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Abstract: Using two experimental configurations, self-assembled zinc oxide (ZnO) nanostructures
including nanoplates, nanosaws, and nanobelts were synthesized by thermal chemical-vapor
deposition (CVD), and their morphological properties were investigated. ZnO nanostructures
grown on Au-coated Si substrates in a parallel setup revealed highly defined ZnO nanoplates and
branched nanowires. ZnO nanostructures grown in a perpendicular setup using Si substrates with and
without the Au catalyst exhibited vertically oriented ZnO nanosaws and randomly aligned nanobelts,
respectively. In the thermal CVD method, experiment conditions such as oxygen-flow rate, growth
temperature, and catalyst, and experimental configurations (i.e., parallel and perpendicular setups)
were important parameters to control the morphologies of two-dimensional ZnO nanostructures
showing platelike, sawlike, and beltlike shapes.

Keywords: experimental configuration; ZnO nanoplates; ZnO nanosaws; ZnO nanobelts; thermal
chemical-vapor deposition; two-dimensional nanostructures

1. Introduction

Zinc oxide (ZnO) has attracted much attention because of its interesting characteristics such
as its near-ultraviolet (UV) emission, transparent conductivity, semiconducting property, and
piezoelectricity [1–3]. Self-assembled ZnO nanostructures with different morphologies have promising
applications in many fields such as nanolasers [4], piezoelectric-power generation [5], gas sensing [6],
and solar cells [7] owing to their high photoelectric reaction, large surface area, cost-effective
fabrication, and ecofriendly nature. Unusual material properties of ZnO nanostructures with unique
morphologies were reported, including the presence of nanobelts [8], nanocages [9], nanocombs [10],
and nanoforests [11]. In particular, two-dimensional ZnO nanostructures, such as nanosheets
and nanoplates, are advantageous for catalysis and photocatalysis applications due to their high
surface-to-volume ratio [12]. The specific surface areas of ZnO nanostructures can be enhanced by
controlling their shapes and morphologies.

Various methods were developed to synthesize ZnO nanostructures, including thermal
chemical-vapor deposition (CVD) [13], metal-organic CVD [14], the solution process [15], molecular
beam epitaxy [16], and laser ablation [17]. Among these methods of growing ZnO nanostructures,
the thermal CVD method has received great interest because the growth process is relatively simple,
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and the morphology of the nanostructures can easily be tuned by varying experiment parameters such
as temperature and oxygen partial pressure.

In most cases of thermal CVD, substrates are placed in a position parallel to the boat with the
source powders in a quartz reactor tube. When the temperature of the boat increases, the mixture
of ZnO and carbon powders is vaporized, and Zn is formed by a carbothermal reduction process.
Zn reacts with oxygen under ambient conditions on the Si substrates, leading to the growth of
ZnO nanostructures. Because vapor transport and reactions depend on the position in the reactor
tube [18], the location of the substrates has a significant effect on the morphologies of the synthesized
nanostructures. In addition, depending on the geometry of the reactor tube, two-dimensional ZnO
nanostructures can be observed during thermal CVD growth on Si substrates under specific growth
conditions [19,20]. Hence, we examined the influence of experiment setups and selective conditions in
thermal CVD on the growth of self-assembled ZnO nanostructures.

A metal catalyst on the substrate surface is typically required for the initiation and guidance
of ZnO nanostructure growth in thermal CVD, resulting in vapor-liquid-solid (VLS) [21,22] and
vapor-solid (VS) [20,23] mechanisms. On the other hand, catalyst-free growth of two-dimensional
ZnO nanostructures by thermal CVD is interesting with respect to cost-effectiveness. VS growth or
self-catalyzed growth mechanisms [24,25] are most often used to describe the catalyst-free growth of
ZnO nanostructures.

In this study, we investigated the effects of growth conditions on the morphology of
catalyst-mediated ZnO nanostructures synthesized by thermal CVD under different experimental
configurations, specifically parallel and perpendicular setups. Two-dimensional ZnO nanostructures
were prepared by changing oxygen-flow rate from 0.1 to 2.5 sccm, and growth temperature from
700 to 900 ◦C. Furthermore, the catalyst-free growth of ZnO nanostructures in thermal CVD with a
perpendicular setup was investigated in relation to growth temperatures.

