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Abstract: Large dark prismatic crystals (P 1) consisting of closely packed centrosymmetric
[Cu(4,7-dichloroquinoline)2]2Br4 binuclear units are formed when 4,7-dichloroquinoline (DCQ,
C9H5NCl2) binds copper(II). Cu2+ adopts a strongly distorted square pyramidal coordination
geometry, perturbed by electrostatic interactions with two axial µ–Br ligands acting as highly
asymmetric bridges. It is shown that, as electronic states of ligands are higher in energy than the metal
ones, antibonding orbitals bear significant ligand-like character and electronic charge is partially
transferred from inner-sphere coordinated halogen atoms to copper. Overall, the title compound
sits on the Hoffman’s border between main group and transition chemistry, with non-negligible
contributions of the ligands to the frontier orbitals. The relative energy placement of metal and
ligand states determines an internal redox process, where the metal is slightly reduced at the expense
of partial oxidation of the bromide ligands. In fact, the crystal structure is partially disordered
due to the substitution of some penta-coordinated Cu(II) centers with tetra-coordinated Cu(I) ions.
The geometry of the complex is rationalized in terms of electrostatic-driven distortions from an ideal
octahedral prototype. Implications on the reactivity of Cu(II)–quinoline complexes are discussed.

Keywords: copper; inverted ligand field; ligand field theory; experimental charge density; quantum
theory of atoms in molecules; 4,7-dichloroquinoline

1. Introduction

Because of its versatility, Cu2+ has been defined as a chameleon in coordination chemistry [1].
The stereochemistry of copper complexes is frequently dominated by a subtle interplay of Jahn–Teller,
dynamic and steric effects [2,3] that cause it to depart from that expected based on a simple crystal field
framework [4]. The discovery of an inverted ligand field in Cu-based coordination compounds [5–7],
prototyped by the square planar anion Cu(CF3)4

−, deepened the general understanding of coordinative
bonding [8] and provided new ways to exploit the reactivity of unusual chemical states of both the
metal and the ligands. In a recent review [8], Hoffmann and co-workers pointed out that late transition
elements like Cu and Zn lie on the borderline of what they define as “transition metal thinking” and
“main group thinking”. In other words, the metal itself might present a sort of σ-noninnocence, that is,
its 3d states could be as much important as the 4s-4p ones in determining the measured geometrical
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and electronic properties of the complex. This kind of analysis definitely suggests the existence of a
very rich territory of yet unexplored chemistry.

For some years now, we have been studying the reactivity of transition metals with quinoline-based
antimalarial drugs in order to understand their mechanism of action at the molecular level [9–11].
Quinoline compounds can actively enter the metabolism by binding specific metal targets, including
late transition elements like copper and zinc [12]. Iodochlorhydroxyquin (clioquinol) [13] and
7-chloroaminoquinolines [14], for example, are effective Cu(II) scavengers, with potential application
against Alzheimer’s disease [13–15]. Chloroquine and hydroxychloroquine were recently claimed to
even exploit antiviral activity against pandemic SARS-CoV2 virions, even though the exact mechanism
of action remains to be elucidated [16]. Cu:quinoline complexes can also promote the decarboxylation
of aromatic acids, as cuprous ions stabilize anionic transition states by setting up π bonds with the
occupied p-like orbitals of the substrate [17,18]. Due to manifest implications on general reactivity and
medicinal applications, a deeper understanding of chemical bonding in copper:quinoline complexes is
desirable. Moreover, these systems are good candidates for probing chemical and structural properties
on the edge of Hoffmann’s traced boundary.

Here, a newly synthesized binuclear Cu(II) coordination compound with 4,7-dichloroquinoline
(4,7-DCQ, C9H5NCl2, Figure 1) and bromide ligands is discussed (hereinafter, CDCQB). To date,
only the structures of trichloroacetate and benzoate Cu(II) copper complexes with 4,7-DCQ are
known [19], even though a similar binuclear core structure was reported in quinoline:Cu(I) complexes
with Cl, Br and I as µ2-bridging ligands [20,21]. The main goal is to clarify how chemical bonding
in the title compound is related to the metal valence state, from which the observed coordination
geometry stems. CDCQB was probed by single-crystal X-ray diffraction experiment at T = 100 K and
magnetic measurements. Experimental results were complemented by quantum simulations at the
DFT M06 level, while the real-space analysis of the experimental electron density, carried out in the
framework of the quantum theory of atoms in molecules [22], was exploited to translate the Hilbert
space picture into a more familiar chemical lexicon.
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Figure 1. (a): Single-crystal X-ray structure of the centrosymmetric CDCQB complex at 100 K, with 
the atom numbering scheme, as viewed down the a axis. The center of symmetry (red dot) coincides 
with the center of coordinates. Thermal ellipsoids are drawn at the 50% probability level. Anisotropic 
displacement parameters were assigned to hydrogen atoms according to the procedure implemented 
in the Shade [23] server. (b): Chemical connectivity of CDCQB. The Br atom drawn in red corresponds 
to Br(1) and is occupationally disordered with site occupation factor (s.o.f.) of 0.89 (see Section 2). 

