S1. Supplementary Material

S1.1. Supplementary tables

Compound	1	2a	2b
Empirical formula	C ₁₀ H _{16.07} CuN ₃ O _{5.54}	C10H24CuN2O8	C ₂₀ H ₄₃ Cu ₃ N ₄ O ₁₄
Formula weight $M[g \text{ mol}^{-1}]$	330.51	363.85	754.20
Crystal dimension[mm ³]	0.5 imes 0.07 imes 0.07	0.1 imes 0.08 imes 0.06	0.3 imes 0.12 imes 0.08
Wavelength/Å	0.71073	0.61992	0.71073
Crystal shape	rod	block	rod
Crystal color	blue	blue	blue
Crystal system	orthorhombic	monoclinic	monoclinic
Space group (no.)	P2 ₁ 2 ₁ 2 (18)	$P2_{1}(4)$	$P2_1/n$ (14)
T[K]	100(2)	100(2)	100(2)
a[Å]	18.897(3)	6.671(3)	7.549(5)
b[Å]	6.7444(10)	15.128(7)	14.006(10)
c[Å]	10.3301(16)	7.776(4)	13.509(10)
$\beta[\circ]$		90.300(8)	90.198(15)
$V[Å]^3$	1316.6(3)	784.7(6)	1428.3(18)
Z	4	2	2
μ [mm ⁻¹]	1.684	1.013	2.286
F(000)	682	382	780
Scan range (θ) [°]	2.0 / 29.7	1.2 / 36.0	1.5/ 30.7
Reflections (total/unique)	18667 / 3542	26764 / 9016	22157/4292
Variables refined	186	214	219
R _{int}	0.0862	0.0557	0.1784
$wR_2(all/obs.)$	0.1363 / 0.130	0.1563 / 0.1428	0.1645/0.1409
$R_1(\text{all/obs.})$	0.0782 / 0.0552	0.0675 / 0.0596	0.1100/ 0.0682
GOF on F^2	1.051	1.044	0.997
Diff. Peak/hole [e/Å]	1.622 and -0.628	2.140 and -3.808	0.828 and -1.039
Commound	20	20	
Compound	20	Jd	
Empirical formula	C ₁₀ H ₂₄ CuN ₂ O ₈	C ₂₂ H ₂₅ CuO ₁₁	
Empirical formula Formula weight M[g mol ⁻¹]	C ₁₀ H ₂₄ CuN ₂ O ₈ 363.85	C ₂₂ H ₂₅ CuO ₁₁ 528.96	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³]	$\begin{array}{c} C_{10}H_{24}CuN_{2}O_{8}\\ 363.85\\ 0.1\times0.09\times0.08 \end{array}$	$\begin{array}{r} & & \\ & C_{22}H_{25}CuO_{11} \\ & 528.96 \\ & 0.4 \times 0.07 \times 0.03 \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\end{array}$	$\begin{array}{c} & & \\ & C_{22}H_{25}CuO_{11} \\ & 528.96 \\ & 0.4 \times 0.07 \times 0.03 \\ & 0.61992 \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\end{array}$	$\begin{array}{c} & & \\ & C_{22}H_{25}CuO_{11} \\ & 528.96 \\ & 0.4 \times 0.07 \times 0.03 \\ & 0.61992 \\ & \text{needle} \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal color	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\\ blue\\ \end{array}$	$\begin{array}{c} 5a\\ \hline C_{22}H_{25}CuO_{11}\\ 528.96\\ 0.4\times0.07\times0.03\\ 0.61992\\ needle\\ colorless\end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal color Crystal system	$\begin{array}{c} C_{10}H_{24}CuN_{2}O_{8}\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\\ blue\\ orthorhombic\\ \end{array}$	$\begin{array}{c} 5a\\ \hline C_{22}H_{25}CuO_{11}\\ 528.96\\ 0.4\times 0.07\times 0.03\\ 0.61992\\ needle\\ colorless\\ monoclinic\\ \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal color Crystal system Space group (no.)	