2. Experiments

Two-dimensional ZnO nanostructures with different morphologies were grown in a horizontal
quartz reactor tube by thermal CVD using two types of experimental configurations, as shown in
Figure 1. Parallel and perpendicular setups were classified by the position of substrate to the gas flow.
In the parallel setup, the Zn precursor was placed on the upstream side. Distance between substrate
and precursor in the parallel setup was fixed at about 7 cm. The substrate in the perpendicular setup
vertically faced the precursor at a distance of 4 mm.

Before growing the ZnO nanostructures, for the catalyst-assisted growth of ZnO nanostructures,
a gold layer was coated onto the Si substrates by direct-current sputtering. To prepare a Zn precursor,
ZnO powder (99.9%, Sigma-Aldrich, Saint Louis, MO, USA) was mixed with graphite powder (99.9%,
Sigma-Aldrich, Saint Louis, MO, USA) at a 1:1 weight ratio. The mixed powders were placed in
an alumina boat inserted into a quartz tube and placed close to the middle of the furnace. Prior to
heating, a furnace system was flushed with inert Ar gas for 1 h to remove contamination and residual
gases in the reactor. A heating system was used to increase the temperature inside the furnace.
After initially maintaining at room temperature for 1 h, the temperature was raised to the desired
growth temperature at a rate of 5 ◦C/min. After the desired temperature was attained, the growth time
of ZnO nanostructures was 1 h. Growth temperature was changed from 700 to 900 ◦C. During the
growth of the ZnO nanostructures, a mixture of Ar and O2 was introduced toward the right side from
the left side in the reactor. The flow rates of Ar and O2 were measured by flowmeter. O2 flow rate
was varied from 0.1 to 2.5 sccm, while Ar flow rate was maintained at 100 sccm. Finally, after ZnO
nanostructure growth, the furnace was turned off and allowed to cool to room temperature.
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Figure 1. Schematics of thermal chemical-vapor deposition (CVD) setups in this study: (a) parallel and
(b) perpendicular setups.

The morphologies of the ZnO nanostructures were observed using a field-emission scanning
electron microscope (FE-SEM, S-4800, Hitachi, Tokyo, Japan). To clearly observe the shapes and
morphologies of the ZnO nanostructures, acceleration voltage was measured by changing from 10 to
20 kV. Room-temperature photoluminescence (PL, LabRam HR, Horiba, Kyoto, Japan) characteristics
of the ZnO nanostructures grown on the Si wafer were measured. In the PL measurement, a 325 nm
wavelength He-Cd Laser (30 mW) and a GaAs photomultiplier tube were used for excitation and
detection, respectively. X-ray diffraction (XRD, X’Pert MPD, PANalytical, Almelo, Netherlands) using
Cu-Kα radiation at room temperature was performed in order to investigate the crystal structures of
ZnO nanostructures. The 2theta-theta measurement method was used for crystallinity analysis.

3. Results and Discussion

Figure 2 shows FE-SEM images of ZnO nanostructures grown on Au-coated Si substrates at
a constant growth temperature of 800 ◦C in the parallel setup while varying the oxygen-flow rate
of the mixed gas with argon and oxygen. As shown in Figure 2a, the ZnO nanostructures grown
at an Ar/O2 flow rate of 120/0.1 sccm had many interconnected or branched nanowires and a few
nanoplates. Au nanoparticles were observed at the top of the nanowires, indicating that the growth
process of the ZnO nanowires grown at an Ar/O2 flow rate of 120/0.1 sccm could be explained by
the VLS mechanism. However, because no Au particles were observed in the FE-SEM images of
the ZnO nanoplates grown at an Ar/O2 flow rate of 120/0.1 sccm, ZnO nanoplates could have been
synthesized by the VS mechanism. Accordingly, from the viewpoint of the VS growth process, ZnO
nanoplates were grown by thermally evaporating a precursor, and condensation on the Au catalyst.
In Figure 2b, the ZnO nanostructure grown at an Ar/O2 flow rate of 120/1.0 sccm exhibited highly
defined ZnO nanoplates and branched nanowires. As seen in Figure 2c, the ZnO nanostructures
grown at an Ar/O2 flow rate of 120/2.5 sccm showed almost the same number of ZnO nanoplates and
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nanowires, displaying irregularly shaped nanostructures. From this result, it can be proposed that
excess oxygen gas prohibited nanoplate synthesis during the VS growth process. Due to different
oxygen contents in the gas mixtures, different morphological features of the ZnO nanoplates were
created. Therefore, we suggest that oxygen concentration in the gas mixture was a crucial parameter to
control the morphologies of ZnO nanoplates in the parallel setup.
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Figure 2. Field-emission scanning-electron-microscope (FE-SEM) images of ZnO nanostructures grown
on Au-coated Si substrates at a constant growth temperature of 800 ◦C in parallel setup with varying
Ar/O2 flow rates in the gas mixture; (a) 120/0.1 sccm, (b) 120/1.0 sccm, and (c) 120/2.5 sccm.