 

Figure 1. (a): Single-crystal X-ray structure of the centrosymmetric CDCQB complex at 100 K, with the
atom numbering scheme, as viewed down the a axis. The center of symmetry (red dot) coincides
with the center of coordinates. Thermal ellipsoids are drawn at the 50% probability level. Anisotropic
displacement parameters were assigned to hydrogen atoms according to the procedure implemented
in the Shade [23] server. (b): Chemical connectivity of CDCQB. The Br atom drawn in red corresponds
to Br(1) and is occupationally disordered with site occupation factor (s.o.f.) of 0.89 (see Section 2).
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2. Methods

2.1. Synthesis

Reagent-grade chemicals were purchased from Aldrich and used without further purification.
A ~120 mM transparent solution was prepared by dissolving under stirring 47.2 mg of DCQ into
2.0 mL of CH2Cl2 and then poured in a glass test tube (∅ 9 mm). A ~60 mM yellow solution of CuBr2

was also prepared by dissolving 26.9 mg of CuBr2 into 2.0 mL of methanol under stirring. Then,
the copper solution was layered gently over the DCQ solution with a Pasteur pipette. The test tube
was sealed with Parafilm and was allowed to rest at ambient temperature for roughly 76 h. After ~24 h,
the mixture became homogeneously pale yellow-colored. In the next two days, a number of yellow,
tiny acicular crystals appeared in the bulk liquor. Their quality was generally low; preliminary
single-crystal X-ray diffraction analysis showed that they consisted of a copper-containing P21/c
monoclinic phase, which will be described in detail in a forthcoming study on the reactivity of such
complexes. After 5 days, the test tube was put in a refrigerator at T = 6–8 ◦C, where it rested for
roughly a month. Thirteen days after the preparation, the first tiny black crystal appeared in the liquor;
in the next days, the crystals of the new phase grew in number and dimensions, coexisting with the
pristine yellow ones. The crystallization was deemed concluded roughly 30 days after the preparation.
Upon extensive testing, a charge-density quality specimen of the black phase (Figure S1) was selected
for the diffraction analysis.

2.2. Single-Crystal X-ray Diffraction and Model Refinement

Diffraction experiments at 100 K were carried out on a Bruker AXS Smart Apex three-circle
diffractometer equipped with an Apex II CCD area detector and an Oxford Cryosystem N2 blower.
Graphite-monochromated X-rays at the characteristic Mo Kαwavelength (λ= 0.71073 Å) were produced
with a sealed tube at a nominal 50 kV × 30 mA power of the generator. Diffraction data were acquired
inω-scan mode up to a maximum resolution of 0.44 Å. No phase transitions were detected in the RT
to 100 K range. The data were integrated with SAINT+, while frame scale factors and an empirical
absorption correction were applied with SADABS [24]. Attempts to develop analytical absorption
correction models were unsatisfactory, as the deep black color of the specimen made very difficult
to accurately reconstruct the boundaries of the crystal faces. The empirical absorption procedure
nevertheless gave satisfactory results for our regularly shaped specimen. It consists in fitting a
multipole-based transmission surface against expected average intensities of multiple measures of
equivalent intense reflections and determining an overall internal agreement factor of 2.6% up to sinθ/λ

= 1.0 Å−1 (Table 1). Moreover, statistical analysis (see Figure S4) demonstrated that no significant
residual systematic errors were present in the reduced dataset. The structure was solved by direct
methods and refined in the spherical atom formalism framework implemented in the SHELX suite of
programs [25]. A bromide ion in the first coordination shell of one of the two Cu atoms was found to
be occupationally disordered, with the site occupation factor refining to 0.8870(6). Table 1 summarizes
the most relevant crystallographic results. CCDC 2002857 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures.

2.3. Magnetic Measurements

The molar magnetic susceptivity of the powdered material was measured with an Alfa Aesar
magnetic susceptibility balance Mark 1 at T = 291 K. Diamagnetic corrections due to atoms, ions and
chemical bonds in CDCQB were calculated from tabulated Pascal constants [26].