$\begin{array}{c} C_{10}H_{24}CuN_{2}O_{8}\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\\ blue\\ orthorhombic\\ Pccn~(56)\end{array}$	$\begin{array}{c} & & \\ & C_{22}H_{25}CuO_{11} \\ & 528.96 \\ 0.4 \times 0.07 \times 0.03 \\ & 0.61992 \\ & needle \\ & colorless \\ & monoclinic \\ & P2_1(4) \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal shape Crystal color Crystal system Space group (no.) T[K]	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\\ blue\\ orthorhombic\\ Pccn~(56)\\ 100(2)\\ \end{array}$	$\begin{array}{c} & & \\ & C_{22}H_{25}CuO_{11} \\ & 528.96 \\ 0.4 \times 0.07 \times 0.03 \\ & 0.61992 \\ & needle \\ & colorless \\ & monoclinic \\ & P2_1(4) \\ & 100(2) \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal shape Crystal color Crystal system Space group (no.) T[K] a[Å]	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\\ blue\\ orthorhombic\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ \end{array}$	$\begin{array}{c} & & \\ & C_{22}H_{25}CuO_{11} \\ & 528.96 \\ \hline 0.4 \times 0.07 \times 0.03 \\ & 0.61992 \\ & needle \\ & colorless \\ & monoclinic \\ & P2_1(4) \\ & 100(2) \\ & 9.070(3) \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal shape Crystal color Crystal system Space group (no.) T[K] a[Å] b[Å]	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ \end{array}$	$\begin{array}{c} & & \\ & & \\ C_{22}H_{25}CuO_{11} \\ & 528.96 \\ \hline 0.4 \times 0.07 \times 0.03 \\ & 0.61992 \\ & needle \\ & colorless \\ & monoclinic \\ & P2_1(4) \\ & 100(2) \\ & 9.070(3) \\ & 10.990(3) \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal shape Crystal color Crystal system Space group (no.) <i>T</i> [K] <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å]	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ \end{array}$	$\begin{array}{c} & & & \\ & C_{22}H_{25}CuO_{11} \\ & 528.96 \\ \hline 0.4 \times 0.07 \times 0.03 \\ & 0.61992 \\ & needle \\ & colorless \\ & monoclinic \\ & P2_1(4) \\ & 100(2) \\ & 9.070(3) \\ & 10.990(3) \\ & 12.080(3) \end{array}$	
CompoundEmpirical formulaFormula weight M[g mol ⁻¹]Crystal dimension[mm ³]Wavelength/ÅCrystal shapeCrystal shapeCrystal colorCrystal systemSpace group (no.) $T[K]$ $a[Å]$ $b[Å]$ $c[Å]$ $b[Å]$ $c[Å]$ $\beta[^{\circ}]$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\\ blue\\ orthorhombic\\ Pccn (56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ \hline 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ \end{array}$	
CompoundEmpirical formulaFormula weight M[g mol ⁻¹]Crystal dimension[mm ³]Wavelength/ÅCrystal shapeCrystal shapeCrystal colorCrystal systemSpace group (no.) $T[K]$ $a[Å]$ $b[Å]$ $c[Å]$ $b[Å]$ $c[Å]$ $\beta[^{\circ}]$ $V[Å]^3$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ \hline 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ \end{array}$	