Figure 3 shows the PL spectrum of ZnO nanostructures with nanoplates and branched nanowires
grown on Au-coated Si substrates in the parallel setup at an Ar/O2 flow rate of 120/1.0 sccm. We noted
a narrow UV band at 380 nm (3.26 eV) and a broad green band at 570 nm (2.17 eV). UV band emission
was due to a near band-edge transition of ZnO nanorods [26]. Green-band emission is caused by
the radial recombination of a photogenerated hole with an electron that belongs to singly ionized
oxygen vacancy, which was also observed in the bulk ZnO [27]. It was obvious that the green-band
emission of the ZnO nanostructures grown at an Ar/O2 flow rate ratio of 120/2.5 was weaker than that
of the ZnO nanostructures grown at an Ar/O2 flow rate ratio of 120/1.0, resulting from the reduction of
oxygen vacancies in the ZnO nanostructures due to the increase of O2 content in the gas mixture. Thus,
the ZnO nanostructure grown on Au-coated Si substrates in the parallel setup was oxygen-deficient
nanoplates, exhibiting similar PL properties to the bulk ZnO.
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Figure 3. Photoluminescence (PL) spectrum of ZnO nanoplates and branched nanowires grown on
Au-coated Si substrates in parallel setup with varying Ar/O2 flow rates of 120/1.0 sccm (dotted line)
and 120/2.5 sccm (dashed line).

Figure 4 shows FE-SEM images of ZnO nanostructures grown in the perpendicular setup on
Au-coated Si substrates as a function of growth temperature. According to Figure 4a, the ZnO
nanostructures grown at 700 ◦C had many nanosaws and some nanorods that were randomly oriented.
As shown in Figure 4c, ZnO nanostructures grown at 900 ◦C had many nanowires and a few nanosaws.
Contrary to these results, as illustrated in Figure 4b, ZnO nanostructures grown at 800 ◦C had vertically
oriented ZnO nanosaws with a tapered shape. Therefore, growth temperature was a key parameter
that could be used to control the morphologies of ZnO nanosaws. It is well known that ZnO nanosaws
are synthesized by the catalyzed growth of the Zn-terminated (001) surface, while the O-terminated
(001) surface is relatively chemically inactive [28]. Moreover, the morphology of ZnO nanostructures
is determined by growth temperature, which is related to surface energy including polarization and
termination [29]. As such, it is suggested that a growth temperature of 800 ◦C resulted in self-catalyzed
growth, yielding tapered and vertically aligned nanostructures, as shown in Figure 4b.

Figure 5 shows FE-SEM images of ZnO nanostructures grown in a perpendicular setup on Si
substrates without the Au catalyst as a function of growth temperature. As shown in Figure 5a,
ZnO nanostructures grown at 700 ◦C had many nanowires and some nanosheets that were randomly
oriented. The ZnO nanostructures grown at 800 ◦C, as illustrated in Figure 5b, had many nanowires and
some ZnO nanobelts that had widths ranging from 1 to 2 µm. As seen in Figure 5c, ZnO nanostructures
grown at 900 ◦C had many nanoplates and a few nanowires. Thus, we can confirm that ZnO nanobelts
with wide widths can be synthesized in growth process without introducing a catalyst [30]. In all
samples, ZnO nanostructures were randomly oriented because the Au catalyst was not used in the
growth process. This is related to the formation of a polycrystal ZnO film without the preferred
orientation at an initial growth stage [31]. Therefore, growth temperature in the perpendicular setup
without the Au catalyst was an important parameter that could be used to control the morphologies of
ZnO nanobelts under suitable growth conditions, such as under specific partial oxygen pressure or
with the use of specific substrate-setup positions.