2.4. Quantum Simulations (Gas Phase)

The structure of the title compound was optimized in vacuo with Gaussian09 [27], starting from
the X-ray geometry. The Minnesota-class meta-GGA M06 DFT functional [28] was exploited to account

www.ccdc.cam.ac.uk/structures
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for long-range dispersion effects [29], in conjunction with the triple zeta valence polarization (TZVP)
basis set proposed by Peintinger [30]. A restricted basis was employed, considering both the singlet and
triplet spin states of the complex. As the ground state charge density does not depend on the spin state,
only the singlet results are considered in the discussion of chemical bonding, unless otherwise specified.
Vibrational frequencies were calculated to confirm that the optimized structures correspond to true
potential energy minima. Energy differences always account for zero-point vibrational corrections.

Table 1. Data collection statistics and relevant refinement details of CDCQB a at T = 100 K.

Crystal Data

a (Å) 7.8673(5)
b (Å) 11.0031(7)
c (Å) 11.7131(6)
α (deg) 82.325(2)
β (deg) 89.994(2)
γ (deg) 81.179(2)
V (Å3) 992.76(10)

Density (g·cm−3) 2.041
Crystal size (mm) 0.350 × 0.225 × 0.200

Data collection

Measured/Unique refls. 81,711/16,169
Observed refls. (I > 2σ(I)) 13,645

(sinθ/λ)max/Å−1 1.00
Completeness 0.973

Rint 0.0264

Refinement details IAM model b Multipole Refinement c

R(F)/wR(F2)/goodness–of–fit d 0.0339/0.0670/1.061 0.0239/0.0333/1.011
∆ρmax/∆ρmin (e·Å−3) +1.356/−0.913 +0.497/−0.418

Spherical (ζ = κα) and
deformation (ζ’ = κ’α’) atomic

exponents e
//

Cu: κ = 1.004(1), κ’ = 1.01(1)
Br: κ = 1.052(2), κ’ = 1.12(2)
Cl: κ = 1.020(1), κ’ = 0.99(2)
N: κ = 1.004(1), κ’ = 0.90(2)
C: κ = 1.013(1), κ’ = 0.952(4)
H: κ = 1.230(6), κ’ = 1.13(1)

a Space group: P 1; molecular formula: C36H20Br4Cl8Cu2N4 (formal), C36H20Br3.77Cl8Cu2N4 (real);
molecular weight: 1220.80 g·mol−1; µ = 5.44 mm−1; F000 = 590 e. b Spherical atom model, with disorder
included. c Anharmonicity and anisotropic charge density deformation included. A total of 15,521
independent data points have been included in the dataset after the exclusion of 644 unobserved reflections
(F(hkl)2 < 0) and 4 outliers. Full details can be found in the Supplementary Materials, Section S1. d All
reflections. e Where not reported, least-squares estimated standard deviations are smaller than the last digit.
Values in bohr−1.

2.5. Experimental Charge Density Analysis

The deposited X-ray geometry at 100 K was corrected a posteriori by lengthening all the covalent
C–H bond distances to their best neutron estimates [31]. Then, anisotropic displacement parameters
(ADPs) of hydrogen atoms were evaluated with the TLS+U procedure [32], as implemented in the
SHADE2.1 web server [23]. The site occupation factor of the disordered bromide ion was kept identical
to that estimated based on the independent atom model (see above). The aspherical Hansen–Coppens
rigid pseudoatom formalism [33] available in the XD2016 program suite [34] was exploited to fit
all the symmetry-independent observed intensities (|Fhkl|

2 > 0) up to sinθ/λ = 1.00 Å−1. The Su
and Coppens [35] radial functions for core and valence densities of neutral atoms were taken from
the embedded SCM databank and used throughout. The complexity of the least-squares model
was incremented progressively, until quadrupoles (l = 2) for H; octupoles (l = 3) for C and N;
and hexadecapoles (l = 4) for heavier Cl, Br and Cu atoms were included. Third-order Gram–Charlier
coefficients were used for chlorine and bromine atoms to account for residual anharmonicity at low
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temperature [36,37]. Radial scaling parameters κ and κ’ for each atomic species were also refined. The
experimental multipole model was compared with a theoretical one, obtained by projecting the same
multipole expansion onto a set of synthetic structure factor amplitudes, Ftheo, predicted from DFT
single-point calculations of the CDCQB structure (see Section S1.4 of the Supplementary Materials).
The interested reader can find full details in the Supplementary Materials (Section S1). Experimental
and theoretical structure factor amplitudes, as well as input XD files, were also deposited. Relevant
agreement factors are reported in Table 1.

3. Results

Crystal Packing

The CDCQB crystal is made by centrosymmetric neutral building blocks, each formed by two
inversion-related asymmetric units. Only weak C–H hydrogen bond donors are present, not able
to form strong extended networks. Thus, only dispersive interactions and high-order electrostatic
moments are expected to determine the crystal packing [38]. The structure consists indeed of weakly
bonded, isolated metal–organic units, the main inertial axis of the aromatic rings being oriented roughly
along the [10] direction (Figure 2a).
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fingerprint plot for the molecular unit (2 ASUs) at 100 K. (c) Specific atom–atom interactions are 
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contact frequencies; distances di (atom–surface, internal) and de (atom–surface, external) are in Å. 