$\begin{array}{c} \mbox{Empirical formula} \\ \mbox{Empirical formula weight M[g mol^{-1}]} \\ \mbox{Crystal dimension[mm^3]} \\ \mbox{Wavelength/Å} \\ \mbox{Crystal shape} \\ \mbox{Crystal shape} \\ \mbox{Crystal color} \\ \mbox{Crystal system} \\ \mbox{Space group (no.)} \\ \mbox{T[K]} \\ \mbox{a[Å]} \\ \mbox{b[Å]} \\ \mbox{c[Å]} \\ \mbox{b[Å]} \\ \mbox{c[Å]} \\ \mbox{b[Å]} \\ \mbox{c[Å]} \\ \mbox{b[\Lambda]} \\ \mbox{c[\Lambda]} \\ \mbox{c[\Lambda]}$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2 \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal color Crystal system Space group (no.) T[K] a[Å] b[Å] c[Å] c[Å] $\beta[^{\circ}]$ $V[Å]^3$ Z $\mu[mm]^{-1}$	$\begin{array}{c} 2 \\ \hline C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times 0.09\times 0.08\\ 0.61992\\ block\\ blue\\ orthorhombic\\ Pccn (56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024 \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ 0.4\times0.07\times0.03\\ 0.61992\\ \text{needle}\\ \text{colorless}\\ \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ \end{array}$	
$\begin{array}{c} \mbox{Empirical formula} \\ \mbox{Empirical formula weight M[g mol^{-1}]} \\ \mbox{Crystal dimension[mm^3]} \\ \mbox{Wavelength/Å} \\ \mbox{Crystal shape} \\ \mbox{Crystal shape} \\ \mbox{Crystal color} \\ \mbox{Crystal system} \\ \mbox{Space group (no.)} \\ \mbox{T[K]} \\ \mbox{a[Å]} \\ \mbox{b[Å]} \\ \mbox{c[Å]} \\ \mbox{b[Å]} \\ \mbox{c[Å]} \\ \mbox{b[Å]} \\ \mbox{c[Å]} \\ \mbox{b[Å]} \\ \mbox{Cry[Å]}^3 \\ \mbox{Z} \\ \mbox{μ[mm]}^{-1} \\ \mbox{$F(000)$} \end{array}$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024\\ 764\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ 0.4\times0.07\times0.03\\ 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ \end{array}$	
Empirical formula Formula weight M[g mol ⁻¹] Crystal dimension[mm ³] Wavelength/Å Crystal shape Crystal color Crystal system Space group (no.) T[K] a[Å] b[Å] c[Å] b[Å] c[Å] $\beta[^{\circ}]$ $V[Å]^{3}$ Z $\mu[mm]^{-1}$ F(000) Scan range $(\theta)[^{\circ}]$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024\\ 764\\ 2.3~35.8\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ 0.4\times0.07\times0.03\\ 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ 1.5/36.9\\ \end{array}$	
$\begin{array}{c} \mbox{Compound}\\ \hline \mbox{Empirical formula}\\ \mbox{Formula weight M[g mol^{-1}]}\\ \mbox{Crystal dimension[mm^3]}\\ \mbox{Wavelength/Å}\\ \mbox{Crystal shape}\\ \mbox{Crystal shape}\\ \mbox{Crystal system}\\ \mbox{Space group (no.)}\\ \mbox{$T[K]$}\\ \mbox{$a[Å]$}\\ \mbox{$b[Å]$}\\ \mbox{$c[Å]$}\\ \mbox{$b[Å]$}\\ \mbox{$c[Å]$}\\ \mbox{$b[Å]$}\\ \mbox{$c[Å]$}\\ \mbox{$c[Å]$}\\ \mbox{$c]$}\\ \mbox{$c]$}\\$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024\\ 764\\ 2.3/35.8\\ 49974/4932\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ 1.5 / 36.9\\ 41532 / 15416\\ \end{array}$	
