–Al amorphous metal exhibits superior diffusion barrier performance compared to
the Ni barrier layer, which is in good agreement with the results of the simulation.
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