Figure 2b,c shows the Hirshfeld surface fingerprint plot of CDCQB in its crystalline environment 
at 100 K. As quinoline nitrogen atoms are directly involved in coordinative bonds with copper, the 
only available H-bond acceptors are Cl and Br species. The two spikes at di + de ≈ 2.7–2.9 Å fingerprint 

Figure 2. (a) Crystal packing of [Cu(4,7-DCQ)2]2Br4 at 100 K, as viewed down the b cell axis.
The crystallographic unit cell is also shown. Atom color code is the same as Figure 1. (b) Hirshfeld
surface fingerprint plot for the molecular unit (2 ASUs) at 100 K. (c) Specific atom–atom interactions
are highlighted, and their percent surface coverage is displayed. Warmer colors correspond to higher
contact frequencies; distances di (atom–surface, internal) and de (atom–surface, external) are in Å.

Figure 2b,c shows the Hirshfeld surface fingerprint plot of CDCQB in its crystalline environment
at 100 K. As quinoline nitrogen atoms are directly involved in coordinative bonds with copper, the only
available H-bond acceptors are Cl and Br species. The two spikes at di + de ≈ 2.7–2.9 Å fingerprint
close contacts of aromatic CH with halogens, together accounting for ~40% of the total surface of the
plot. More information is available in Section S2 of the Supplementary Materials.

Other statistically relevant contacts are the Cl· · ·Cl ones, which appear as a sharp plume along
the main diagonal of the diagram. They correspond to weak type I halogen bonds [39] involving
atoms Cl1 and Cl12 of neighboring 4,7-dichloroquinoline ligands, which form infinite chains running
approximately along the [1 11] direction (Figure S7) and connected to each other through type II
Cl2· · ·Cl12 contacts (Figure S8). As expected, direct Br· · ·Br interactions are missing, as negatively
charged Br− ions tend to be as far apart as possible from each other [10,29]. As they are included in the
first coordination sphere of Cu atoms, Br− ions are also unavailable to set up Br· · ·Cl contacts.

The last significant feature appreciable from Figure 2 is a large blue leaf at di + de ≈ 3.8 Å, roughly
halfway the main diagonal, which signals π· · ·π interactions. These are due to extended stacking
arrangements of the quinoline rings, which all lie roughly orthogonal to the [10 1] direction (Figure 2a),
along which they form parallel displaced ladders similar to those observed in other quinoline [10,11]
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and aromatic compounds [40]. Inversion-related organic moieties are stacked in a perfectly parallel
fashion (Supplementary Materials, Section S2), but whenever symmetry-independent rings are close to
each other, a slanted arrangement is preferred [40], with quinoline least-squares planes displaying an
offset angle of 12.60(2)◦ with respect to each other.

4. Coordination Geometry

The stoichiometry of the CDCQB binuclear complex is [Cu(4,7-DCQ)2Br2]2, with the metal
centers in a formal +2 oxidation state. Inversion-related copper ions are connected through strongly
asymmetric µ2–Br− ligands, resulting in two edge-sharing, distorted square pyramidal units (Figure 3).
Each bridging Br(1) atom acts as both an equatorial and axial ligand for the different Cu centers.
Similar structures have been reported for Cu complexes with heterocycle aromatics [41–44] or Schiff
bases [45–48].
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either pyridine-like (1.998–2.142 Å) or bromide (2.303–2.521 Å) ligands [49]. Distortions in this plane 
are mainly due to the much larger covalent radius of bromine (1.20(3) Å) with respect to nitrogen 

Figure 3. Structure of the binuclear coordination complex CDCQB, as determined by single-crystal
X-ray diffraction at T = 100 K. Color code is as in Figure 1. Thermal ellipsoids are drawn at the 99%
probability level. (a) Geometry of the two inversion-related metal centers. Distances are in Å and
angles in degrees. (b) Coordination polyhedra, highlighting the distorted square pyramidal geometry,
with respect to the relative orientation of organic ligands. Black lines serve only as guides for the eye.