$\begin{array}{c} \mbox{Empirical formula} \\ \mbox{Empirical formula weight M[g mol^{-1}]} \\ \mbox{Crystal dimension[mm^3]} \\ \mbox{Wavelength/Å} \\ \mbox{Crystal shape} \\ \mbox{Crystal shape} \\ \mbox{Crystal system} \\ \mbox{Space group (no.)} \\ T[K] \\ a[Å] \\ b[Å] \\ c[Å] \\ b[Å] \\ c[Å] \\ \beta[^{\circ}] \\ V[Å]^3 \\ Z \\ \mu[mm]^{-1} \\ F(000) \\ \mbox{Scan range }(\theta)[^{\circ}] \\ \mbox{Reflections (total/unique)} \\ \mbox{Variables refined} \end{array}$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn~(56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024\\ 764\\ 2.3~/~35.8\\ 49974/4932\\ 105\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ 1.5 / 36.9\\ 41532/15416\\ 323\\ \end{array}$	
$\begin{array}{c} \mbox{Compound}\\ \hline \mbox{Empirical formula}\\ \mbox{Formula weight M[g mol^{-1}]}\\ \mbox{Crystal dimension[mm^3]}\\ \mbox{Wavelength/Å}\\ \mbox{Crystal shape}\\ \mbox{Crystal shape}\\ \mbox{Crystal system}\\ \mbox{Space group (no.)}\\ \mbox{T[K]}\\ \mbox{a[Å]}\\ \mbox{b[Å]}\\ \mbox{c[Å]}\\ \mbox{b[Å]}\\ \mbox{c[Å]}\\ \mbox{b[Å]}\\ \mbox{c[Å]}\\ \mbox{b[Å]}\\ \mbox{c[Å]}\\ \mbox{c[\&]}\\ \mbo$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn (56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024\\ 764\\ 2.3 / 35.8\\ 49974/4932\\ 105\\ 0.0506\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ 1.5 \ / \ 36.9\\ 41532 \ / \ 15416\\ 323\\ 0.0531\\ \end{array}$	
$\begin{array}{c} \mbox{Compound}\\ \hline \mbox{Empirical formula}\\ \hline \mbox{Empirical formula}\\ \hline \mbox{Formula weight M[g mol^{-1}]}\\ \hline \mbox{Crystal dimension[mm^3]}\\ \hline \mbox{Wavelength/Å}\\ \hline \mbox{Crystal shape}\\ \hline \mbox{Crystal shape}\\ \hline \mbox{Crystal system}\\ \hline \mbox{Space group (no.)}\\ \hline \mbox{T[K]}\\ a[Å]\\ b[Å]\\ c[Å]\\ b[Å]\\ c[Å]\\ \beta[°]\\ V[Å]^3\\ Z\\ \mu[mm]^{-1}\\ F(000)\\ \hline \mbox{Scan range }(\theta)[°]\\ \hline \mbox{Reflections (total/unique)}\\ \hline \mbox{Variables refined}\\ \hline \mbox{R_{int}}\\ wR_2(all/obs.)\\ \hline \end{array}$	$\begin{array}{c} C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn (56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024\\ 764\\ 2.3 / 35.8\\ 49974/4932\\ 105\\ 0.0506\\ 0.1311 / 0.1298\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \hline colorless\\ \hline monoclinic\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ 1.5 \ / \ 36.9\\ 41532 \ / \ 15416\\ 323\\ 0.0531\\ 0.1703 \ / \ 0.1516 \end{array}$	