Crystals 2020, 10, 517 6 of 10
Crystals 2020, 10, x FOR PEER REVIEW 6 of 10 

 

 

Figure 4. FE-SEM images of ZnO nanostructures grown in perpendicular setup on Au-coated Si 
substrates as function of growth temperature at Ar/O2 flow rate of 120/1.0 sccm in gas mixture: (a) 700 
°C, (b) 800 °C, and (c) 900 °C. Scale bar is 3 μm. 

Figure 5 shows FE-SEM images of ZnO nanostructures grown in a perpendicular setup on Si 
substrates without the Au catalyst as a function of growth temperature. As shown in Figure 5a, ZnO 
nanostructures grown at 700 °C had many nanowires and some nanosheets that were randomly 
oriented. The ZnO nanostructures grown at 800 °C, as illustrated in Figure 5b, had many nanowires 
and some ZnO nanobelts that had widths ranging from 1 to 2 μm. As seen in Figure 5c, ZnO 
nanostructures grown at 900 °C had many nanoplates and a few nanowires. Thus, we can confirm 
that ZnO nanobelts with wide widths can be synthesized in growth process without introducing a 
catalyst [30]. In all samples, ZnO nanostructures were randomly oriented because the Au catalyst 
was not used in the growth process. This is related to the formation of a polycrystal ZnO film without 
the preferred orientation at an initial growth stage [31]. Therefore, growth temperature in the 
perpendicular setup without the Au catalyst was an important parameter that could be used to 
control the morphologies of ZnO nanobelts under suitable growth conditions, such as under specific 
partial oxygen pressure or with the use of specific substrate-setup positions. 

It is well known that ZnO nanobelts that show flat top and bottom surfaces ± (2–10), and side 
surfaces ± (001) grow along [010] and occur bending due to strain [30]. Moreover, the morphology of 
ZnO nanostructures grown without a catalyst can be determined by growth temperature, which is 
related to the chemical inactivity of the surface and the activation energy of normal VS growth [26]. 
From these facts, it is suggested that a growth temperature of 800 °C in a perpendicular setup without 
a catalyst led to normal VS growth, yielding bent and randomly aligned nanostructures. 

Figure 4. FE-SEM images of ZnO nanostructures grown in perpendicular setup on Au-coated Si
substrates as function of growth temperature at Ar/O2 flow rate of 120/1.0 sccm in gas mixture:
(a) 700 ◦C, (b) 800 ◦C, and (c) 900 ◦C. Scale bar is 3 µm.

It is well known that ZnO nanobelts that show flat top and bottom surfaces ± (2–10), and side
surfaces ± (001) grow along [010] and occur bending due to strain [30]. Moreover, the morphology of
ZnO nanostructures grown without a catalyst can be determined by growth temperature, which is
related to the chemical inactivity of the surface and the activation energy of normal VS growth [26].
From these facts, it is suggested that a growth temperature of 800 ◦C in a perpendicular setup without
a catalyst led to normal VS growth, yielding bent and randomly aligned nanostructures.

Hereafter, we consider catalyst-mediated ZnO nanostructures grown under different experiment
setups at a growth temperature of 800 ◦C and an Ar/O2 flow rate of 120/1.0 sccm. The effect of the Au
catalyst on ZnO nanostructure growth during thermal CVD with a perpendicular setup under the
same growth conditions is reviewed.