Equatorial bond distances are within the expected range for organometallic compounds with
either pyridine-like (1.998–2.142 Å) or bromide (2.303–2.521 Å) ligands [49]. Distortions in this plane are
mainly due to the much larger covalent radius of bromine (1.20(3) Å) with respect to nitrogen (0.71(1)
Å) [50]. The metal center is also significantly pyramidalized, as Cu2+ ions are displaced by 0.31 Å
toward the axial Br(1) ligand (Figure 3a). While the two equatorial Cu–Br interactions bear similar
coordination distances, the axial Br(1) bromide is farther from the metal center by ~0.35 Å, due to the
different nature of the chemical bond in which it is involved (see below). Despite apparent similarities,
the coordination geometries of the only other two known Cu(II):4,7-DCQ binuclear complexes (CSD
refcodes KUHHEA and KUBJOG [19]) are significantly different, as they both bear k2 chelating COO−

groups that make copper centers significantly closer to each other (2.7 and 2.8 Å) with respect to
CDCQB (dCu· · ·Cu � 3.8 Å). No direct metal–metal interactions are set up in CDCQB, resulting in much
stronger Cu–N coordinative bonds (e.g., dCu· · ·N � 2.16 Å in KUHHEA and 2.24 Å in KUBJOG).

The crystal field has slight influence on the coordination geometry. Section S3 (Supplementary
Materials) reports on in vacuo DFT-optimized geometries, compared with the X-ray one (Figure S11).
For the stoichiometric complex, the only relevant change is a ~10.0◦ relative rotation of the quinoline
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rings bonded to the same Cu center. This is clearly a packing effect, as in the solid state 4,7-DCQ
ligands are constrained by stacking interactions in a more space-saving arrangement (see above and
Supplementary Materials, Section S2). However, the Cu local valence shell concentration (VSCC) and
depletion coordination geometry are essentially identical, with deviations between bond lengths and
angles not exceeding 2% and 3% on average, respectively, regardless of the spin state of the metal
(Table S13). In the DFT-optimized structure, the pyramidalization of Cu atoms is less appreciable but
still significant, with the metal being displaced by 0.22 Å towards the axial bromide.

5. Chemical Bonding

Local topological descriptors of chemical bonds [22] of CDCQB in the solid state were evaluated to
extract qualitative, real-space information on the nature of the coordinative interactions. The purpose is
to rank, at least on a relative scale, the relative strength of metal–ligand bonds. Experimental outcomes
were compared with those from the multipole-projected charge density, as evaluated by theoretical
structure factor amplitudes (Ftheo) from solid-state DFT M06/pVZT simulations at the same X-ray
multipole geometry (Supplementary Materials, Section S1.4). The agreement among experimental
and theoretical multipole models is quantitative (Table S16 and Figure S12), indicating that the X-ray
charge density is sufficiently accurate to gain reliable insights on the copper first coordination shell.

As expected, the charge density Laplacian, ∇2ρ(r), is invariably positive at the bond critical points
(bcp’s) of the Cu–N and Cu–Br bonds (Table S16), as these interactions fall in the valence shell charge
depletion (VSCD) region of the metal [37,51]. No direct metal–metal bonds [52] are detected: the two
copper centers are connected through an asymmetric µ–Br bridge that involves Br(1) ions on axial
positions (Figure 3). The axial Cu–Br(1) bonds bear a low degree of covalency, with halved ρ(r)bcp with
respect to equatorial Cu–Br bonds.

The Abramov’s functional [53] can be exploited to estimate the kinetic energy density at the bcp,
G(r)bcp, from the corresponding charge density and its Laplacian, according to the following equation:

G(r)bcp =
3
10

(
3π2

)2/3
ρ(r)5/3

bcp +
1
6
∇

2ρ(r)bcp (1)

This expression is strictly correct only when the gradient of the charge density is null, such as at a
critical point. It relies on the Kirzhnitz-corrected Thomas–Fermi expression for the electron kinetic
energy [53], thus being valid only in low-density areas that are far from core electrons, such as the
copper valence region of CDCQB (Table S16). The local form of the virial theorem [22] relates kinetic
and potential energy densities to the corresponding Laplacian:

}2

4m
∇

2ρ(r)bcp = V(r)bcp + 2G(r)bcp (2)

where V(r)bcp is the potential energy density, negative for bonded states. The Laplacian of the
charge density, together with the total kinetic energy density, H(r) = V(r) + G(r), distinguishes
electron-shared interaction, characterized by a prevalent contribution of V(r), from the closed-shell (CS)
ones, where G(r) dominates. Following Espinosa et al. [54], we compared the bond degree parameter
(BD = H(r)bcp/ρ(r)bcp) with the |V(r)|/G(r) ratio for all bonds in the valence coordination region of Cu2+,
where direct metal–ligand interactions take place.