$\begin{array}{c} \mbox{Compound}\\ \hline \mbox{Empirical formula}\\ \hline \mbox{Empirical formula}\\ \hline \mbox{Formula weight M[g mol^{-1}]}\\ \hline \mbox{Crystal dimension[mm^3]}\\ \hline \mbox{Wavelength/Å}\\ \hline \mbox{Crystal shape}\\ \hline \mbox{Crystal shape}\\ \hline \mbox{Crystal system}\\ \hline \mbox{Space group (no.)}\\ \hline \mbox{T[K]}\\ a[Å]\\ b[Å]\\ c[Å]\\ b[Å]\\ c[Å]\\ b[Å]\\ c[Å]\\ \beta[^{\circ}]\\ V[Å]^3\\ Z\\ \mu[mm]^{-1}\\ F(000)\\ \hline \mbox{Scan range }(\theta)[^{\circ}]\\ \hline \mbox{Reflections (total/unique)}\\ \hline \mbox{Variables refined}\\ \hline \mbox{R_{int}}\\ wR_2(all/obs.)\\ R_1(all/obs.)\\ \end{array}$	$\begin{array}{c} L C_{10}H_{24}CuN_2O_8\\ 363.85\\ 0.1\times0.09\times0.08\\ 0.61992\\ \text{block}\\ \text{blue}\\ \text{orthorhombic}\\ Pccn (56)\\ 100(2)\\ 6.642(5)\\ 15.032(10)\\ 15.151(10)\\ 1512.7(19)\\ 4\\ 1.024\\ 764\\ 2.3 / 35.8\\ 49974/4932\\ 105\\ 0.0506\\ 0.1311 / 0.1298\\ 0.0547 / 0.0522\\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \hline colorless\\ \hline monoclinic\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ 1.5 / 36.9\\ 41532/15416\\ 323\\ 0.0531\\ 0.1703 / 0.1516\\ 0.0880/0.606\\ \end{array}$	
$\begin{array}{c} \mbox{Compound}\\ \hline \mbox{Empirical formula}\\ \hline \mbox{Empirical formula}\\ \hline \mbox{Formula weight M[g mol^{-1}]}\\ \hline \mbox{Crystal dimension[mm^3]}\\ \hline \mbox{Wavelength/Å}\\ \hline \mbox{Crystal shape}\\ \hline \mbox{Crystal shape}\\ \hline \mbox{Crystal system}\\ \hline \mbox{Space group (no.)}\\ \hline \mbox{T[K]}\\ a[Å]\\ b[Å]\\ c[Å]\\ b[Å]\\ c[Å]\\ b[Å]\\ c[Å]\\ \beta[^{\circ}]\\ V[Å]^3\\ Z\\ \mu[mm]^{-1}\\ F(000)\\ \hline \mbox{Scan range }(\theta)[^{\circ}]\\ \hline \mbox{Reflections (total/unique)}\\ \hline \mbox{Variables refined}\\ \hline \mbox{R_{int}}\\ wR_2(all/obs.)\\ R_1(all/obs.)\\ \hline \mbox{GOF on }F^2\\ \hline \end{array}$	$\begin{array}{c} L \\ C_{10}H_{24}CuN_2O_8 \\ 363.85 \\ 0.1 \times 0.09 \times 0.08 \\ 0.61992 \\ \text{block} \\ \text{blue} \\ \text{orthorhombic} \\ Pccn (56) \\ 100(2) \\ 6.642(5) \\ 15.032(10) \\ 15.151(10) \\ 1512.7(19) \\ 4 \\ 1.024 \\ 764 \\ 2.3 / 35.8 \\ 49974/4932 \\ 105 \\ 0.0506 \\ 0.1311 / 0.1298 \\ 0.0547 / 0.0522 \\ 1.118 \\ \end{array}$	$\begin{array}{c} \text{Sa}\\ \hline \\ \text{C}_{22}\text{H}_{25}\text{CuO}_{11}\\ 528.96\\ \hline 0.4 \times 0.07 \times 0.03\\ \hline 0.61992\\ \text{needle}\\ \text{colorless}\\ \hline \text{monoclinic}\\ P2_1(4)\\ 100(2)\\ 9.070(3)\\ 10.990(3)\\ 12.080(3)\\ 90.000(15)\\ 1204.1(6)\\ 2\\ 0.667\\ 548\\ 1.5 / 36.9\\ 41532 / 15416\\ 323\\ 0.0531\\ 0.1703 / 0.1516\\ 0.0880 / 0.606\\ 1.029\\ \end{array}$	