As seen in Figure 2b, in the parallel setup, ZnO nanoplates showing rectangular shapes were grown
using two growth processes consisting of two-dimensional filling and one-dimensional branching
yielding ZnO nanoplates and branched nanowires. The ZnO nanoplates had widths ranging from 3 to
4 µm and lengths ranging from 4 to 6 µm. The thicknesses of the nanoplates and the lengths of the
branched nanowires ranged from 300 to 600 nm and 2 to 4 µm, respectively. However, as shown in
Figure 4b, ZnO nanosaws showing triangular shapes were tapered from the bottom on the substrate
in the CVD process, and had widths ranging from 200 to 400 nm at their base and about 20 nm at
the tip. In contrast, as illustrated in Figure 5b, ZnO nanobelts grown in the perpendicular setup
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without the Au catalyst were bent during the CVD growth process and had widths ranging from 1
to 2 µm. The tapered nanosaws exhibited a strongly preferred an orientation with respect to the c
plane, as shown in Figure 4b. Here, we can tell that the parallel setup led to the growth of randomly
oriented plate-shaped ZnO nanostructures due to the temperature gradient between source materials
and substrates in the quartz tube. However, the perpendicular setup led to the growth of well-defined
saw- and belt-shaped nanostructures due to stable temperature distribution between source materials
and substrates in the quartz tube. The perpendicular setup, with and without the Au catalyst, caused
the growth of vertically aligned ZnO nanosaws and randomly aligned ZnO nanobelts, respectively, on
Si substrates.
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Figure 6 shows the XRD patterns of the ZnO nanoplates (Figure 2b), nanosaws (Figure 4b),
and nanobelts (Figure 5b) grown via the thermal CVD method. The XRD patterns exhibited a large
peak at about 69.16◦ corresponding to the Si substrate. All samples exhibited diffraction peaks of
(100), (002), (101), (102), (110), (103), (200), and (112) planes, consistent with the hexagonal wurtzite
structure (Joint committee on powder diffraction standards (JCPDS) no. 89-1397). This indicated that
morphological changes in the ZnO nanostructures seldom affected the crystal structure. The diffraction
peak of the (002) plane for the ZnO nanoplates and nanobelts was weakly observed compared to that
of the (101) plane, implying a weakly preferred orientation in the c-axis direction. However, a strong
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diffraction peak of the (002) plane and a very weak peak of the (101) plane for the ZnO nanosaws were
observed, implying highly (002) plane-oriented growth. It is known that, in ZnO, a faster (001) growth
direction is due to the higher surface energy of the polar plane. Therefore, a high (002) plane orientation
indicated that most of the ZnO nanosaws grew along the (001) direction. In addition, compared to
the catalyst-free growth of ZnO nanostructures, the Au catalyst gave rise to the enhancement of a
crystalline orientation, as shown in Figures 4–6. This is based on the observation that catalyst-mediated
growth led to crystalline nanostructures growing in specific crystallographic directions [32].
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Figure 6. X-ray diffraction (XRD) patterns of ZnO nanoplates, nanosaws, and nanobelts grown under
different experiment setups at growth temperature of 800 ◦C and Ar/O2 flow rate of 120/1.0 sccm.

4. Conclusions

Two-dimensional ZnO nanostructures showing various shapes were grown under different
experiment setups and selective conditions using a thermal CVD method. By varying O2 flow rate,
ZnO nanostructures grown on Au-coated Si substrates in the parallel setup revealed highly defined
ZnO nanoplates and branched nanowires, likely as a result of two growth processes: two-dimensional
filling and one-dimensional branching. With a growth temperature of 800 ◦C and an Ar/O2 flow rate of
120/1.0 sccm, Au-catalyst-mediated ZnO nanostructures grown in the perpendicular setup exhibited
vertically oriented ZnO nanosaws that grew from the bottom of the substrate in a tapered shape. ZnO
nanostructures grown in the perpendicular setup without the Au catalyst showed bent randomly
aligned ZnO nanobelts. The ZnO nanoplates, nanosaws, and nanobelts had hexagonal wurtzite
structures, indicating that the morphological changes of ZnO nanostructures seldom affected their
crystal structures. It can be concluded that experimental configuration (i.e., a parallel or perpendicular
setup) and experiment conditions (e.g., oxygen-flow rate, growth temperature, and catalyst) are key
parameters that can be used to control the morphologies of two-dimensional ZnO nanostructures that
grow in the thermal CVD method.
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