Experimental estimates are compared with multipole-projected DFT ones in Figure 4 (black
squares vs. red triangles). Differences are very small on absolute grounds. Moreover, the least-squares
trends of the two series are quantitatively identical, i.e., BD = −6.2(4)·|V(r)|/G(r) + 6.0(4) (R2 = 0.98)
for Fexp and BD = −6.0(4)·|V(r)|/G(r) + 5.8(4) (R2 = 0.97) for Ftheo. The atomic interaction lines whose
energy parameters lie in the upper left quadrant of Figure 4 are produced by full closed shell (CS)
Br· · ·H hydrogen bonds (Figure 2 and Figure S13). Equatorial Cu–Br and Cu–N coordinative bonds
fall instead in the lower right region of the diagram, meaning that the nuclear potential is prevailing at
their bcp’s. Nevertheless, the corresponding Laplacians remain positive as, according to Equation (2),
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G(r) < V(r) < 2·G(r). In other words, these bonds fall in a “transit” region, characterized by negative
H(r) and positive Laplacian, that is, they experience a certain degree of electron sharing [54,55].
Both theoretical and experimental estimates agree in predicting the Cu–N bonds as more covalent
than the Cu–Br ones. On the contrary, the axial Cu· · ·Br(1) interaction is instead almost entirely
closed-shell, with no appreciable electron sharing (H(r) = 0) or, equivalently, a main electrostatic
character. This energy classification can be related only to the relative strength of homologous bonds,
as topological descriptors are only indirectly related to attractive Coulomb interactions between formal
Cu2+ and Br− ions. The axial Cu· · ·Br(1) is certainly weaker than the equatorial Cu–Br ones, as a null
electron sharing is accompanied by a significantly greater metal–ligand distance.
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The valence shell concentration (VSCC) and depletion zones of the charge density scalar field
around Cu2+ ions provide hints as to the actual filling of d orbitals. Figure 5 displays the electron density
Laplacian along the mutually orthogonal N(1)–Cu–N(2) and Br(1)–Cu–Br(2) equatorial coordinative
bonds. The Laplacian distribution around the metal has a spherical shape. VSCC regions form an
almost isotropic belt, according to the relatively low amount of electron sharing experienced by these
bonds. If, from the viewpoint of the metal, Cu–Br and Cu–N bonds are qualitatively similar (Figure 5),
lone pairs of quinoline N atoms are instead neatly polarized toward the metal, in agreement with the
σ-donor character of this interaction.

As d orbitals on Copper are almost filled, we checked whether some kind of π-backdonation
occurs, possibly involving antibonding π* orbitals of the quinoline system. We computed HOMED
(Harmonic Oscillator Model of Electron Delocalization) indices [56] of 4,7-DCQ in the experimental and
in vacuo DFT-optimized structures, and we compared them with the isolated 4,7-dichloroquinoline
ligand (Table 2).

HOMED = 1−
α
n

n∑
i=1

(R0 −Ri)
2 (3)
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Table 2. HOMED indices for aromaticity in symmetry-independent 4,7-dichloroquinoline ligands.
Calibration parameters proposed in [56] have been employed (α(C=C) = 88.09 Å−2; α(C=N) = 91.60 Å−2;
R0(C=C) = 1.394 Å; R0(C=N) = 1.334 Å). Data in Table S18.

System X-ray a Isolated
Complex, DFT b

Isolated
Ligand, DFT b

Quinoline 1 c (total) 0.88 0.87 0.88
Quinoline 2 c (total) 0.88 0.88 0.88

Quinoline 1, N-bearing ring d 0.87 0.87 0.88
Quinoline 1, C6 ring e 0.95 0.94 0.94

Quinoline 2, N-bearing ring d 0.88 0.89 0.88
Quinoline 2, C6 ring e 0.96 0.95 0.94

a Experimental multipole model on single-crystal X-ray diffraction data at 100 K. b DFT-optimized
structures in the gas phase. Results are independent from the spin state of the metal. See Section 2
for details. c See Figure 1 for numbering. Atoms of the “quinoline 2” molecule all have 2-digit ID
numbers, ending with “2”. d This is the heterocyclic ring and bears the N atom which is connected to
copper. e All atoms in this ring are carbons.

HOMED relies on the idea that extended electron delocalization should reflect into the equalization
of covalent bond lengths, whereas any deviation from an otherwise ideal symmetry implies some
loss of aromaticity. R0 is the reference bond length for a fully delocalized (aromatic) system, Ri is
the i-th bond length of each of the n bonds in the ring considered, and α is an empirical calibration
parameter chosen so that HOMED is exactly 0 for the Kekulé structure of benzene and is 1 for aromatic
benzene [56].

No significant differences are detected when aromaticity indices computed on the experimental
structure are compared with those from the isolated complex or ligand. As expected [57], the heterocycle
part of the condensed quinoline system is slightly more asymmetric—and thus less aromatic—due to
the incorporation of the nitrogen atom. However, Cu–N bonding does not determine any appreciable
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effect on the aromatic π system of 4,7-DCQ, ruling out any backdonation from the metal. This result is
also in line with the electronic structure analysis (see below).