Table S1. Crystal data and refinement

	C-H	U _{iso} (H)
Hydroxy group	1.0 Å	$1.2 \times U_{eq}(C)$
Methyl group	0.98 Å	$1.5 \times U_{eq}(C)$
sp ² hybridisation	0.95 Å	$1.2 \times U_{eq}(C)$
sp ³ hybridisation	0.99 Å	$1.2 \times U_{eq}(C)$

Table S3. Selected geometric parameters (Å, $^\circ$) for 1.

Cu1 – N1	1.989(5)	N1 - Cu1 - O5	90.5(2)
Cu1 – O1	1.991(4)	O1 – Cu1 – N3	82.17(19)
Cu1 – N2	1.992(5)	O1 – Cu1 – N2	173.2(2)
Cu1 – N3	2.010(5)	O1 – Cu1 – O5	94.62(17)
Cu1 – N5	2.374(5)	N3 - Cu1 - N2	102.4(2)
		O5 - Cu1 - N3	91.57(18)
N1 – Cu1 – O1	92.5(2)	O5 - Cu1 - N2	90.22 (18)
N1 - Cu1 - N3	174.4(2)		
N1 - Cu1 - N2	82.6(2)		

Table S4. Selected geometric parameters (Å, $^\circ$) for 2a.

Cu1 – O1	1.967(4)	O1 - Cu1 - O4"	84.63(14)
Cu1 – O6"	1.990(4)	06" - Cu1 - N1	90.16(18)
Cu1 – N1	2.052(5)	06" - Cu1 - N1	170.90(15)
Cu1 – N2	2.072(4)	06" - Cu1 - N1	86.35(14)
Cu1 – O3	2.363(4)	O6" - Cu1 - O4"	75.11(14)
Cu1 – O4"	2.388(4)	N1 – Cu1 – N2	85.97(19)
		N1 – Cu1 – O3	97.77(16)
O1 – Cu1 - O6"	95.42(17)	N1 – Cu1 – O4"	103.40(15)
O1 – Cu1 - N1	171.21(16)	N2 – Cu1 – O3	102.32(16)
O1 – Cu1 - N2	89.44(19)	N2 - Cu1 - O4"	97.77(15)
O1 – Cu1 - O3	75.88(14)	O3 – Cu1 – O4"	151.68(11)
	' = x - 1, y, z;	x'' = x+1, y, z	

19 of 26

Cu1 – O4'	1.911(4)	O1' - Cu1 - O5	84.04 (16)
Cu1 – O4	1.911(4)	O1' – Cu1 – O5'	95.96 (16)
Cu1 – O5	1.923(4)	O1 – Cu1 – O4	60.87 (16)
Cu1 – O5'	1.923(4)	O1 – Cu1 – O4'	119.13 (16)
Cu1 – O1	3.088(5)	O1 – Cu1 – O5	95.96 (16)
Cu1 – O1'	3.088(5)	O1 – Cu1 – O5'	84.04 (16)
Cu2 – O4	1.964(4)	O1 – Cu1 – O1'	180.00 (10)
Cu2 – O1	1.974(5)	O4 – Cu2 – O1	87.69(18)
Cu2 – N1	2.015(6)	O4 - Cu2 - N1	92.7(2)
Cu2 – N2	2.017(5)	O4 - Cu2 - N2	169.43(19)
Cu2 – O3	2.288(5)	O4 – Cu2 – O3	81.65(17)
		O1 – Cu2 – N1	175.9(2)
O4' - Cu1 - O4	180.0	O1 – Cu2 – N2	92.4(2)
O4' - Cu1 - O5	93.74(18)	O1 – Cu2 – O3	76.65(18)
O4' – Cu1 – O5'	86.26(18)	N1 – Cu2 – N2	87.8(2)
O4 - Cu1 - O5	86.26(18)	N1 – Cu2 – O3	99.4(2)
O4 – Cu1 – O5'	93.74(18)	N2 - Cu2 - O3	108.66(18)
O5 – Cu1 – O5'	180.0(3)		
O1' – Cu1 – O4	119.13(16)		
O1' – Cu1 – O4'	60.87(16)		
	' = -x, -y	(+2, -z+1	

Table S5. Selected geometric parameters $(\text{\AA}, \circ)$ for **2b**.

Table S6. Selected geometric parameters (Å, $^\circ$) for **2c**.

Cu1 – O1	1.9739(14)	O1 – Cu1 – O3'	85.76(6)
Cu1 – O1'	1.9740(14)	01' - Cu1 - N1	90.48(7)
Cu1 – N1	2.0556(16)	01' - Cu1 - N1'	174.94(5)
Cu1 – N1′	2.0557(16)	O1' – Cu1 – O3	85.75(6)
Cu1 – O3	2.365(2)	O1' – Cu1 – O3'	75.61(5)
Cu1 – O3'	2.365(2)	N1 – Cu1 – N1'	85.88(9)
		N1 - Cu1 - O3	101.43 (6)
O1 – Cu1 – O1'	93.37(9)	N1 – Cu1 – O3'	98.40 (6)
O1 – Cu1 – N1	174.94(5)	N1' - Cu1 - O3	98.40 (6)
O1 – Cu1 – N1'	90.48(7)	N1' - Cu1 - O3'	101.43 (6)
O1 – Cu1 – O3	75.61(5)	O3 – Cu1 – O3'	152.79 (6)
' = - <i>x</i> +3/	2, -y+3/2, z;	''=-x+1/2, -y+3/2	'2, z

Table S7. Selected geometric parameters (Å, $^{\circ}$) for **3a**.