In conclusion, the chemical bonding analysis demonstrates that each Cu2+ ion acts as a Lewis acid,
accepting pure σ coordinative bonds from lone pairs of organic nitrogen atoms and Br− ions, with no
appreciable perturbation of π aromatic systems of the 4,7-dichloroquinoline moieties. Axial Br(1)
atoms are instead involved in essentially closed-shell interactions, mainly electrostatic in nature and
significantly weaker than equatorial Cu–Br ones.

6. Electronic States

The occupational Br(1) defect (see Section 2) implies that a ~11% non-negligible minority of
Cu2(4,7-DCQ)4Br3 moieties with a single bridging Br− ion coexist with stoichiometric Cu2(4,7-DCQ)4Br4

ones. To ensure electroneutrality, the bromide vacancy must be compensated by a lower charge on Cu
ions. Thus, we expect to have a mixture of +1/+2 oxidation states of copper in the crystal. This view is
supported by magnetic susceptibility measurements on the CDCQB complex. An effective magnetic
moment µeff = 2.47 Bohr magnetons (BM) is reported (Section S5). This estimate is compatible with two
unpaired electrons on the two Cu centers and is also consistent with DFT simulations, which predict
the triplet spin state as 29.9 kcal·mol−1 more stable than the singlet one. However, the measured
µeff has a ~12% lower magnitude than that expected for spin-only paramagnetism produced by two
unpaired electrons (2.83 BM). In other words, the missing spin polarization can be attributed to the
occurrence of an equal amount of Cu centers in a diamagnetic d10 configuration. The conformity of
views between structural, DFT and magnetic results is remarkable.

Figure 6 displays a simplified molecular orbital (MO) scheme of the neutral asymmetric unit of the
CDCQB complex, Cu(4,7-DCQ)2Br2. The geometry is close to a rectangular pyramid, so C2v symmetry
labels are used. Only σ-bonding interactions are shown, as they are the most relevant in this system.
Moreover, the scheme includes only equatorial ligands, as the axial Br(1)− ion does not significantly
participate in electron sharing (see above). Moreover, the quinoline system acts as a σ-donor (see
above); thus, only the sp2 hybrids of N atoms directed toward the metal along the y laboratory axis
have been included in the calculation of the corresponding symmetry-adapted linear combination
(SALC) of atomic orbitals.

The electronic states of ligands, and specifically those of bromide ions, are higher in energy than
the metal ones. Therefore, frontier orbitals bear a significant ligand character, at a variance of what is
expected in a normal ligand field. For example, the first virtual states bear large contributions from π*
orbitals localized on the quinoline rings, while the highest occupied MO (HOMO) is invariably an
antibonding combination of the dx2−y2 metal state with ligand-centered SALC of a1 symmetry (see
Figure S13). However, the ligand field is not inverted in the Hoffman’s sense [8], as the MO sequence is
the same as expected for a distorted square pyramidal crystal field (Figure 6). The reason can be traced
back to the relatively low electronegativity of ligands. Therefore, frontier orbitals still bear a significant
metal character, and the geometry of the title compound can be rationalized in terms of distortions due
to an anisotropic ligand environment, according to the predictions of the crystal field theory.

The higher energy of ligand states, however, makes them possible reducing agents with respect to
metal. Following Snyder [5], we believe that copper in CDCQB is partly reduced by bromide ligands.
Keeping in mind that many arguments arise when one tries to assign physical meaning to quantities
sensible to arbitrary partitioning criteria, such as atomic charges, some consistent trends can at least be
deduced by comparing the outcomes of DFT simulations. Table 3 shows condensed Mulliken charges
of metal, quinoline ligands and bromide ions for the stoichiometric Cu2(4,7-DCQ)4Br4 structure, at the
experimental and in vacuo DFT optimized geometries. DFT results from the triplet spin state are
qualitatively identical (Table S21).
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Table 3. Mulliken net atomic charges (electrons) of relevant symmetry-independent chemical moieties
in CDCQB, as obtained from M06/TZVP calculations on isolated complexes a.

Fragment X-ray Geometry b DFT-Optimized b

µ2–Br− (Br(1)) −0.781 −0.780
Br−, equatorial (Br(2)) −0.695 −0.681

Cu 1.298 1.309
4,7-DCQ 1 0.084 0.075
4,7-DCQ 2 0.091 0.075

a Full data in Table S13 SI. b Only the inversion-independent chemical moieties are
reported, corresponding to one-half of the full stoichiometry.

While the dichloroquinoline ligands are neutral, some electron density is transferred to copper,
whose net charge is lower than that expected from its formal +2 oxidation state. DFT results thus
provide a rationale to explain the observed amount of nonstoichiometric Cu2(4,7-DCQ)4Br3 molecules
in the crystal, with reduced (or partially reduced) copper centers (see above).