Cu1 – O10	1.939(2)	O10 - Cu1 - O11	169.25(12)
Cu1 – O1	1.950(2)	O10 – Cu1 – O9	92.91(14)
Cu1 – O8″	1.958(2)	O1 – Cu1 – O8"	172.98(11)
Cu1 – O11	1.961(3)	O1 – Cu1 – O11	86.93(9)
Cu1 – O9	2.227(3)	O1 – Cu1 – O9	96.00(11)
		O8" – Cu1 – O11	92.61(9)
O10 – Cu1 – O1	91.15(9)	O8" – Cu1 – O9	91.00(11)
O10 - Cu1 - O8"	88.01(9)	O11 – Cu1 – O9	97.81(14)
/	-x + 1 + y	$x \cdot '' - x + 1 + x$	

x' = x+1, y, z; w' = x-1, y, z

Donor-H…Acceptor	D–H	Н…А	D····A	D–H…A
N1-H1O…O3′	0.91	2.13	3.033(7)	170
N1-H1P…O1"	0.91	2.09	2.988(8)	169
N3-H3O…O4"'	0.91	1.97	2.864(6)	167
N3-H3P…O4""	0.91	2.06	2.914(7)	155
O5-H5O…O1′	0.89(3)	2.03(5)	2.809(6)	146(6)
O5–H5P…O3"'	0.90(5)	1.91(6)	2.760(6)	156(6)
O6-H6O…O2	0.90	1.90	2.795(18)	179
O7–H7O…O2	0.90	1.91(4)	2.811(12)	162
1 1 /0 . 1 // 0 /	0 1/0	. 1 . ///	1. ////	0/0 1/

Table S8. Hydrogen-bond geometry (Å,^{\circ}) in **1**.

 ${}'=3/2{}\cdot x{}\cdot 1{},{}\cdot 1/2{}+y{},{}1{}\cdot z;\,{}''=3/2{}\cdot x{},{}1/2{}+y{},{}1{}\cdot z;\,{}'''=x{},{}-1{}+y{},z;\,{}'''=3/2{}\cdot x{},{}\cdot 1/2{}+y{},{}-z$

Table S9. Hydrogen-bond geometry (\AA°) in **2a**.

Donor—H…Acceptor	D-H	Н…А	D…A	D–H…A	
O3–H3O…O8	0.84(3)	1.87(5)	2.70(3)	165(8)	
O4–H4O…O7	0.85(4)	1.92(4)	2.71(3)	155(7)	
O7–H7O…O5′	0.86(7)	1.89(7)	2.75(3)	176(10)	
O7–H7P…O2	0.87(8)	2.04(8)	2.87(3)	159(7)	
O8–H8O…O5	0.85(7)	2.36(9)	2.89(4)	121(7)	
O8–H8P…O2″	0.84(7)	1.90(8)	2.73(3)	168(8)	
'=- <i>x</i> ,-1/2	'=- <i>x</i> ,-1/2+ <i>y</i> ,2- <i>z</i> ; ''=1- <i>x</i> ,1/2+ <i>y</i> ,2- <i>z</i>				

Table S10. Hydrogen-bond geometry (\AA°) in **2b**.

Donor—H…Acceptor	D-H	Н…А	D····A	D–H…A	
O3–H3O…O7 O7–H7O…O6′	0.84(5) 0.86(8)	1.76(5) 1.85(8)	2.587(7) 2.687(7)	165(7) 163(6)	
$\frac{\text{O7-H7P}\cdots\text{O2''} \qquad 0.85(8) \qquad 1.84(8) \qquad 2.685(8) \qquad 173(7)}{'=1/2+x,3/2-y,1/2+z; \ ''=1+x,y,z}$					

Table S11. Hydrogen-bond geometry (Å,^{\circ}) in **2c**.

Donor-H…Acceptor	D-H	Н…А	D…A	D–H…A
O3–H3O…O4	0.83(2)	1.86(2)	2.681(2)	171(3)
O3-H3O…O5′	0.83(2)	1.90(2)	2.688(12)	159(3)
O4–H4O…O2′	0.80	1.92	2.722(3)	180
O4–H4P…O2″	0.87	2.08	2.945(3)	179
'=1-x,1/2	2+ <i>y</i> ,3/2-z	; "=1/2->	к,3/2-у,z	

Table S12. Hydrogen-bond geometry (Å, $^{\circ}$) in **3a**.

Donor—H…Acceptor	D–H	Н…А	D···A	D–H…A
O9–H9…O4′	0.85	2.09	2.935(5)	180
O10-H10O…O2	0.86(4)	2.10(4)	2.737(3)	130(5)
O10-H10O…O5"	0.86(4)	2.48(6)	2.927(3)	113(4)
O10-H10P…O7"	0.91(4)	1.80(4)	2.704(3)	171(5)
O11-H11O…O7'	0.92(4)	1.79(4)	2.611(3)	147(5)
O11-H11P…O2"'	0.92(5)	1.81(4)	2.720(3)	171(4)

'=-1+x,y,z; "=1-x,1/2+y,1-z; "'=1-x,-1/2+y,1-z

S1.2. Supplementary Figures

Figure S1. Measured (red) and calculated (black) powder diffraction pattern for 1.

Figure S2. Experimental (red) and calculated (black) powder patterns for 2a. The calculated pattern is based on the single crystal diffraction experiment at low temperature. A slight increase of the angle β at higher temperature will result in a split of the reflections at 17-19° as shown in the inlay.

Figure S3. Measured (red) and calculated (black) powder diffraction pattern for 2c.

Figure S4. Measured (red) and calculated (black) powder diffraction pattern for 3a.

S1.3. Refinement Details

S1.3.1. Compound 1:

The hydrogen atoms of the aqua ligand were treated as riding on O, with O–H and H…H restrained to 0.9 Å and 1.45 Å respectively. U_{iso} for the hydrogen atoms were refined freely. The hydrogen atoms attached to nitrogen were located from the difference Fourier map and refined as riding with $U_{iso}(H) = 1.2 \times U_{eq}(N)$. For the co-crystallized water molecules, hydrogen atoms were introduced into positions along the shortest observed hydrogen bonds, where they were constrained as riding on O. The two water sites were not mutually exclusive; their occupancies were refined independently, leading to a content of approximately 2.4 co-crystallized water molecules per unit cell. Refinement of these water molecules as mutually exclusive, with a total occupancy constrained to unity was attempted as well as refinement of the structure as a pseudo-merohedral monoclinic twin. Neither of these measures increased the quality of the refinement significantly.

S1.3.2. Compound 2a:

The hydrogen atoms bonded to oxygen both in the free water molecules and in the hydroxy groups were located from the difference Fourier map and their coordinates were refined freely with O–H restrained to 0.85 Å and $U_{iso}(H) = 1.2 \times U_{eq}(O)$. The structure was refined as a two-domain

pseudo-merohedral ($\beta = 90^{\circ}$) twin with the twin law $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ and relative domain fractions of 0.79(3) and 0.21(3).

S1.3.3. Compound 2b:

The hydrogen atoms associated with the uncoordinated water molecule and the coordinating hydroxy group were placed between their parent oxygen atom and the geometrically best fitting H-bond acceptor. Their positional coordinates were freely refined with a distance restraint O-H = 0.85 Å, with $U_{iso}(H) = 1.2 \times U_{eq}(O)$.

The structure was refined as a pseudo-merohedral twin $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ with relative domain

fractions of 0.30(2) and 0.70(2). The H atom of the bridging hydroxy group was introduced into a calculated position and refined as riding on the parent O atom. The occupancy of this H atom was set to 0.5, in agreement with the oxidation state +I of the central copper atom, see susceptibility measurements in Section 2.3.

S1.3.4. Compound 2c:

The hydrogen atom associated with the hydroxy group in **2c** was located from the difference Fourier map and refined without restraints with $U_{iso}(H) = 1.2 \times U_{eq}(O)$. **2c** contains a co-crystallized water molecule, disordered about two mutually exclusive positions. Their site occupancies were refined and the sum of the occupancies was constrained to unity. The H atoms of the solvent water molecules were refined as riding. Their coordinates were calculated to fit the observed hydrogen bonds in the structure. A tentative refinement with restrained O–H and H…H distances led to inferior results and an unsatisfactory hydrogen bond geometry.

S1.3.5. Compound 3a:

The coordinates of the hydrogen atoms associated with the two coordinated water molecules were obtained from the difference Fourier map. They were refined with a distance restraint of O–H = 0.9 Å and $U_{iso}(H)$ constrained to $1.2 \times U_{eq}(O)$. A strongly prolate displacement parameter for the terminal

isotropically.

carbon atom of the ethanol molecule indicated positional disorder. The occupancy for the mutually exclusive positions refined to a ratio of 0.69(3):0.31(3). Both partially occupied sites were refined