It is likely that the redox process takes place in solution when CuBr2 is mixed with the 4,7-DCQ
ligand (see Section 2). We hypothesize that a minority of bromide ions are oxidized to Br2 and produce
Cu(I) centers, which are included in the crystal at the growth stage. The reaction is expected to be

Cu2+(solv) + 2Br−(solv)
 Cu+(solv) + Br2(g) (4)

where “solv” indicates the 1:1 dichloromethane/methanol reaction liquor (see Section 2). Based on
the amount of formal Cu+ centers found in the crystal, a degree of progress of 11% is reasonable,
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corresponding to an equilibrium constant K = 5.15 × 10−4. Overall, the process is endergonic,
with ∆Go = 18.14 kJ·mol−1 as computed from the known thermodynamic boundary conditions
(T = 15 ◦C, p = 1 bar; see Section 2). From the Nernst equation, applicable at our dilutions, the expected
standard cell potential is –0.188 V for the Cu2+/Br− redox pair. To the sake of comparison, the reduction
of Cu2+ by bromide in water is much more endergonic, with 5 times higher ∆Go (+89.6 kJ·mol−1),
as estimated from standard reduction potentials. However, in aqueous solution, Cu(I) is completely
instable and disproportionates to give metallic copper and Cu(II) ions. Copper(I) oxidation state can
be stabilized only by forming stable complexes (e.g., [CuCl2]−) or insoluble salts (e.g., CuI).

The difference between the two ∆Go values can be partly attributed to the different chemical
environments [58,59], although the role of 4,7-DCQ may not be negligible. Indeed, it is known that the
Cu(I)–Cu(II) redox system can be strongly influenced by the presence of N-donor ligand depending
on the strength of the copper–nitrogen bond [60]. Actually, stabilization effects towards an oxidation
state in a copper complex are governed by a tricky combination of structural and reduction–oxidation
properties of both organic components and Cu counter-anions [61,62]. Even some environmental
factors, such as temperature and solvent polarity, can also produce a drastic change in the position of the
redox equilibrium [63]. To corroborate this model and fully clarify the role of any system elements, the
inclusion of further experimental evidence is needed, which will be discussed in a forthcoming study.

7. Conclusions

The stereochemistry of Cu2+ complexes is often determined by a subtle interplay of electronic
effects that are hardly rationalized in a classical coordination chemistry framework. In this work,
the binuclear [Cu(4,7-dichloroquinoline)2Br2]2 complex (CDCQB) was studied by single-crystal X-ray
crystallography and quantum chemical methods as a possible borderline case between transition and
main group chemistry. The basic coordination geometry of CDCQB is distorted square pyramidal,
with each Cu center bonded to four equatorial ligands and one axial bridging bromide ion. There are
striking similarities with inverted field complexes. However, likely due to the low electronegativity
of 4,7-DCQ and bromide, the MO sequence remains that expected for a distorted square pyramidal
crystal field, that is, no inversion of the d ladder occurs.

From the reactivity viewpoint, we provided several points of experimental evidence that formal
Cu2+ centers in this complex act as Lewis acids and tend to accept electrons from the inner shell ligands,
in agreement with the known reactivity and catalytic ability of this kind of complex [17,18,64]. To date,
only two crystal structures of Cu(II):4,7-dichloroquinoline complexes have been reported (CSD refcodes
KUBJOG and KUHHEA), and a few dozen Cu:quinoline complexes are known, with copper mainly in
the +1 oxidation state. We proved that 4,7-DCQ ligands, in conjunction with bromide counterions,
can promote a change of the metal redox state. In further detail, it is found that ~11% Br− vacancies are
included in the crystal, determining defective Cu2(4,7-DCQ)4Br3 binuclear units, with a missing µ2-type
bromide ion, that coexist with stoichiometric Cu2(4,7-DCQ)4Br4 ones. To ensure electroneutrality,
copper in Cu2(4,7-DCQ)4Br3 must thus be partially reduced. An endergonic redox pair where Br2 is
produced by the partial oxidation of Br− is probably set up in solution, and the resulting Cu(I) centers
are included in the crystal during the growth process. Even though no appreciable π-backdonation
toward the 4,7-DCQ moieties was detected, we note that the availability of low-energy virtual π*
4,7-DCQ orbitals may provide opportunities to activate the aromatic ring of the ligand, opening new
perspectives for aromatic chemistry applications.
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Structure factor amplitudes at 100 K. Multipole model output. Details on the development of the final multipole
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contacts. Stacking motifs. Geometry: relative ligand orientation and DFT-optimized coordinates. Charge density
and aromaticity descriptors. Magnetic susceptivity measurements. Frontier molecular orbitals. Figure S1: X-ray
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Least–squares results. Table 1: Agreement factors. Coordinates and Uiso at 100 K. Table S3: Harmonic
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